Patiromer–An Oral Calcium-Loaded Potassium Binder: Kalirrhea with Calciuresis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Take Your Phosphate Binders
How to take your phosphate binders Information for renal patients Oxford Kidney Unit Page 2 What are phosphate binders? To reduce the amount of phosphate you absorb from your food you may have been prescribed a medicine called a phosphate binder. Phosphate binders work by binding (attaching) to some of the phosphate in food. This will reduce the amount of phosphate being absorbed into your blood stream. A list of phosphate binders and how to take them is shown below. Phosphate binder How to take it Calcichew (calcium carbonate) Chew thoroughly 10-15 minutes before or immediately before food Renacet (calcium acetate) Phosex (calcium acetate) Osvaren (calcium acetate and magnesium carbonate) Swallow whole after the first Renagel 2-3 mouthfuls of food (sevelemer hydrochloride) Renvela tablets (sevelemer carbonate) Alucaps (aluminium hydroxide) Renvela powder Dissolve in 60ml of water and (sevelemer carbonate) take after the first 2-3 mouthfuls of food Fosrenol tablets Chew thoroughly towards the (lanthanum carbonate) end/immediately after each meal Fosrenol powder Mix with a small amount of (lanthanum carbonate) food and eat immediately Velphoro Chew thoroughly after the first (sucroferric oxyhydroxide) 2-3 mouthfuls The phosphate binder you have been prescribed is: ……………………………………………………………………………………………………………………………………………………….. Page 3 How many phosphate binders should I take? You should follow the dose that has been prescribed for you. Your renal dietitian can advise how best to match your phosphate binders to your meal pattern, as well as which snacks require a phosphate binder. What happens if I forget to take my phosphate binder? For best results, phosphate binders should be taken as instructed. -
Calcium Acetate Capsules
Calcium Acetate Capsules Type of Posting Revision Bulletin Posting Date 27–Dec–2019 Official Date 01–Jan–2020 Expert Committee Chemical Medicines Monographs 6 Reason for Revision Compliance In accordance with the Rules and Procedures of the 2015–2020 Council of Experts, the Chemical Medicines Monographs 6 Expert Committee has revised the Calcium Acetate Capsules monograph. The purpose for the revision is to add Dissolution Test 4 to accommodate FDA-approved drug products with different dissolution conditions and/or tolerances than the existing dissolution tests. • Dissolution Test 4 was validated using a YMC-Pack ODS-A C18 brand of L1 column. The typical retention time for calcium acetate is about 4.3 min. The Calcium Acetate Capsules Revision Bulletin supersedes the currently official monograph. Should you have any questions, please contact Michael Chang, Senior Scientific Liaison (301-230-3217 or [email protected]). C236679-M11403-CHM62015, rev. 00 20191227 Revision Bulletin Calcium 1 Official January 1, 2020 Calcium Acetate Capsules PERFORMANCE TESTS DEFINITION Change to read: Calcium Acetate Capsules contain NLT 90.0% and NMT · DISSOLUTION á711ñ 110.0% of the labeled amount of calcium acetate Test 1 (C4H6CaO4). Medium: Water; 900 mL IDENTIFICATION Apparatus 2: 50 rpm, with sinkers · A. The retention time of the calcium peak of the Sample Time: 10 min solution corresponds to that of the Standard solution, as Mobile phase, Standard solution, Chromatographic obtained in the Assay. system, and System suitability: Proceed as directed in · B. IDENTIFICATION TESTSÐGENERAL á191ñ, Chemical the Assay. Identification Tests, Acetate Sample solution: Pass a portion of the solution under test Sample solution: 67 mg/mL of calcium acetate from through a suitable filter of 0.45-µm pore size. -
Renal Diet for Patients with Diabetes
Webinar: BDA - Diabetes Specialist Group Renal diet for Patients with Diabetes By Gabby Ramlan Diabetes & Renal Specialist Dietitian Overview • Diabetes Dietitian Vs Renal Dietitian • Problems in individual with kidney disease • Salt • Protein • Phosphate • Potassium • Acute Kidney Injury (AKI) Around 40% people with diabetes eventually develop diabetic nephropathy or diabetes kidney disease. Diabetes is a leading cause of kidney failure in UK – around 20% starting dialysis have diabetes. Kidney Research UK “Dietary requirements for patients with both diabetes and chronic kidney disease (CKD) is more complicated than with each individual condition as it involves multiple nutrients” National Kidney Foundation (NKF) 2007 Diabetes vs Renal Specialist Dietitian Diabetes Renal • Salt • Salt • Lipid control • Lipid control • Carbohydrates • Protein • Glycaemic control • Potassium • OHAs • Fluid • Injectable meds • CKD-MBD • Insulin • Phosphate Binders • Vit D / calcimimetic Kidney’s Functions • Regulation of the composition and volume of body fluids – Na+, K+, Phosphate, Mg – Acid/base balance – BP & volume via renin angiotensin system • Excretion of waste products – Urea (protein metabolism) – Creatinine (muscle metabolism) – Drugs & toxins Kidney’s Fx • Endocrine fx - Erythropoetin & Hb • Metabolic - Control calcium/phosphate/ PTH balance - Vit D metabolism - Excretion of phosphate Common problems with renal patients • Anaemia – no dietary advice CKD – Mineral Bone Disorder (MBD) 1. Vitamin D Fluid Hyperkalaemia 2. Corrected Hypertension 1. -
New Brunswick Drug Plans Formulary
New Brunswick Drug Plans Formulary August 2019 Administered by Medavie Blue Cross on Behalf of the Government of New Brunswick TABLE OF CONTENTS Page Introduction.............................................................................................................................................I New Brunswick Drug Plans....................................................................................................................II Exclusions............................................................................................................................................IV Legend..................................................................................................................................................V Anatomical Therapeutic Chemical (ATC) Classification of Drugs A Alimentary Tract and Metabolism 1 B Blood and Blood Forming Organs 23 C Cardiovascular System 31 D Dermatologicals 81 G Genito Urinary System and Sex Hormones 89 H Systemic Hormonal Preparations excluding Sex Hormones 100 J Antiinfectives for Systemic Use 107 L Antineoplastic and Immunomodulating Agents 129 M Musculo-Skeletal System 147 N Nervous System 156 P Antiparasitic Products, Insecticides and Repellants 223 R Respiratory System 225 S Sensory Organs 234 V Various 240 Appendices I-A Abbreviations of Dosage forms.....................................................................A - 1 I-B Abbreviations of Routes................................................................................A - 4 I-C Abbreviations of Units...................................................................................A -
In-Class Targeted Therapies That Advance Patient Care
Passionately committed to improving the lives of patients by discovering, developing and commercializing first- in-class targeted therapies that advance patient care November 2020 Forward-Looking Statements To the extent that statements contained in this presentation are not descriptions of historical facts regarding Ardelyx, they are forward-looking statements reflecting the current beliefs and expectations of management made pursuant to the safe harbor of the Private Securities Reform Act of 1995, including statements regarding the potential for Ardelyx’s product candidates in treating the diseases and conditions for which they are being developed; Ardelyx’s expectation regarding the potential approval of its NDA for tenapanor for the control of serum phosphorus in chronic kidney disease (CKD) patients on dialysis and the expected timing thereof; the commercial potential for tenapanor for the control of serum phosphorus in CKD patients on dialysis, including Ardelyx’s expectation regarding the rate of adoption and use of tenapanor, if approved; Ardelyx’s expectations regarding the size of the patient population and the size of the market for tenapanor in CKD patients on dialysis, and the potential growth thereof; and Ardelyx’s expectations regarding the exhaustion of its current capital resources. Such forward-looking statements involve substantial risks and uncertainties that could cause the development of Ardelyx’s product candidates or Ardelyx's future results, performance or achievements to differ significantly from those expressed or implied by the forward-looking statements. Such risks and uncertainties include, among others, the uncertainties inherent in research and the clinical development process; the uncertainties associated with the regulatory approval process; and the uncertainties in the drug commercialization process. -
Production and Testing of Calcium Magnesium Acetate in Maine
77 Majesty's Stationery Office, London, England, River. Res. Note FPL-0229. Forest Service, U.S. 1948. Department of Agriculture, Madison, Wis., 1974. 14. M.S. Aggour and A. Ragab. Safety and Soundness 20. W.L. James. Effect of Temperature and Moisture of Submerged Timber Bridge PU.ing. FHWA/MD In Content on Internal Friction and Speed of Sound terim Report AW082-231-046. FHWA, U.S. Depart in Douglas Fir. Forest Product Journal, Vol. ment of Transportation, June 1982. 11, No. 9, 1961, pp. 383-390, 15. B.O. Orogbemi. Equipment for Determining the 21. A, Burmester. Relationship Between Sound Veloc Dynami c Modulus of Submerged Bridge Timber Pil ity and Morphological, Physical, and Mechani ·ing. Master's thesis. University of Maryland, cal Properties of Wood. Holz als Roh und Wer College Park, 1980. stoff, Vol. 23, No. 6, 1965, pp. 227-236 (in 16. T.L. Wilkinson. Strength Evaluation of Round German) • Timber Piles. Res. Note FPL-101. Forest Ser 22. c.c. Gerhards. Stress Wave Speed and MOE of vice, U.S. Department of Agriculture, Madison, Weetgum Ranging from 150 to 15 Percent MC. Wis., 1968. Forest Product Journal, Vol. 25, No. 4, 1975, 17. J, Bodig and B.A. Jayne. Mechanics of Wood and pp. 51-57. Wood Composites. Van Nostrand, New York, 1982. 18. R.M. Armstrong. Structural Properties of Timber Piles, Behavior of Deep Foundations. Report STP-670, ASTM, Philadelphia, 1979, pp. 118-152. 19. B.A, Bendtsen. Bending Strength and Stiffness Publication of this paper sponsored by Committee on of Bridge Piles After 85 Years in the Milwaukee Structures Maintenance. -
Phosphate Binders
Pharmacy Info Sheet Phosphate Binders calcium acetate, calcium carbonate (Tums, Calsan, Apocal, Ocal), calcium liquid, aluminum hydroxide (Basaljel, Amphojel), sevelamer (Renagel), lanthanum (Fosrenol) What it does: Phosphate binders are used to treat high Special considerations for lanthamum and blood phosphorus levels. sevelamer: Calcium acetate, calcium carbonate, calcium Lanthanum should be taken during or liquid, aluminum hydroxide, lanthanum and immediately after a meal. Taking a dose on an sevelamer bind dietary phosphate. When the empty stomach can cause nausea and kidneys fail, phosphorus builds up in the body vomiting. Chew the tablet completely before because the kidneys can no longer remove swallowing. DO NOT swallow tablets whole. much phosphorus. Phosphate binders are used to lower the amount of phosphorus Sevelamer should be taken just before eating. absorbed from food to limit development of Swallow the tablet whole – Renagel should not bone and blood vessel disease. be cut or chewed. The contents of sevelamer tablets expand in water and could cause Aluminum hydroxide and calcium carbonate choking if cut chewed or crushed. may also be prescribed as antacids. Calcium preparations may also be prescribed as Phosphate binders may interfere with the calcium supplements. Use them only as absorption of certain drugs such as iron prescribed. When these medications are supplements, antibiotics, digoxin, ranitidine, prescribed as calcium supplements or antiseizure, and antiarrhythmic medications. antacids, take between meals. If you are prescribed any of these drugs, take them at least 1 hour before or 3 hours after your How it works: phosphate binder. Kidney disease can cause phosphate to accumulate which results in bone and blood What to do if you miss a dose: vessel disease. -
Dorset Medicines Advisory Group
Dorset Medicines Advisory Group SHARED CARE GUIDELINE FOR THE USE OF PHOSPHATE BINDERS IN THE MANAGEMENT OF HYPERPHOSPHATAEMIA IN PATIENTS WITH CHRONIC KIDNEY DISEASE. INDICATION This document provides guidance for the prescribing of phosphate binders for the management of hyperphosphatemia in patients receiving haemodialysis or peritoneal dialysis and patients with chronic kidney disease stage 4 or 5 who are not receiving dialysis. This shared care guideline covers adult patients under the care of the Dorset Renal Unit. Patients with chronic renal failure have reduced ability to excrete phosphate. Phosphate accumulation enhances parathyroid activity and leads to the calcification of arteries, significantly contributing to the excess cardiovascular morbidity in these patients, especially in younger age groups. Adequate control of serum phosphate levels is thought to be beneficial for the prevention of vascular and cardiac calcification in patients with renal failure and control of parathyroid hormone. A number of oral phosphate binders are available which may be used in the context of a multiple therapeutic approach. These include calcium acetate, calcium carbonate, calcium acetate/magnesium carbonate, lanthanum, sevelamer and sucroferric oxyhydroxide. These products may be used in combination with 1-hydroxycholecalciferol (alfacalcidol) or one of its analogues and/or cinacalcet to control the development of secondary hyperparathyroidism and renal bone disease. A calcium-based phosphate binder is generally used as the initial phosphate binder therapy for the treatment for hyperphosphatemia. Calcium acetate is preferred over calcium carbonate due to its lower elemental calcium content for the equivalent phosphate binding capacity, however patient preference in formulation should be taken into consideration. A non-calcium-based phosphate binder should be used in patients who cannot tolerate a calcium-based phosphate binder, whose serum calcium exceeds 2.5mmol/L or whose parathyroid levels are less than 15pmol/L. -
FLUID COMPATIBILITY CHART for Metal Threaded Fittings Sealed with Loctite¨ Sealants LIQUIDS, SOLUTIONS & SUSPENSIONS
FLUID COMPATIBILITY CHART for metal threaded fittings sealed with Loctite® Sealants LIQUIDS, SOLUTIONS & SUSPENSIONS LEGEND: Bagasse Fibers.......................... Chlorobenzene Dry ................... Ferrous Chloride ...................... Ion Exclusion Glycol ................. Nickel Chloride.......................... All Loctite® Anaerobic Sealants are Barium Acetate ........................ Chloroform Dry......................... Ferrous Oxalate......................... Irish Moss Slurry...................... Nickel Cyanide ......................... Compatible Including #242®, 243, Barium Carbonate..................... Chloroformate Methyl............... Ferrous Sulfate10%.................. Iron Ore Taconite ..................... Nickel Fluoborate ..................... 542, 545, 565, 567, 569, 571, 572, Barium Chloride........................ Chlorosulfonic Acid .................. Ferrous Sulfate (Sat)................. Iron Oxide ................................ Nickel Ore Fines ....................... 577, 580, 592 Barium Hydroxide..................... Chrome Acid Cleaning .............. Fertilizer Sol ............................. Isobutyl Alcohol ....................... Nickel Plating Bright ................. † Use Loctite® #270, 271™, 277, 554 Barium Sulfate.......................... Chrome Liquor.......................... Flotation Concentrates.............. Isobutyraldehyde ..................... Nickel Sulfate ........................... Not Recommended Battery Acid .............................. Chrome Plating -
Production of Low-Cost Acetate Deicers from Biomass and Industrial Wastes
Production of Low-Cost Acetate Deicers from Biomass and Industrial Wastes Shang-Tian Yang and Zuwei Jin, The Ohio State University Brian H. ChoUar, Federal Highway Administration Calcium magnesium acetate (CMA), a mixture of calcium 1 rom 10 million to 14 million tons of road salt are acetate and magnesium acetate, is used as an environmen• I used annually in the United States and Canada. tally benign roadway deicer. The present commercial F Salt is an extremely effective snow and ice con• CMA deicer made from glacial acetic acid and dolomitic trol agent and is relatively inexpensive. However, a lime or limestone is more expensive than salt and other study in New York State showed that although 1 ton of deicers. Also, a liquid potassium acetate deicer is used to road salt cost only $25, it caused more than $1,400 in replace urea and glycol in airport runway deicing. Two al• damage (1). Salt is corrosive to concrete and metals ternative low-cost methods to produce these acetate de- used in the nation's infrastructure, is harmful to road• icers from cheap feedstocks, such as biomass and side vegetation, and poses serious threats to environ• industrial wastes, were studied. CMA deicers produced ment and ground-water quality in some regions (2). from cheese whey by fermentation and extraction were FHWA spends about $12.5 billion annually, a sub• tested for their acetate content and deicing property. The stantial portion of which is used to rebuild and resur• CMA solid sample obtained from extraction of the acetic face highways and bridges damaged by salt corrosion. -
BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING
BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Bart Heldreth Ph.D., Chemist Date: July 30, 2010 Subject: Draft Final Report of Methyl Acetate, Simple Alkyl Acetate Esters, Acetic Acid and its Salts as used in Cosmetics . This review includes Methyl Acetate and the following acetate esters, relevant metabolites and acetate salts: Propyl Acetate, Isopropyl Acetate, t-Butyl Acetate, Isobutyl Acetate, Butoxyethyl Acetate, Nonyl Acetate, Myristyl Acetate, Cetyl Acetate, Stearyl Acetate, Isostearyl Acetate, Acetic Acid, Sodium Acetate, Potassium Acetate, Magnesium Acetate, Calcium Acetate, Zinc Acetate, Propyl Alcohol, and Isopropyl Alcohol. At the June 2010 meeting, the Panel reviewed information submitted in response to an insufficient data announcement for HRIPT data for Cetyl Acetate at the highest concentration of use (lipstick). On reviewing the data in the report, evaluating the newly available unpublished studies and assessing the newly added ingredients, the Panel determined that the data are now sufficient, and issued a Tentative Report, with a safe as used conclusion. Included in this report are Research Institute for Fragrance Materials (RIFM) sponsored toxicity studies on Methyl Acetate and Propyl Acetate, which were provided in “wave 2” at the June Panel Meeting but are now incorporated in full. The Tentative Report was issued for a 60 day comment period (60 days as of the August panel meeting start date). The Panel should now review the Draft Final Report, confirm the conclusion of safe, and issue a Final Report. All of the materials are in the Panel book as well as in the URL for this meeting's web page http://www.cir- safety.org/aug10.shtml. -
Nephrology II BONE METABOLISM and DISEASE in CHRONIC KIDNEY DISEASE
Nephrology II BONE METABOLISM AND DISEASE IN CHRONIC KIDNEY DISEASE Sarah R. Tomasello, Pharm.D., BCPS Reviewed by Joanna Q. Hudson, Pharm.D., BCPS; and Lisa C. Hutchison, Pharm.D., MPH, BCPS aluminum toxicity. Adynamic bone disease is referred to as Learning Objectives low turnover disease with normal mineralization. This disorder may be caused by excessive suppression of PTH 1. Analyze the alterations in phosphorus, calcium, vitamin through the use of vitamin D agents, calcimimetics, or D, and parathyroid hormone regulation that occur in phosphate binders. In addition to bone effects, alterations in patients with chronic kidney disease (CKD). calcium, phosphorus, vitamin D and PTH cause other 2. Classify the type of bone disease that occurs in patients deleterious consequences in patients with CKD. Of these, with CKD based on the evaluation of biochemical extra-skeletal calcification and increased left ventricular markers. mass have been documented and directly correlated to an 3. Construct a therapeutic plan individualized for the stage increase in cardiovascular morbidity and mortality. The goal of CKD to monitor bone metabolism and the effects of of treatment in patients with CKD and abnormalities of bone treatment. metabolism is to normalize mineral metabolism, prevent 4. Assess the role of various treatment options such as bone disease, and prevent extraskeletal manifestations of the phosphorus restriction, phosphate binders, calcium altered biochemical processes. supplements, vitamin D agents, and calcimimetics In 2003, a non-profit international organization, Kidney based on the pathophysiology of the disease state. Disease: Improving Global Outcomes, was created. Their 5. Devise a therapeutic plan for a specific patient with mission is to improve care and outcomes for patients with alterations of phosphorus, calcium, vitamin D, and CKD worldwide by promoting, coordinating, collaborating, intact parathyroid hormone concentrations.