0415023351.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commencement1976.Pdf (4.717Mb)
1976 Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://archive.org/details/commencement1976 ORDER OF PROCESSION MARSHALS STANLEY CORRSIN JOHN W. GRYDER MATTHEW A. CRENSON WILLIAM H. HUGGINS ELAINE C. DAVIS ROBERT A. LYSTAD HANS GOEDICKE EVANGELOS N. MOUDRIANAKIS ARCHIE GOLDEN EVERETT SCHILLER GERALD S. GOTTERER JOHN P. YOUNG THE GRADUATES MARSHALS ROBERT B. POND OREST RANUM THE DEANS MEMBERS OF THE SOCIETY OF SCHOLARS OFFICERS OF THE UNIVERSITY THE TRUSTEES * MARSHALS BROWN L. MURR FRANCIS E. ROURKE THE FACULTIES * CHIEF MARSHAL RICHARD A. MACKSEY THE CHAPLAINS THE RECIPIENT OF THE MILTON STOVER EISENHOWER MEDAL FOR DISTINGUISHED SERVICE THE PRESENTOR OF THE RECIPIENT OF THE MILTON STOVER EISENHOWER MEDAL FOR DISTINGUISHED SERVICE THE HONORARY DEGREE CANDIDATES THE PROVOST OF THE UNIVERSITY THE PRESIDENT EMERITUS OF THE UNIVERSITY THE CHAIRMAN OF THE BOARD OF TRUSTEES THE PRESIDENT OF THE UNIVERSITY ORDER OF EVENTS STEVEN MULLER President of the University, presiding * * * FANFARE PROCESSIONAL The audience is requested to stand as the Academic Procession moves into the area and to remain standing after the Invocation. " " Earle of Oxford's Marche William Byrd The Peabody Wind Ensemble Richard Higgins, Director * INVOCATION REV. CHESTER WICKWIRE Chaplain, The Johns Hopkins University THE NATIONAL ANTHEM GREETINGS ROBERT D. H. HARVEY Chairman of the Board of Trustees PRESENTATION OF THE RECIPIENT FOR THE MILTON STOVER EISENHOWER MEDAL FOR DISTINGUISHED SERVICE HELEN B. TAUSSIG PRESENTED BY RICHARD S. ROSS Vice President for the Health Divisions and Dean, School of Medicine * PRESENTATION OF NEW MEMBERS OF THE SOCIETY OF SCHOLARS LEROY E. -
APA Eastern Division 2019 Annual Meeting Program
The American Philosophical Association EASTERN DIVISION ONE HUNDRED FIFTEENTH ANNUAL MEETING PROGRAM SHERATON NEW YORK TIMES SQUARE NEW YORK, NEW YORK JANUARY 7 – 10, 2019 Visit our table at APA Eastern OFFERING A 20% (PB) / 40% (HC) DISCOUNT WITH FREE SHIPPING TO THE CONTIGUOUS U.S. FOR ORDERS PLACED AT THE CONFERENCE. THE POETRY OF APPROACHING HEGEL’S LOGIC, GEORGES BATAILLE OBLIQUELY Georges Bataille Melville, Molière, Beckett Translated and with an Introduction by Angelica Nuzzo Stuart Kendall THE POLITICS OF PARADIGMS ZHUANGZI AND THE Thomas S. Kuhn, James B. Conant, BECOMING OF NOTHINGNESS and the Cold War “Struggle for David Chai Men’s Minds” George A. Reisch ANOTHER AVAILABLE APRIL 2019 WHITE MAN’S BURDEN Josiah Royce’s Quest for a Philosophy THE REAL METAPHYSICAL CLUB of white Racial Empire The Philosophers, Their Debates, and Tommy J. Curry Selected Writings from 1870 to 1885 Frank X. Ryan, Brian E. Butler, and BOUNDARY LINES James A. Good, editors Philosophy and Postcolonialism Introduction by John R. Shook Emanuela Fornari AVAILABLE MARCH 2019 Translated by Iain Halliday Foreword by Étienne Balibar PRAGMATISM APPLIED William James and the Challenges THE CUDGEL AND THE CARESS of Contemporary Life Reflections on Cruelty and Tenderness Clifford S. Stagoll and David Farrell Krell Michael P. Levine, editors AVAILABLE MARCH 2019 AVAILABLE APRIL 2019 LOVE AND VIOLENCE BUDDHIST FEMINISMS The Vexatious Factors of Civilization AND FEMININITIES Lea Melandri Karma Lekshe Tsomo, editor Translated by Antonio Calcagno www.sunypress.edu II IMPORTANT NOTICES FOR MEETING ATTENDEES SESSION LOCATIONS Please note: this online version of the program does not include session locations. -
SYLLABUS Gödel's Theorems Phil 93902 TR 3:30 143 Debartolo Hall
SYLLABUS G¨odel's Theorems Phil 93902 TR 3:30 143 Debartolo Hall Michael Detlefsen ([email protected]), 408 Malloy Hall Curtis Franks ([email protected]), 411 Malloy Hall Fall 2007 I. Course Objectives • To acquaint the student with the basic ideas, methods and techniques behind one of the most striking scientific achievements of the twentieth century, the discovery of G¨odel'sincompleteness theorems. • To engage the student in productive thinking concerning the broader significance of these theorems. II. Texts • Kurt G¨odel:Collected Works, vol. I, Feferman et al. (eds.), Oxford, Oxford U. Press, 1986. III. Organization and Projected Schedule The course will divided into the following units, each estimated to run the indicated number of meetings. We plan to cover all of units A through G. We will cover the additional units according to the interests of the seminar participants. A. Historical and conceptual background and basic terminology. Two meetings. B. Basic mathematical background. Proof of the first theorem (G1). Four to five meet- ings. 1 C. Modifications of the proof of the first theorem, esp. Rosser's modification. One to two meetings. D. Proof of the second theorem (G2). Central task is to clarify the proofs of the second and third of the Hilbert-Bernays-L¨obDerivability Conditions (HBL Conditions). Two meetings. E. Alternative proofs of G2. Jeroslow's 1973 proof. Feferman's 1960 proof. Freidman's recent proof. [Note: We may discuss Jeroslow's and Feferman's proofs in inverse historical order because Jeroslow's proof is in some ways the less radical departure from the Hilbert-Bernays-L¨obproof.] Three meetings. -
Notre Dame Report 37:10 (2008-08-03)
Faculty Notes 387 ������ Honors 387 ������ Activities 389 ������ Publications 390 ������ Correction Administrators’ Notes 390 ������ Activities 390 ������ Publications Documentation 391 ������ Faculty Awards 393 ������ Faculty Recognition and Promotions 395 ������ Senior Fellow Comments 395 ������ Charge to the Class 396 ������ Baccalaureate Mass Homily 397 ������ Invocation 397 ������ Valedictory Remarks 399 ������ Undergraduate School Commencement Address 401 ������ The Laetare Medal Research 404 ������ May 2008 A U G U S T 3 , 2 0 0 8 N U M B E R 1 0 #8-5-387 “Discovery vs� Invention in the History of Mathematics” at the “Mathematics and Its Significance, Templeton Foundation Symposium,” Castel Gandolfo, Italy, Faculty Notes June 21–23; “Arithmetization and the Ideals of Proof” for the Dept� de la Histoire et de Honors Philosophie des Sciences, Univ� of Paris- Diderot and REHSEIS, June 18–19; “Some Michael Detlefsen, the McMahon-Hank Harvey A. Bender, professor of biological Questions Concerning Proof” as an invited Professor of Philosophy, was awarded a sciences, delivered a Hesburgh Lecture and discussant in “Workshop in the History and Senior Chaire d’excellence, by the Agence participated in the annual meeting of the Philosophy of Mathematics,” Dept� de la Nationale de la Recherche, France, for his American College of Medical Genetics in Histoire et de Philosophie des Sciences, U� work on ideals of proof; and is serving Phoenix, Ariz�, March 12–16, 2008� of Paris-Diderot and REHSEIS, June 13–14; as distinguished invited professor -
Counterpossibles in Science: the Case of Relative Computability*
Counterpossibles in Science: The Case of Relative Computability* MATTHIAS JENNY Massachusetts Institute of Technology forthcoming in Noˆus Abstract I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable, which is true, and If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable, which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counter- factuals, which would treat them as uniformly true. What’s more, I argue that these counterpossibles don’t just appear in the periphery of relative computability theory but instead they play an ineliminable role in the development of the theory. Finally, I present and discuss a model theory for these counterfactuals that is a straightforward extension of the familiar comparative similarity models. *Thanks to Scott Aaronson, Karen Bennett, Matteo Bianchetti, David Boylan, Ben Burgis, Alex Byrne, Michael Detlefsen, Richard Dietz, Kevin Dorst, Nicole Dular, Hartry Field, Melvin Fitting, Juliet Floyd, Cameron Gibbs, Cosmo Grant, Geoffrey Hellman, Jared Henderson, Harold Hodes, Douglas Jesseph, Justin Khoo, Hilary Kornblith, Teresa Kouri, Rose Lenehan, Matt Mandelkern, William Nalls, Eileen Nutting, Alex Paseau, Milo Phillips-Brown, Graham Priest, Agust´ın Rayo, Bernhard Salow, Chris Scambler, Melissa Schu- macher, Kieran Setiya, Stewart Shapiro, Jeremy Shipley, Bradford Skow, Theodore Sider, Robert Stalnaker, Stephen Yablo, Elena Ziliotti, audiences at the 3rd Seoul Philosophy Graduate Student Conference, the 16th Midwest PhilMath Workshop, the 1st Massachusetts-Rhode Island Graduate Workshop in Philosophy, the 2016 Logic & Metaphysics Workshop at the CUNY Graduate Center, the 2016 CSHPM/SCHPM Annual Meeting, and especially Vann McGee for very helpful discussion. -
Hilbert's Program Then And
Hilbert’s Program Then and Now Richard Zach Abstract Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic sys- tems. Although G¨odel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial suc- cesses, and generated important advances in logical theory and meta- theory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical un- derpinnings and consequences, and its subsequent development and influ- ences since the 1930s. Keywords: Hilbert’s program, philosophy of mathematics, formal- ism, finitism, proof theory, meta-mathematics, foundations of mathemat- ics, consistency proofs, axiomatic method, instrumentalism. 1 Introduction Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of G¨ottingen and elsewhere in the 1920s and 1930s. Briefly, Hilbert’s proposal called for a new foundation of mathematics based on two pillars: the axiomatic method, and finitary proof theory. Hilbert thought that by formalizing mathematics in axiomatic systems, and subsequently proving by finitary methods that these systems are consistent (i.e., do not prove contradictions), he could provide a philosophically satisfactory grounding of classical, infinitary mathematics (analysis and set theory). -
CSHPM Bulletin, May 2020
BULLETIN May/Mai 2020 Number/le num´ero66 WHAT'S INSIDE Articles Announcements ................................................................................................3 Digitized Smithsonian Mathematics Objects [Peggy Aldrich Kidwell] .....................................7 Book Review: Republic of Numbers [Andrew Perry].........................................................8 Books Borrowed Registers [Scott Guthery] ................................................................... 10 New Content from MAA Convergence [Janet Heine Barnett & Amy Ackerberg-Hastings]............... 10 Michael Detlefsen (1948{2019) [Patricia Blanchette, Tim Bays, and Curtis Franks] ...................... 12 Quotations in Context [Mike Molinsky] ...................................................................... 14 Martin Muldoon (1939{2019) [Hardy Grant] ................................................................. 15 Help (Still) Wanted ............................................................................................ 16 Reports President's Message [Maria Zack] .............................................................................2 From the Archives: Councillors ............................................................................... 13 2020 CSHPM Nominating Committee Report [Chris Baltus, Dan Curtin, and Elaine Landry] .......... 13 2019 Financial Statements [Greg Lavers] ..................................................................... 15 New Members ................................................................................................. -
Faculty and Index
304 JOSÉ ANADÓN, Professor of Romance Languages and DAVID E. AUNE, Professor of Theology. B.A., Wheaton University Teaching Literatures. B.A., Albion College, 1968; M.A. Univ. of College, 1961; M.A., ibid., 1963; M.A., Univ. of Minne- Faculty Michigan, 1970; Ph.D., ibid., 1974. (1975) sota, 1965; Ph.D., Univ. of Chicago, 1970. (1999) SILVIA R. ANADÓN, Assistant Professional Specialist and YVES L. AURIOL, Associate Professional Specialist in Concurrent Lecturer in Romance Languages and Literatures. Physical Education. Master’s, Institute National du Sport, The following is the undergraduate teaching faculty roster B.A., Univ. of Michigan, 1970; M.A., ibid., 1972; Ph.D., France, 1968. (1985) for the 2001-02 academic year. This roster includes fac- ibid., 1974. (1976, 1979) ulty members who are on leave during the academic year. REV. NICHOLAS R. AYO C.S.C., Professor of Liberal The date in parentheses at the close of each entry is the THOMAS F. ANDERSON, Assistant Professor of Romance Studies. A.B., Univ. of Notre Dame, 1956; S.T.L., year the individual joined the Notre Dame faculty. Languages and Literatures and Fellow, Helen Kellogg Insti- Gregorian Univ., 1960; M.A., Univ. of Notre Dame, tute for International Studies. B.A., Bowdoin College, 1962; Ph.D., Duke Univ., 1966. (1981) CARL B. ACKERMANN, Assistant Professor of Finance. 1992; M.A., Univ. of Pennsylvania, 1994; Ph.D., ibid., A.B., Amherst College, 1984; Ph.D., Univ. of North 1998. (1998) MARIA PALOMA AYUELA, Associate Professor of Archi- Carolina, 1999. (1998) tecture. M.Arch., Yale Univ., 1989; Ph.D., Universidad PANAGIOTIS J. -
Blanchette Vita for Website
Patricia A. Blanchette Dept. of Philosophy Office: (574) 631-6439 University of Notre Dame Dept: (574) 631-6471 Notre Dame, IN 46556 e-mail: [email protected] Areas of Specialization: History and Philosophy of logic; Philosophy of mathematics; Foundations of analytic philosophy; Philosophy of Language. Education Ph.D. (Philosophy), Stanford University, 1990. B.A. (Philosophy), University of California, San Diego, 1983. Employment August 1993 – Present: University of Notre Dame, Dept. of Philosophy • June 2017 – Present: Glynn Family Honors Collegiate Chair • May 2012 – Present: Professor • May 2000 – May 2012: Associate Professor o Director of Graduate Studies 2004-7, 2008-11 • August 1993 – May 2000: Assistant Professor July 1990 - July 1993: Yale University. Assistant Professor, Dept. of Philosophy. Publications: Book • Frege’s Conception of Logic, Oxford University Press 2012 Reviewed in: o Philosophia Mathematica 22, 1 (2014) pp 108-120. o Journal of the History of Philosophy 52 (2014) pp 176-177. o Bulletin of Symbolic Logic 19, 2 (2013) pp 219-222. o Notre Dame Philosophical Reviews (2013) online. Articles • “Axioms in Frege,” Essays on Frege’s Basic Laws of Arithmetic, edited by Marcus Rossberg and Philip Ebert, Oxford University Press, forthcoming • “Models in Geometry and Logic: 1870-1920,” Logic, Methodology and Philosophy of Science – Proceedings of the 15th International Congress, edited by Niiniluoto, Seppälä, & Sober, College Publications 2017, 41-61. • “Philosophy of Logic,” Philosophy of Logic: 5 Questions, Automatic Press 2016, 25-35. • “Models and Independence circa 1900,” Logica Yearbook 2015, London: College Publications 2016, 17-38. Much of the material in this paper appears also in the expanded “Models in Geometry and Logic: 1870-1920,” 2017. -
From the Outside Looking In: Can Mathematical Certainty Be Secured Without Being Mathematically Certain That It Has Been?
From the Outside Looking In: Can mathematical certainty be secured without being mathematically certain that it has been? Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University Matthew Souba, MSc, MLitt Graduate Program in Philosophy The Ohio State University 2019 Dissertation Committee: Neil Tennant, Advisor Stewart Shapiro Christopher Pincock Copyright by Matthew Souba 2019 Abstract The primary aim of this dissertation is to discuss the epistemological fallout of Gödel’s Incompleteness Theorems on Hilbert’s Program. In particular our focus will be on the philo- sophical upshot of certain proof-theoretic results in the literature. We begin by sketching the historical development up to, and including, Hilbert’s mature program, discussing Hilbert’s views in both their mathematical and their philosophical guises. Gödel’s Incompleteness Theorems are standardly taken as showing that Hilbert’s Pro- gram, as intended, fails. Michael Detlefsen maintains that they do not. Detlefsen’s argu- ments are the focus of chapter 3. The argument from the first incompleteness theorem, as presented by Detlefsen, takes the form of a dilemma to the effect that either the infini- tistic theory is incomplete with respect to a certain subclass of real sentences or it is not a conservative extension over the finitistic theory. He contends that Hilbert need not be committed to either of these horns, and, as such the argument from the first incompleteness theorem does no damage to Hilbert’s program. His argument against the second incomplete- ness theorem as refuting Hilbert’s Program, what he calls the stability problem, concerns the particular formalization of the consistency statement shown unprovable by Gödel’s theorem, and endorses what are called Rosser systems. -
Nebraska), Mort Le 21 Octobre 2019 À L’Hôpital Universitaire De Chicago
In memoriam Michael Detlefsen1 Né le 20 octobre 1948 à Scottsbluff (Nebraska), mort le 21 octobre 2019 à l’hôpital universitaire de Chicago. Michael Detlefsen (Mic, pour la plupart de ceux qui le connaissent) était un ami et un maître pour nombre d'entre nous au sein de la petite communauté des philosophes et historiens des mathématiques en France. Mic racontait volontiers l'histoire incroyable de son arrière-grand-père et de son arrière-arrière-grand oncle qui ont décidé, à l'âge de 9 et 11 ans, de quitter le Danemark et leur famille pour se lancer à la conquête du « rêve américain ». La longue et éprouvante aventure qui s'ensuivit les conduisit, en bateau, en train, puis à pieds, jusqu'à la ville de Dannebrog - Nebraska. Le gouvernement leur a donné des terres à condition qu'ils les cultivent pendant au moins cinq ans. Le rêve est devenu réalité. Et Mic se demande alors : Pourquoi ces enfants ont-ils décidé de quitter leur famille ? La vérité, telle qu'elle lui a été racontée par son frère aîné, est- elle la vérité ? Une seule vérité existe-t-elle jamais, ou la vérité est-elle affectée par notre propre histoire ? Et qu'en est-il de notre propre histoire par rapport à l'histoire ? Au Wheaton College dans la grande banlieue de Chicago, où il a commencé ses études, Mic s'est tourné vers les sciences, les mathématiques, la physique, ainsi que vers la philosophie. Après une thèse sur le second théorème de l'incomplétude de Gödel en 1976 à l'Université Johns Hopkins, il a d'abord été Associate Professor à l'Université du Minnesota-Duluth (1975-1983), puis Associate Professor à l'Université Notre Dame (1984-1989), avant d'être nommé professeur sur la chaire McMahon-Hank à cette même université. -
Outline Winter 2005
The University of Calgary Department of Philosophy Philosophy 567.03/667.16 PHILOSOPHY OF MATHEMATICS Winter 2005 — Richard Zach Course Outline Instructor: Richard Zach Office: 1254 Social Sciences Office Hours: Tu 3:30-4:30 (tentatively) Phone: 220–3170 email: [email protected] Lectures: W 3–6 SS 105 Course Description The philosophy of mathematics deals with, as its name suggests, philosophical issues that are raised by mathematics. Perhaps the most important difference between mathematics and the other sciences is that mathematics deals with entirely abstract concepts (such as number, set, function). Mathematicians do not conduct experiments to confirm their hypotheses, they find proofs. One important issue then, for instance, is clarifying the role of proofs in mathematics, and with it, the nature of mathematical knowledge. Another issue is the question of the status of mathematical objects—do they inhabit some Platonic realm of mathematical objects, are they constructions of the mind, or are there perhaps, strictly speaking, no mathematical objects, are they fictitious? In the course of discussing these issues, we will first focus on three important schools of thought: logicism, intuitionism, and formalism. These schools are associated with, respectively, Gottlob Frege and Bertrand Russell, Immanuel Kant and L. E. J. Brouwer, and with David Hilbert. In the second half of the course, we will study some of the more recent developments in the philosophy of mathematics (after 1950). This includes the debate about the metaphysics of mathematical objects, in particular, whether there are any (realism) or not (nominalism), and the status of mathematical truths; structuralism in mathematics; mathematical explanation; and empiricist and naturalist ap- proaches to mathematics.