From the Outside Looking In: Can Mathematical Certainty Be Secured Without Being Mathematically Certain That It Has Been?

Total Page:16

File Type:pdf, Size:1020Kb

From the Outside Looking In: Can Mathematical Certainty Be Secured Without Being Mathematically Certain That It Has Been? From the Outside Looking In: Can mathematical certainty be secured without being mathematically certain that it has been? Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University Matthew Souba, MSc, MLitt Graduate Program in Philosophy The Ohio State University 2019 Dissertation Committee: Neil Tennant, Advisor Stewart Shapiro Christopher Pincock Copyright by Matthew Souba 2019 Abstract The primary aim of this dissertation is to discuss the epistemological fallout of Gödel’s Incompleteness Theorems on Hilbert’s Program. In particular our focus will be on the philo- sophical upshot of certain proof-theoretic results in the literature. We begin by sketching the historical development up to, and including, Hilbert’s mature program, discussing Hilbert’s views in both their mathematical and their philosophical guises. Gödel’s Incompleteness Theorems are standardly taken as showing that Hilbert’s Pro- gram, as intended, fails. Michael Detlefsen maintains that they do not. Detlefsen’s argu- ments are the focus of chapter 3. The argument from the first incompleteness theorem, as presented by Detlefsen, takes the form of a dilemma to the effect that either the infini- tistic theory is incomplete with respect to a certain subclass of real sentences or it is not a conservative extension over the finitistic theory. He contends that Hilbert need not be committed to either of these horns, and, as such the argument from the first incompleteness theorem does no damage to Hilbert’s program. His argument against the second incomplete- ness theorem as refuting Hilbert’s Program, what he calls the stability problem, concerns the particular formalization of the consistency statement shown unprovable by Gödel’s theorem, and endorses what are called Rosser systems. The success of Detlefsen’s arguments critically depends upon the precise characterization of what exactly Hilbert’s program is. It is our contention that despite Detlefsen’s attempts, both of the arguments (from the first and sec- ond incompleteness theorems) are devastating to Hilbert. The view that Detlefsen puts forth is better understood as a modified version of Hilbert’s general program cast as a particularly ii strict form of instrumentalism. We end by analyzing the coherence of Detlefsen’s proposal, independently of the historical Hilbert. In response to Gödel’s Incompleteness theorems several modified or partial Hilbert’s pro- grams have been pursued. In chapter 3 we consider one such version due to Gentzen that enlarges the methods to be admitted in consistency proofs. By giving up the stress on strictly finitary reasoning and liberalizing what counts as epistemically acceptable, Genzten was able to prove that PA is consistent by appeal to the principle of quantifier-free transfinite induction up to the ordinal 0. Gentzen’s method proceeds by means of ordinal assignments to, and reduction procedures for, possible proofs of contradiction, showing such proofs to be impossible. We first present Gentzen’s method in order to provide a systematic overview of the structure of his proof and its philosophical motivations. We then consider the modern version of the proof as presented by Gaisi Takeuti. Central to Takeuti’s proof is the demon- stration of the claim that whenever a concrete method of constructing decreasing sequences of ordinals is given, any such decreasing sequence must be finite. Takeuti takes the construc- tive demonstration of this result as being of particular philosophical and epistemic value. The central theme that comes out of the philosophical discussion is that such a result can only be understood “from the outside” of the system. Our discussion of Takeuti shows how this theme generalizes, and will be of central importance in the rest of the dissertation. Predicativity is similar in spirit to the work of Gentzen discussed above in the sense of liberalizing what counts as an epistemically safe starting point. The basic idea behind Predicativism is the acceptance of the natural numbers as basic to human understanding and then to see just how much of mathematics can be shown on the basis of this starting point. The discussion of Predicativity is important for two reasons. First, it signals a shift in how one understands foundational work in mathematics. In particular it signals a shift from a focus on security and justification to that of determining the limits of particular philosophical views. It serves as a lynchpin, so to speak, between the early foundational work discussed in the first half of the dissertation and the more contemporary foundational work discussed iii in the second part. To see this clearly we begin chapter 5 by sketching some of the early historical developments of Predicativity, focusing on Russell and Weyl. We then look at more recent technical developments of Predicativity, culminating with the limitative result that the bound of Predicativity is Γ0. The second reason why Predicativity is important is due to a relevant feature it shares with Finitism. It provides another lucid example of the internal/external divide that concerned the philosophical portion of the discussion of Takeuti mentioned above. This theme emerges as the central point upon which the philosophical value and significance of the epistemic aspect of proof theory hinges. We end chapter 5 by highlighting this connection to Finitism, setting the stage for some philosophical work to be done in chapter 6. The proof-theoretical reduction of the system WKL0 to PRA is taken as perhaps the clearest example of a partial realization of Hilbert’s Program. The concept of reductive proof theory more generally is taken as being foundationally informative in the sense that certain reductions and conservativity results are taken as revealing just how much mathematics is justified on the basis of other, more elementary frameworks. Implicit in this is the notion of epistemic security. We consider as case studies the reductions of the systems IΣ1 and WKL0 to PRA in order to get clear on exactly what such justification and security amounts to. We argue that to properly understand what is meant by these terms requires a closer look at the radicalization of the axiomatic method and the shift to formalism that underlies Hilbert’s Program. After looking at Hilbert’s famous disagreement with Frege we suggest that central to the notions of justification and security is the meaning of what is expressed in formal languages that is eschewed by the shift to formalism. To appreciate this meaning and hence achieve the level of justification and security that is claimed by proof-theoretical reductions requires one to be on the outside of the formal system looking in. The notion of a foundation for mathematics is vague. One can distinguish between what might be called Hilbertian Foundationalism and Naturalistic Holism. In light of Gödel’s results, Foundationalism has largely gone out of style. The lesson from Gödel is commonly iv taken to be that the goal of the Hilbert Program is simply an outdated and unattainable ideal. In its place has emerged the holistic picture whereby a foundation for mathematics is to be understood as a way to bring the seemingly disparate branches of mathematics together in a unifying way. The sharp contrast between Naturalistic Holism and Hilbertian Foundationalism connects chapter 7 to the rest of the dissertation by illustrating how, to many, the philosophical steam has left the Hilbertian machine. We look at one such brand of Naturalistic Holism due to Penelope Maddy centered on set theory as the foundational arena. Maddy’s aim is to understand the proper grounds for the introduction of sets and set-theoretic axioms, as well as a justification of set-theoretic practice. After considering Maddy’s account of how such an understanding proceeds, we provide critical commentary. Central to the discussion is the notion of mathematical depth. We end with some remarks on mathematical methodology followed by a brief discussion of the a priori and its role in bridging the gap between mathematics and philosophy. v Dedication Dedicated to my wife, Giulia, who has given up so much, and to my son, Jack, for whom I would give up everything. vi Acknowledgments I would like to thank all of my past teachers for their time and dedication to providing me an education. Having now, myself, taught others, I understand the sometimes thanklessness of the job. Special thanks to those who noticed something in me and encouraged me to further study. In particular, I thank Glenn Ross, my logic teacher at Franklin & Marshall College, for first introducing me to the beauty of logic and sparking my interest in epistemology. I would like to thank my committee members for their generosity with their time. Chris Pincock provided numerous insightful comments and thought-provoking questions on early versions of this work that me re-think certain things I had taken for granted. I first met Stewart Shapiro while a student at St. Andrews University in Scotland. His willingness to meet with me and discuss my Master’s thesis, and the level of attention that he showed both it and me, was the primary reason why I chose to attend The Ohio State University. His help in the subsequent years has been invaluable. To my advisor, Neil Tennant, who opened the door to my interest in proof theory, specifically with respect to foundational issues. The time that you have dedicated to me, whether talking through philosophical issues, providing suggestions and encouragement, or imparting general life advice has really meant a lot to me. Your devotion as a scholar, teacher, and mentor is truly inspiring. I would like to thank my family and friends for being an outlet from academia. To my mother-in-law, Gabriella. Without your help these past few weeks watching Jack, I never would have been able to complete the final touches on this dissertation on time.
Recommended publications
  • “Gödel's Modernism: on Set-Theoretic Incompleteness,” Revisited
    “G¨odel'sModernism: on Set-Theoretic Incompleteness," revisited∗ Mark van Atten and Juliette Kennedy As to problems with the answer Yes or No, the con- viction that they are always decidable remains un- touched by these results. —G¨odel Contents 1 Introduction 1.1 Questions of incompleteness On Friday, November 15, 1940, Kurt G¨odelgave a talk on set theory at Brown University.1 The topic was his recent proof of the consistency of Cantor's Con- tinuum Hypothesis, henceforth CH,2 with the axiomatic system for set theory ZFC.3 His friend from their days in Vienna, Rudolf Carnap, was in the audience, and afterward wrote a note to himself in which he raised a number of questions on incompleteness:4 (Remarks I planned to make, but did not) Discussion on G¨odel'slecture on the Continuum Hypothesis, November 14,5 1940 There seems to be a difference: between the undecidable propo- sitions of the kind of his example [i.e., 1931] and propositions such as the Axiom of Choice, and the Axiom of the Continuum [CH ]. We used to ask: \When these two have been decided, is then everything decided?" (The Poles, Tarski I think, suspected that this would be the case.) Now we know that (on the basis of the usual finitary rules) there will always remain undecided propositions. ∗An earlier version of this paper appeared as ‘G¨odel'smodernism: on set-theoretic incom- pleteness', Graduate Faculty Philosophy Journal, 25(2), 2004, pp.289{349. Erratum facing page of contents in 26(1), 2005. 1 1. Can we nevertheless still ask an analogous question? I.e.
    [Show full text]
  • Epistemological Consequences of the Incompleteness Theorems
    Epistemological Consequences of the Incompleteness Theorems Giuseppe Raguní UCAM - Universidad Católica de Murcia, Avenida Jerónimos 135, Guadalupe 30107, Murcia, Spain - [email protected] After highlighting the cases in which the semantics of a language cannot be mechanically reproduced (in which case it is called inherent), the main episte- mological consequences of the first incompleteness Theorem for the two funda- mental arithmetical theories are shown: the non-mechanizability for the truths of the first-order arithmetic and the peculiarities for the model of the second- order arithmetic. Finally, the common epistemological interpretation of the second incompleteness Theorem is corrected, proposing the new Metatheorem of undemonstrability of internal consistency. KEYWORDS: semantics, languages, epistemology, paradoxes, arithmetic, in- completeness, first-order, second-order, consistency. 1 Semantics in the Languages Consider an arbitrary language that, as normally, makes use of a countable1 number of characters. Combining these characters in certain ways, are formed some fundamental strings that we call terms of the language: those collected in a dictionary. When the terms are semantically interpreted, i. e. a certain meaning is assigned to them, we have their distinction in adjectives, nouns, verbs, etc. Then, a proper grammar establishes the rules arXiv:1602.03390v1 [math.GM] 13 Jan 2016 of formation of sentences. While the terms are finite, the combinations of grammatically allowed terms form an infinite-countable amount of possible sentences. In a non-trivial language, the meaning associated to each term, and thus to each ex- pression that contains it, is not always unique. The same sentence can enunciate different things, so representing different propositions.
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • THE 1910 PRINCIPIA's THEORY of FUNCTIONS and CLASSES and the THEORY of DESCRIPTIONS*
    EUJAP VOL. 3 No. 2 2007 ORIGinal SCienTifiC papeR UDK: 165 THE 1910 PRINCIPIA’S THEORY OF FUNCTIONS AND CLASSES AND THE THEORY OF DESCRIPTIONS* WILLIAM DEMOPOULOS** The University of Western Ontario ABSTRACT 1. Introduction It is generally acknowledged that the 1910 Prin- The 19101 Principia’s theory of proposi- cipia does not deny the existence of classes, but tional functions and classes is officially claims only that the theory it advances can be developed so that any apparent commitment to a “no-classes theory of classes,” a theory them is eliminable by the method of contextual according to which classes are eliminable. analysis. The application of contextual analysis But it is clear from Principia’s solution to ontological questions is widely viewed as the to the class paradoxes that although the central philosophical innovation of Russell’s theory of descriptions. Principia’s “no-classes theory it advances holds that classes are theory of classes” is a striking example of such eliminable, it does not deny their exis- an application. The present paper develops a re- tence. Whitehead and Russell argue from construction of Principia’s theory of functions the supposition that classes involve or and classes that is based on Russell’s epistemo- logical applications of the method of contextual presuppose propositional functions to the analysis. Such a reconstruction is not eliminativ- conclusion that the paradoxical classes ist—indeed, it explicitly assumes the existence of are excluded by the nature of such func- classes—and possesses certain advantages over tions. This supposition rests on the repre- the no–classes theory advocated by Whitehead and Russell.
    [Show full text]
  • AMATH 731: Applied Functional Analysis Lecture Notes
    AMATH 731: Applied Functional Analysis Lecture Notes Sumeet Khatri November 24, 2014 Table of Contents List of Tables ................................................... v List of Theorems ................................................ ix List of Definitions ................................................ xii Preface ....................................................... xiii 1 Review of Real Analysis .......................................... 1 1.1 Convergence and Cauchy Sequences...............................1 1.2 Convergence of Sequences and Cauchy Sequences.......................1 2 Measure Theory ............................................... 2 2.1 The Concept of Measurability...................................3 2.1.1 Simple Functions...................................... 10 2.2 Elementary Properties of Measures................................ 11 2.2.1 Arithmetic in [0, ] .................................... 12 1 2.3 Integration of Positive Functions.................................. 13 2.4 Integration of Complex Functions................................. 14 2.5 Sets of Measure Zero......................................... 14 2.6 Positive Borel Measures....................................... 14 2.6.1 Vector Spaces and Topological Preliminaries...................... 14 2.6.2 The Riesz Representation Theorem........................... 14 2.6.3 Regularity Properties of Borel Measures........................ 14 2.6.4 Lesbesgue Measure..................................... 14 2.6.5 Continuity Properties of Measurable Functions...................
    [Show full text]
  • List of Theorems from Geometry 2321, 2322
    List of Theorems from Geometry 2321, 2322 Stephanie Hyland [email protected] April 24, 2010 There’s already a list of geometry theorems out there, but the course has changed since, so here’s a new one. They’re in order of ‘appearance in my notes’, which corresponds reasonably well to chronolog- ical order. 24 onwards is Hilary term stuff. The following theorems have actually been asked (in either summer or schol papers): 5, 7, 8, 17, 18, 20, 21, 22, 26, 27, 30 a), 31 (associative only), 35, 36 a), 37, 38, 39, 43, 45, 47, 48. Definitions are also asked, which aren’t included here. 1. On a finite-dimensional real vector space, the statement ‘V is open in M’ is independent of the choice of norm on M. ′ f f i 2. Let Rn ⊃ V −→ Rm be differentiable with f = (f 1, ..., f m). Then Rn −→ Rm, and f ′ = ∂f ∂xj f 3. Let M ⊃ V −→ N,a ∈ V . Then f is differentiable at a ⇒ f is continuous at a. 4. f = (f 1, ...f n) continuous ⇔ f i continuous, and same for differentiable. 5. The chain rule for functions on finite-dimensional real vector spaces. 6. The chain rule for functions of several real variables. f 7. Let Rn ⊃ V −→ R, V open. Then f is C1 ⇔ ∂f exists and is continuous, for i =1, ..., n. ∂xi 2 2 Rn f R 2 ∂ f ∂ f 8. Let ⊃ V −→ , V open. f is C . Then ∂xi∂xj = ∂xj ∂xi 9. (φ ◦ ψ)∗ = φ∗ ◦ ψ∗, where φ, ψ are maps of manifolds, and φ∗ is the push-forward of φ.
    [Show full text]
  • Calculus I – Math
    Math 380: Low-Dimensional Topology Instructor: Aaron Heap Office: South 330C E-mail: [email protected] Web Page: http://www.geneseo.edu/math/heap Textbook: Topology Now!, by Robert Messer & Philip Straffin. Course Info: We will cover topological equivalence, deformations, knots and links, surfaces, three- dimensional manifolds, and the fundamental group. Topics are subject to change depending on the progress of the class, and various topics may be skipped due to time constraints. An accurate reading schedule will be posted on the website, and you should check it often. By the time you take this course, most of you should be fairly comfortable with mathematical proofs. Although this course only has multivariable calculus, elementary linear algebra, and mathematical proofs as prerequisites, students are strongly encouraged to take abstract algebra (Math 330) prior to this course or concurrently. It requires a certain level of mathematical sophistication. There will be a lot of new terminology you must learn, and we will be doing a significant number of proofs. Please note that we will work on developing your independent reading skills in Mathematics and your ability to learn and use definitions and theorems. I certainly won't be able to cover in class all the material you will be required to learn. As a result, you will be expected to do a lot of reading. The reading assignments will be on topics to be discussed in the following lecture to enable you to ask focused questions in the class and to better understand the material. It is imperative that you keep up with the reading assignments.
    [Show full text]
  • Principle of Acquaintance and Axiom of Reducibility
    Principle of acquaintance and axiom of reducibility Brice Halimi Université Paris Nanterre 15 mars 2018 Russell-the-epistemologist is the founding father of the concept of acquaintance. In this talk, I would like to show that Russell’s theory of knowledge is not simply the next step following his logic, but that his logic (especially the system of Principia Mathematica) can also be understood as the formal underpinning of a theory of knowledge. So there is a concept of acquaintance for Russell-the-logician as well. Principia Mathematica’s logical types In Principia, Russell gives the following examples of first-order propositional functions of individuals: φx; (x; y); (y) (x; y);::: Then, introducing φ!zb as a variable first-order propositional function of one individual, he gives examples of second-order propositional functions: f (φ!zb); g(φ!zb; !zb); F(φ!zb; x); (x) F(φ!zb; x); (φ) g(φ!zb; !zb); (φ) F(φ!zb; x);::: Then f !(φb!zb) is introduced as a variable second-order propositional function of one first-order propositional function. And so on. A possible value of f !(φb!zb) is . φ!a. (Example given by Russell.) This has to do with the fact that Principia’s schematic letters are variables: It will be seen that “φ!x” is itself a function of two variables, namely φ!zb and x. [. ] (Principia, p. 51) And variables are understood substitutionally (see Kevin Klement, “Russell on Ontological Fundamentality and Existence”, 2017). This explains that the language of Principia does not constitute an autonomous formal language.
    [Show full text]
  • The Strength of Mac Lane Set Theory
    The Strength of Mac Lane Set Theory A. R. D. MATHIAS D´epartement de Math´ematiques et Informatique Universit´e de la R´eunion To Saunders Mac Lane on his ninetieth birthday Abstract AUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and S Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, TCo, of Transitive Containment, we shall refer as MAC. His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasizes, one that is adequate for much of mathematics. In this paper we show that the consistency strength of Mac Lane's system is not increased by adding the axioms of Kripke{Platek set theory and even the Axiom of Constructibility to Mac Lane's axioms; our method requires a close study of Axiom H, which was proposed by Mitchell; we digress to apply these methods to subsystems of Zermelo set theory Z, and obtain an apparently new proof that Z is not finitely axiomatisable; we study Friedman's strengthening KPP + AC of KP + MAC, and the Forster{Kaye subsystem KF of MAC, and use forcing over ill-founded models and forcing to establish independence results concerning MAC and KPP ; we show, again using ill-founded models, that KPP + V = L proves the consistency of KPP ; turning to systems that are type-theoretic in spirit or in fact, we show by arguments of Coret
    [Show full text]
  • Commencement1976.Pdf (4.717Mb)
    1976 Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://archive.org/details/commencement1976 ORDER OF PROCESSION MARSHALS STANLEY CORRSIN JOHN W. GRYDER MATTHEW A. CRENSON WILLIAM H. HUGGINS ELAINE C. DAVIS ROBERT A. LYSTAD HANS GOEDICKE EVANGELOS N. MOUDRIANAKIS ARCHIE GOLDEN EVERETT SCHILLER GERALD S. GOTTERER JOHN P. YOUNG THE GRADUATES MARSHALS ROBERT B. POND OREST RANUM THE DEANS MEMBERS OF THE SOCIETY OF SCHOLARS OFFICERS OF THE UNIVERSITY THE TRUSTEES * MARSHALS BROWN L. MURR FRANCIS E. ROURKE THE FACULTIES * CHIEF MARSHAL RICHARD A. MACKSEY THE CHAPLAINS THE RECIPIENT OF THE MILTON STOVER EISENHOWER MEDAL FOR DISTINGUISHED SERVICE THE PRESENTOR OF THE RECIPIENT OF THE MILTON STOVER EISENHOWER MEDAL FOR DISTINGUISHED SERVICE THE HONORARY DEGREE CANDIDATES THE PROVOST OF THE UNIVERSITY THE PRESIDENT EMERITUS OF THE UNIVERSITY THE CHAIRMAN OF THE BOARD OF TRUSTEES THE PRESIDENT OF THE UNIVERSITY ORDER OF EVENTS STEVEN MULLER President of the University, presiding * * * FANFARE PROCESSIONAL The audience is requested to stand as the Academic Procession moves into the area and to remain standing after the Invocation. " " Earle of Oxford's Marche William Byrd The Peabody Wind Ensemble Richard Higgins, Director * INVOCATION REV. CHESTER WICKWIRE Chaplain, The Johns Hopkins University THE NATIONAL ANTHEM GREETINGS ROBERT D. H. HARVEY Chairman of the Board of Trustees PRESENTATION OF THE RECIPIENT FOR THE MILTON STOVER EISENHOWER MEDAL FOR DISTINGUISHED SERVICE HELEN B. TAUSSIG PRESENTED BY RICHARD S. ROSS Vice President for the Health Divisions and Dean, School of Medicine * PRESENTATION OF NEW MEMBERS OF THE SOCIETY OF SCHOLARS LEROY E.
    [Show full text]
  • The Interplay Between Computability and Incomputability Draft 619.Tex
    The Interplay Between Computability and Incomputability Draft 619.tex Robert I. Soare∗ January 7, 2008 Contents 1 Calculus, Continuity, and Computability 3 1.1 When to Introduce Relative Computability? . 4 1.2 Between Computability and Relative Computability? . 5 1.3 The Development of Relative Computability . 5 1.4 Turing Introduces Relative Computability . 6 1.5 Post Develops Relative Computability . 6 1.6 Relative Computability in Real World Computing . 6 2 Origins of Computability and Incomputability 6 2.1 G¨odel’s Incompleteness Theorem . 8 2.2 Incomputability and Undecidability . 9 2.3 Alonzo Church . 9 2.4 Herbrand-G¨odel Recursive Functions . 10 2.5 Stalemate at Princeton Over Church’s Thesis . 11 2.6 G¨odel’s Thoughts on Church’s Thesis . 11 ∗Parts of this paper were delivered in an address to the conference, Computation and Logic in the Real World, at Siena, Italy, June 18–23, 2007. Keywords: Turing ma- chine, automatic machine, a-machine, Turing oracle machine, o-machine, Alonzo Church, Stephen C. Kleene,klee Alan Turing, Kurt G¨odel, Emil Post, computability, incomputabil- ity, undecidability, Church-Turing Thesis (CTT), Post-Church Second Thesis on relative computability, computable approximations, Limit Lemma, effectively continuous func- tions, computability in analysis, strong reducibilities. 1 3 Turing Breaks the Stalemate 12 3.1 Turing’s Machines and Turing’s Thesis . 12 3.2 G¨odel’s Opinion of Turing’s Work . 13 3.3 Kleene Said About Turing . 14 3.4 Church Said About Turing . 15 3.5 Naming the Church-Turing Thesis . 15 4 Turing Defines Relative Computability 17 4.1 Turing’s Oracle Machines .
    [Show full text]
  • APA Eastern Division 2019 Annual Meeting Program
    The American Philosophical Association EASTERN DIVISION ONE HUNDRED FIFTEENTH ANNUAL MEETING PROGRAM SHERATON NEW YORK TIMES SQUARE NEW YORK, NEW YORK JANUARY 7 – 10, 2019 Visit our table at APA Eastern OFFERING A 20% (PB) / 40% (HC) DISCOUNT WITH FREE SHIPPING TO THE CONTIGUOUS U.S. FOR ORDERS PLACED AT THE CONFERENCE. THE POETRY OF APPROACHING HEGEL’S LOGIC, GEORGES BATAILLE OBLIQUELY Georges Bataille Melville, Molière, Beckett Translated and with an Introduction by Angelica Nuzzo Stuart Kendall THE POLITICS OF PARADIGMS ZHUANGZI AND THE Thomas S. Kuhn, James B. Conant, BECOMING OF NOTHINGNESS and the Cold War “Struggle for David Chai Men’s Minds” George A. Reisch ANOTHER AVAILABLE APRIL 2019 WHITE MAN’S BURDEN Josiah Royce’s Quest for a Philosophy THE REAL METAPHYSICAL CLUB of white Racial Empire The Philosophers, Their Debates, and Tommy J. Curry Selected Writings from 1870 to 1885 Frank X. Ryan, Brian E. Butler, and BOUNDARY LINES James A. Good, editors Philosophy and Postcolonialism Introduction by John R. Shook Emanuela Fornari AVAILABLE MARCH 2019 Translated by Iain Halliday Foreword by Étienne Balibar PRAGMATISM APPLIED William James and the Challenges THE CUDGEL AND THE CARESS of Contemporary Life Reflections on Cruelty and Tenderness Clifford S. Stagoll and David Farrell Krell Michael P. Levine, editors AVAILABLE MARCH 2019 AVAILABLE APRIL 2019 LOVE AND VIOLENCE BUDDHIST FEMINISMS The Vexatious Factors of Civilization AND FEMININITIES Lea Melandri Karma Lekshe Tsomo, editor Translated by Antonio Calcagno www.sunypress.edu II IMPORTANT NOTICES FOR MEETING ATTENDEES SESSION LOCATIONS Please note: this online version of the program does not include session locations.
    [Show full text]