Predicativity and parametric polymorphism of Brouwerian implication Mark van Atten∗ May 8, 2018 Abstract A common objection to the definition of intuitionistic implication in the Proof Interpretation is that it is impredicative. I discuss the history of that objection, argue that in Brouwer’s writings predica- tivity of implication is ensured through parametric polymorphism of functions on species, and compare this construal with the alterna- tive approaches to predicative implication of Goodman, Dummett, Prawitz, and Martin-Löf. 1 Impredicativity and intuitionistic implica- tion A definition is impredicative if it defines a member of a totality in terms of that totality itself. There is a familiar contrast between two kinds of impredicative definitions, as illustrated by these two examples: 1. k = the largest number in {1, 2, 3}; k is a member of that totality. 2. Let s be an infinite set. According to the power set axiom, there exists a set P(s)= xι (∀y(y ∈ x ↔ y ⊆ s)). Here ∀y is a quantification over arXiv:1710.07704v2 [math.HO] 5 May 2018 the totality of all sets; P(s) is a member of that totality. ∗SND (CNRS / Paris IV), 1 rue Victor Cousin, 75005 Paris, France. As of Septem- ber 1, 2018: Archives Husserl (CNRS/ENS), 45 rue d’Ulm, 75005 Paris, France. Email:
[email protected] 1 In the first, the totality in question is enumerated and this is one way of defining each of its elements prior to defining k; the impredicative definition of k serves to single out a certain element of that totality, but is not essential to the introduction of that element.