A Journey of Discovery Through the Land of the Polychora Alexey Radul

Total Page:16

File Type:pdf, Size:1020Kb

A Journey of Discovery Through the Land of the Polychora Alexey Radul Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2006-024 April 14, 2006 The Symmetriad: A Journey of Discovery Through the Land of the Polychora Alexey Radul massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu The Symmetriad A Journey of Discovery Through the Land of the Polychora by Alexey Radul Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology June 2005 Copyright 2005 Alexey Radul. All rights reserved. The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper and electronic copies of this thesis and to grant others the right to do so. Author............................................. ................. Department of Electrical Engineering and Computer Science February 23, 2005 Certified by......................................... ................. Gerald Jay Sussman Matsushita Professor of Electrical Engineering Thesis Supervisor Accepted by......................................... ................ Arthur C. Smith Chairman, Department Committee on Graduate Students 2 The Symmetriad A Journey of Discovery Through the Land of the Polychora by Alexey Radul Submitted to the Department of Electrical Engineering and Computer Science February 23, 2005 In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science ABSTRACT I devised and implemented a method for constructing regular and semiregular geo- metric objects in n-dimensional Euclidean space. Given a finite reflection group (a Coxeter group) G, there is a standard way to give G a group action on n-space. Reflecting a point through this group action yields an object that exhibits the sym- metries specified by G. If the point is chosen well, the object is guaranteed to be regular or semiregular, and many interesting regular and semiregular objects arise this way. By starting with the symmetry group, I can use the group structure both to simplify the actual graphics involved with displaying the object, and to illustrate various aspects of its structure. For example, subgroups of the symmetry group (and their cosets) correspond to substructures of the object. Conversely, by displaying such symmetric objects and their various substructures, I find that I can elucidate the structure of the symmetry group that gives rise to them. I have written The Symmetriad, the computer system whose name this document has inherited, and used it to explore 3- and 4-dimensional symmetric objects and their symmetry groups. The 3-dimensional objects are already well understood, but they serve to illustrate the techniques used on the 4-dimensional objects and make them more comprehensible. Four dimensions offers a treasure trove of intriguing structures, many of which have no ready 3D analogue. These are what I will show you here. Thesis Supervisor: Gerald Jay Sussman Title: Matsushita Professor of Electrical Engineering 3 4 Acknowledgments The Symmetriad owes a great debt to Rebecca Frankel, who originally started the project, and gave unfaltering support and sage advice as I continued it. I would never have gotten through the thesis without the aid and encouragement of my the- sis supervisor, Gerry Sussman. My thanks also go to all the people who read and commented on the various drafts of this thesis, and to all the people with whom I discoursed about it. 5 6 Contents 1 Introduction 13 1.1 Objective ................................. 13 1.2 Contribution................................ 14 1.3 PriorWork ................................ 14 1.4 ThesisOverview.............................. 14 2 The Math 17 2.1 ReflectionGroups............................. 17 2.1.1 Basics ............................... 18 2.1.2 Chambers ............................. 19 2.1.3 RootSystems ........................... 21 2.1.4 FundamentalSystems . 22 2.1.5 Coxeter Groups, Systems, and Diagrams . 23 2.1.6 ClassificationTheorem . 24 2.2 SymmetricObjects ............................ 25 2.3 Notation.................................. 27 2.4 Exploration ................................ 31 2.4.1 Objects That Are Not Fully Articulated . 35 3 A Case Study 39 3.1 FullyArticulatedSolid .......................... 43 3.2 NotFullyArticulatedSolid . 57 4 System Structure 69 4.1 SystemOverview ............................. 69 4.2 MoreDetailedDescription . 70 4.3 Numerics ................................. 72 5 Picture Gallery 75 6 Conclusion 103 6.1 Summary ................................. 103 6.2 FutureWork................................ 103 6.3 Closing................................... 104 7 A Mathematical Details 105 A.1 CellsandCosets ............................. 105 A.2 SubnotationandSubgeometry . 107 A.3 Degeneracy ................................ 109 8 List of Figures 2-1 Areflectionintwodimensions . 19 2-2 Association of chambers of B2 with elements thereof . 20 2-3 The reflection lines and the roots of A2.................. 21 2-4 A fundamental system for A2....................... 22 2-5 Two Coxeter-Dynkin diagrams, and their Coxeter systems ...... 24 2-6 Some 2D reflection groups, with Coxeter-Dynkin diagrams....... 25 2-7 H3 :1, 0.3, 0.1, with red, green, and blue color coded edges . 28 2-8 H3 :1, 1, 1, with red, green, and blue color coded edges . 30 2-9 Two objects built on B2 ......................... 31 2-10 Association of chambers of B2 with elements thereof . 32 2-11 An object built on B2,withcosetsofsubgroups . 33 2-12 H3111,withbluehighlighteddecagons . 34 2-13 The other kinds of faces of H3111..................... 34 2-14 The effect of one zero in an H3 objectdiagram. 36 2-15 The effect of two zeros in an H3 objectdiagram . 37 3-1 Thetesseract,edgeon .......................... 41 3-2 Thetesseract,turnedslightly . 42 3-3 B41111,edgeon.............................. 44 3-4 B41111,turnedslightly. .. .. 45 3-5 B41111,cornerview............................ 45 3-6 B41111, with the B31113-cellshighlighted . 47 3-7 B4 :6, 1, 1, 1, with the B31113-cellshighlighted . 47 3-8 B41111, with the A31113-cellshighlighted . 48 3-9 B4 :1, 1, 1, 6, with the A31113-cellshighlighted . 48 3-10 B41111, with the hexagonal prism 3-cells highlighted . .. 49 3-11 B4 :1, 1, 6, 1, with the hexagonal prism 3-cells highlighted . 49 3-12 B41111, with the octagonal prism 3-cells highlighted . ... 50 3-13 B4 :1, 6, 1, 1, with the octagonal prism 3-cells highlighted . 50 3-14 A B3111 3-cell with neighboring A31113-cells ............. 53 3-15 A B3111 3-cell with neighboring hexagonal prisms . 53 3-16 A B3111 3-cell with neighboring octagonal prisms . 54 3-17 An A3111 3-cell with neighboring B31113-cells. .. 54 3-18 An A3111 3-cell with neighboring hexagonal prisms . 55 3-19 An A3111 3-cell with neighboring octagonal prisms . 55 3-20 A hexagonal prism with neighboring octagonal prisms . ....... 56 9 3-21 All four kinds of 3-cells of B41111atonevertex . 56 3-22 B41101,edge-on.............................. 57 3-23 B41101,fromacorner .......................... 58 3-24 B4 :5, 1, 0, 1, with the B31013-cellshighlighted . 59 3-25 B4 :1, 1, 0, 5, with the A31103-cellshighlighted . 59 3-26 B41101, with two of the hexagonal prisms highlighted . 60 3-27 A B3101 3-cell of B41101 and its neighboring A31103-cells . 60 3-28 A B3101 3-cell of B41101 and its neighboring hexagonal prisms . 61 3-29 B41001,edge-on.............................. 62 3-30 B41001,fromacorner .......................... 62 3-31 B4 :3, 0, 0, 1, with the B30013-cellshighlighted . 63 3-32 B4 :1, 0, 0, 3, with the A31003-cellshighlighted . 63 3-33 An A3100 3-cell of B41001 and its neighboring B30013-cells . 64 3-34 A triangular prism of B41001 and its neighboring square prisms . 65 3-35 An A3100 3-cell of B41001 and its neighboring square prisms . 65 3-36 Thetesseract,turnedslightly . .. 66 3-37 The16-cell,turnedslightly. .. 67 3-38The16-cell,fromacorner . 67 4-1 OverviewofTheSymmetriad . 71 5-1 Simplex................................... 81 5-2 OneAmongEquals............................. 82 5-3 A40110,uniformlyblue. ......................... 83 5-4 Heart. ................................... 84 5-5 A41001,uniformlyblue. ......................... 85 5-6 Balls..................................... 86 5-7 SteepledHands............................... 87 5-8 Eggshell................................... 88 5-9 Twenty-FourCell.............................. 89 5-10DiamondsareForever. 90 5-11 D41100 ≈ B41100 again. The rotation is contained in the x,y,w space. 91 5-12CubesinRed................................ 92 5-13MoreCubesinRed............................. 93 5-14FlyingCubes. ............................... 94 5-15SmallFlyingCubes. ........................... 95 5-16SmallJaws. ................................ 96 5-17GreatJaws. ................................ 97 5-18CubicRing. ................................ 98 5-19Untitled................................... 99 5-20Untitled................................... 100 5-21ThePlanetsareAligned. 101 5-22DanceofWorlds. ............................. 102 10 List of Tables 2.1 Irreducible Coxeter systems in four or fewer dimensions ........ 26 3.1 The varieties of 3-cell of B41111...................... 46 3.2 3-cell intersection patterns for B41111.................. 52 5.1 Semiregular objects in four dimensions . ... 80 11 12 Chapter 1 Introduction Symmetry has fascinated humans since the dawn of recorded history. Of its
Recommended publications
  • Uniform Polychora
    BRIDGES Mathematical Connections in Art, Music, and Science Uniform Polychora Jonathan Bowers 11448 Lori Ln Tyler, TX 75709 E-mail: [email protected] Abstract Like polyhedra, polychora are beautiful aesthetic structures - with one difference - polychora are four dimensional. Although they are beyond human comprehension to visualize, one can look at various projections or cross sections which are three dimensional and usually very intricate, these make outstanding pieces of art both in model form or in computer graphics. Polygons and polyhedra have been known since ancient times, but little study has gone into the next dimension - until recently. Definitions A polychoron is basically a four dimensional "polyhedron" in the same since that a polyhedron is a three dimensional "polygon". To be more precise - a polychoron is a 4-dimensional "solid" bounded by cells with the following criteria: 1) each cell is adjacent to only one other cell for each face, 2) no subset of cells fits criteria 1, 3) no two adjacent cells are corealmic. If criteria 1 fails, then the figure is degenerate. The word "polychoron" was invented by George Olshevsky with the following construction: poly = many and choron = rooms or cells. A polytope (polyhedron, polychoron, etc.) is uniform if it is vertex transitive and it's facets are uniform (a uniform polygon is a regular polygon). Degenerate figures can also be uniform under the same conditions. A vertex figure is the figure representing the shape and "solid" angle of the vertices, ex: the vertex figure of a cube is a triangle with edge length of the square root of 2.
    [Show full text]
  • Platonic Solids Generate Their Four-Dimensional Analogues
    1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a;b;c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonne´ theorem, the reflective symmetries of the arXiv:1307.6768v1 [math-ph] 25 Jul 2013 Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors gen- erating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic Solids can thus in turn be interpreted as vertices in four- dimensional space, giving a simple construction of the 4D polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these polytopes have ‘mysterious’ symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography 2 groups, which can be shown to be a general property of the spinor construction.
    [Show full text]
  • Report on the Comparison of Tesseract and ABBYY Finereader OCR Engines
    IMPACT is supported by the European Community under the FP7 ICT Work Programme. The project is coordinated by the National Library of the Netherlands. Report on the comparison of Tesseract and ABBYY FineReader OCR engines Marcin Heliński, Miłosz Kmieciak, Tomasz Parkoła Poznań Supercomputing and Networking Center, Poland Table of contents 1. Introduction ............................................................................................................................ 2 2. Training process .................................................................................................................... 2 2.1 Tesseract training process ................................................................................................ 3 2.2 FineReader training process ............................................................................................. 8 3. Comparison of Tesseract and FineReader ............................................................................10 3.1 Evaluation scenario .........................................................................................................10 3.1.2 Evaluation criteria ......................................................................................................12 3.2. OCR recognition accuracy results ...................................................................................13 3.3 Comparison of Tesseract and FineReader recognition accuracy .....................................20 4 Conclusions ...........................................................................................................................23
    [Show full text]
  • 1 Critical Noncolorings of the 600-Cell Proving the Bell-Kochen-Specker
    Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem Mordecai Waegell* and P.K.Aravind** Physics Department Worcester Polytechnic Institute Worcester, MA 01609 *[email protected] ,** [email protected] ABSTRACT Aravind and Lee-Elkin (1998) gave a proof of the Bell-Kochen-Specker theorem by showing that it is impossible to color the 60 directions from the center of a 600-cell to its vertices in a certain way. This paper refines that result by showing that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly colored, and so provide more economical demonstrations of the theorem. Further, these subsets are shown to be critical in the sense that deleting even a single direction from any of them causes the proof to fail. The critical sets of size 36 and 30 are shown to belong to orbits of 200 and 240 members, respectively, under the symmetries of the polytope. A comparison is made between these critical sets and other such sets in four dimensions, and the significance of these results is discussed. 1. Introduction Some time back Lee-Elkin and one of us [1] gave a proof of the Bell-Kochen-Specker (BKS) theorem [2,3] by showing that it is impossible to color the 60 directions from the center of a 600- cell to its vertices in a certain way. This paper refines that result in two ways. Firstly, it shows that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly colored, and so provide more economical demonstrations of the theorem.
    [Show full text]
  • Platonic Solids Generate Their Four-Dimensional Analogues
    This is a repository copy of Platonic solids generate their four-dimensional analogues. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85590/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010 (2013) Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A : Foundations of Crystallography. pp. 592-602. ISSN 1600-5724 https://doi.org/10.1107/S0108767313021442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a,b,c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone.
    [Show full text]
  • 3D Visualization Models of the Regular Polytopes in Four and Higher Dimensions
    BRIDGES Mathematical Connections in Art, Music, and Science 3D Visualization Models of the Regular Polytopes in Four and Higher Dimensions Carlo H. Sequin Computer Science Division, EECS Department University of California, Berkeley, CA 94720 E-maih [email protected] Abstract This paper presents a tutorial review of the construction of all regular polytopes in spaces of all possible dimensions . .It focusses on how to make instructive, 3-dimensional, physical visualization models for the polytopes of dimensions 4 through 6, using solid free-form fabrication technology. 1. Introduction Polytope is a generalization of the terms in the sequence: point, segment, polygon, polyhedron ... [1]. Such a polytope is called regular, if all its elements (vertices, edges, faces, cells ... ) are indistinguishable, i.e., if there exists a group of spatial transformations (rotations, mirroring) that will bring the polytope into coverage with itself. Through these symmetry operations, it must be possible to transform any particular element of the polytope into any other chosen element of the same kind. In two dimensions, there exist infinitely many regular polygons; the first five are shown in Figure 1. • • • Figure 1: The simplest regular 2D polygons. In three-dimensional space, there are just five regular polyhedra -- the Platonic solids, and they can readily be depicted by using shaded perspective renderings (Fig.2). As we contemplate higher dimensions and the regular polytopes that they may admit, it becomes progressively harder to understand the geometry of these objects. Projections down to two (printable) dimensions discard a fair amount of information, and people often have difficulties comprehending even 4D polytopes, when only shown pictures or 2D graphs.
    [Show full text]
  • From Two Dimensions to Four – and Back Again Susan Mcburney Western Springs, IL 60558, USA E-Mail: [email protected]
    Bridges 2012: Mathematics, Music, Art, Architecture, Culture From Two Dimensions to Four – and Back Again Susan McBurney Western Springs, IL 60558, USA E-mail: [email protected] Abstract Mathematical concepts of n-dimensional space can produce not only intriguing geometries, but also attractive ornamentation. This paper will trace the evolution of a 2-D figure to four dimensions and briefly illustrate two tools for going back again to 2D. When coupled with modern dynamic software packages, these concepts can lead to a whole new world of design possibilities. The Emergence of New Methodologies Many factors converged in the second half of the 19th century and the beginning of the 20th century that led to new ways of thinking, new ideas, and a search for untried methods of experimentation In architecture, technological advances such as the development of cast iron and glass production opened the way for designers to develop new techniques and even new concepts that expanded upon these possibilities. While some continued to rely on classic forms for inspiration, others such as Louis Sullivan, Frank Lloyd Wright, and lesser-known architect Claude Bragdon worked at developing their own styles, not only of architecture, but of integrated ornamentation as well. Geometric concepts played an increased role in style and methods and for Bragdon, became a prime source of inspiration. In his seminal book on ornamentation, “Projective Ornament” he stated, “Geometry and number are at the root of every kind of formal beauty.” At the same time parallel advances were taking place in many other disciplines. In mathematics concepts of dimensional spaces beyond three gained popularity.
    [Show full text]
  • Dimension Theory: Road to the Forth Dimension and Beyond
    Dimension Theory: Road to the Fourth Dimension and Beyond 0-dimension “Behold yon miserable creature. That Point is a Being like ourselves, but confined to the non-dimensional Gulf. He is himself his own World, his own Universe; of any other than himself he can form no conception; he knows not Length, nor Breadth, nor Height, for he has had no experience of them; he has no cognizance even of the number Two; nor has he a thought of Plurality, for he is himself his One and All, being really Nothing. Yet mark his perfect self-contentment, and hence learn this lesson, that to be self-contented is to be vile and ignorant, and that to aspire is better than to be blindly and impotently happy.” ― Edwin A. Abbott, Flatland: A Romance of Many Dimensions 0-dimension Space of zero dimensions: A space that has no length, breadth or thickness (no length, height or width). There are zero degrees of freedom. The only “thing” is a point. = ∅ 0-dimension 1-dimension Space of one dimension: A space that has length but no breadth or thickness A straight or curved line. Drag a multitude of zero dimensional points in new (perpendicular) direction Make a “line” of points 1-dimension One degree of freedom: Can only move right/left (forwards/backwards) { }, any point on the number line can be described by one number 1-dimension How to visualize living in 1-dimension Stuck on an endless one-lane one-way road Inhabitants: points and line segments (intervals) Live forever between your front and back neighbor.
    [Show full text]
  • The Classification of Archimedean 4-Polytopes
    THEOREM OF THE DAY The Classification of Archimedean 4-Polytopes The Archimedean polytopes in four dimensions are: 1. the polytopes of Boole Stott–Wythoff type; 2. the prismatic polytopes; 3. Cartesian products of regular polygons; 4. Thorold Gosset’s snub-24-cell (1900); 5. the Grand Antiprism (Conway–Guy, 1965) Dwellersinatwo-dimensionalworldmightinvestigate theproperties of a Platonic solid, such as the octahedron, by examining the cross-sections pro- duced when a plane intersects it. Above, a plane intersection parallel with one of the faces produces a hexagonal section; a different intersection might reveal a square or a rectangle. Archimedean four-dimensional polytopes consist of copies of prisms and Archimedean solids meeting at vertices in identical configurations (more precisely, the symmetry group of the polytope acts transitively on its ver- tices). A drawing by Boole Stott is adapted, right, to show how a regular polytope, the 24-cell, consisting of 24 octahedra with six meeting at each of its at 24 vertices, may be ‘unfolded’ so that 3-dimensional sections through it may be visualised. Following pioneering work by Alicia Boole Stott, Willem Wythoff and Thorold Gosset in the early 1900s, work on polytopes was systematised by H.S.M. Coxeter in the 1940s. The classification of Archimedean 4-polytopes was completed by J.H. Conway and Michael Guy in the 1960s using computer search. Web link: johncarlosbaez.wordpress.com/2012/05/21/. Fine descriptions of Boole Stott’s work are www.ams.org/featurecolumn/archive/boole.html by Tony Phillips and www.sciencedirect.com/science/article/pii/S0315086007000973 by Irene Polo-Blanco.
    [Show full text]
  • Represented by Quaternions
    Turk J Phys 36 (2012) , 309 – 333. c TUB¨ ITAK˙ doi:10.3906/fiz-1109-11 Branching of the W (H4) polytopes and their dual polytopes under the coxeter groups W (A4) and W (H3) represented by quaternions Mehmet KOCA1,NazifeOzde¸¨ sKOCA2 and Mudhahir AL-AJMI3 Department of Physics, College of Science, Sultan Qaboos University P. O. Box 36, Al-Khoud 123, Muscat-SULTANATE OF OMAN e-mails: [email protected], [email protected], [email protected] Received: 11.09.2011 Abstract 4-dimensional H4 polytopes and their dual polytopes have been constructed as the orbits of the Coxeter- Weyl group W(H4), where the group elements and the vertices of the polytopes are represented by quater- nions. Projection of an arbitrary W(H4) orbit into three dimensions is made preserving the icosahedral subgroup W(H3) and the tetrahedral subgroup W(A3). The latter follows a branching under the Cox- eter group W(A4). The dual polytopes of the semi-regular and quasi-regular H4 polytopes have been constructed. Key Words: 4D polytopes, dual polytopes, coxeter groups, quaternions, W(H4) 1. Introduction It seems that there exists experimental evidence for the existence of the Coxeter-Weyl group W (E8). Radu Coldea et al. [1] have performed a neutron scattering experiment on CoNb 2 O6 (cobalt niobate), which describes the one dimensional quantum Ising chain. Their work have determined the masses of the five emerging particles; the first two are found to obey the relation m2 = τm1 . Their results could be attributed to the Zamolodchikov model [2] which describes the one-dimensional Ising model at critical temperature perturbed by an external magnetic field leading to eight spinless bosons with the mass relations π 7π 4π m1,m3 =2m1 cos 30 ,m4 =2m2 cos 30 ,m5 =2m2 cos 30 (1) m2 = τm1,m6=τm3,m7=τm4,m8=τm5, √ 1+ 5 where τ= 2 is the golden ratio.
    [Show full text]
  • Arxiv:1703.10702V3 [Math.CO] 15 Feb 2018 from D 2D Onwards
    THE EXCESS DEGREE OF A POLYTOPE GUILLERMO PINEDA-VILLAVICENCIO, JULIEN UGON, AND DAVID YOST Abstract. We define the excess degree ξ(P ) of a d-polytope P as 2f1 − df0, where f0 and f1 denote the number of vertices and edges, respectively. This parameter measures how much P deviates from being simple. It turns out that the excess degree of a d-polytope does not take every natural number: the smallest possible values are 0 and d − 2, and the value d − 1 only occurs when d = 3 or 5. On the other hand, for fixed d, the number of values not taken by the excess degree is finite if d is odd, and the number of even values not taken by the excess degree is finite if d is even. The excess degree is then applied in three different settings. It is used to show that polytopes with small excess (i.e. ξ(P ) < d) have a very particular structure: provided d 6= 5, either there is a unique nonsimple vertex, or every nonsimple vertex has degree d + 1. This implies that such polytopes behave in a similar manner to simple polytopes in terms of Minkowski decomposability: they are either decomposable or pyramidal, and their duals are always indecomposable. Secondly, we characterise completely the decomposable d-polytopes with 2d + 1 vertices (up to combinatorial equivalence). And thirdly all pairs (f0; f1), for which there exists a 5-polytope with f0 vertices and f1 edges, are determined. 1. Introduction This paper revolves around the excess degree of a d-dimensional polytope P , or simply d-polytope, and some of its applications.
    [Show full text]
  • Foundations of Space-Time Finite Element Methods: Polytopes, Interpolation, and Integration
    Foundations of Space-Time Finite Element Methods: Polytopes, Interpolation, and Integration Cory V. Frontin Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Gage S. Walters Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 Freddie D. Witherden Department of Ocean Engineering, Texas A&M University, College Station, Texas 77843 Carl W. Lee Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506 David M. Williams∗ Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 David L. Darmofal Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Abstract The main purpose of this article is to facilitate the implementation of space-time finite element methods in four-dimensional space. In order to develop a finite element method in this setting, it is necessary to create a numerical foundation, or equivalently a numerical infrastructure. This foundation should include a arXiv:2012.08701v2 [math.NA] 5 Mar 2021 collection of suitable elements (usually hypercubes, simplices, or closely related polytopes), numerical interpolation procedures (usually orthonormal polyno- mial bases), and numerical integration procedures (usually quadrature rules). It is well known that each of these areas has yet to be fully explored, and in the present article, we attempt to directly address this issue. We begin by developing a concrete, sequential procedure for constructing generic four- ∗Corresponding author Email address: [email protected] (David M. Williams ) Preprint submitted to Applied Numerical Mathematics March 8, 2021 dimensional elements (4-polytopes). Thereafter, we review the key numerical properties of several canonical elements: the tesseract, tetrahedral prism, and pentatope.
    [Show full text]