PDF Download Regular Polytopes Ebook

Total Page:16

File Type:pdf, Size:1020Kb

PDF Download Regular Polytopes Ebook REGULAR POLYTOPES PDF, EPUB, EBOOK H. S. M. Coxeter | 321 pages | 15 Apr 1974 | Dover Publications Inc. | 9780486614809 | English | New York, United States Regular Polytopes PDF Book The measure and cross polytopes in any dimension are dual to each other. The notation is best explained by adding one dimension at a time. Sort order. Normally, for abstract regular polytopes, a mathematician considers that the object is "constructed" if the structure of its symmetry group is known. Grand stellated cell grand stellated polydodecahedron aspD. Another way to "draw" the higher-dimensional shapes in 3 dimensions is via some kind of projection, for example, the analogue of either orthographic or perspective projection. The new shape has only three faces, 6 edges and 4 corners. Mark point D in a third, orthogonal, dimension a distance r from all three, and join to form a regular tetrahedron. Refresh and try again. The Beauty of Geometry: Twelve Essays. Wireframe stereographic projections 3-sphere. In mathematics , a regular 4-polytope is a regular four-dimensional polytope. Wikimedia Commons. There are no discussion topics on this book yet. The final stellation, the great grand stellated polydodecahedron contains them all as gaspD. Regularity has a related, though different meaning for abstract polytopes , since angles and lengths of edges have no meaning. Steve rated it really liked it Feb 14, Great grand stellated cell great grand stellated polydodecahedron gaspD. They called them regular skew polyhedra, because they seemed to satisfy the definition of a regular polyhedron — all the vertices, edges and faces are alike, all the angles are the same, and the figure has no free edges. Jose Veloso rated it it was amazing Jul 17, Open Preview See a Problem? Namespaces Article Talk. The non-diagonal numbers say how many of the column's element occur in or at the row's element. Categories : Polytopes Symmetry Multi-dimensional geometry. In higher dimensions, it becomes harder to say what one means by "constructing" the objects. Books by H. Showing By the way, Coxeter was racist. Regular Polytopes Writer The notation is best explained by adding one dimension at a time. Thus, any geometric polytope may be described by the appropriate abstract poset, though not all abstract polytopes have proper geometric realizations. Alberto Lara Pompa rated it liked it Jan 07, The tesseract contains 8 cubical cells. For mathematicians this is a must-own. Namespaces Article Talk. The simplest few regular polygons that are impossible to construct are the n -sided polygons with n equal to 7, 9, 11, 13, 14, 18, 19, 21, Main article: Orthoplex. The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analog of Euler's polyhedral formula:. The self-dual regular polytopes are:. An infinite array of cubes is not a polytope in the traditional sense. John H Bishop rated it it was amazing May 31, In higher dimensions, it becomes harder to say what one means by "constructing" the objects. The subsequent history of the regular polytopes can be characterised by a gradual broadening of the basic concept, allowing more and more objects to be considered among their number. In mathematics , a regular 4-polytope is a regular four-dimensional polytope. Main article: Polygon. The symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. Fundamental convex regular and uniform polytopes in dimensions 2— It defines regularity of higher dimensional figures in terms of regular figures of a lower dimension. If the hyperplane is moved through the shape, the three-dimensional slices can be combined, animated into a kind of four dimensional object, where the fourth dimension is taken to be time. Sort order. Anthony A rated it really liked it Aug 16, The Hemicube is derived from a cube by equating opposite vertices, edges, and faces. Five of them may be thought of as close analogs of the Platonic solids. Read more Locally, this space seems like the one we are familiar with, and therefore, a virtual-reality system could, in principle, be programmed to allow exploration of these "tessellations", that is, of the 4-dimensional regular polytopes. Views Read Edit View history. Regular Polytopes Reviews An infinite array of cubes is not a polytope in the traditional sense. Mark point B at a distance r from it, and join to form a line segment. Extend a line to point B at distance r , and join to form a line segment. Foremost book available on polytopes, incorporating ancient Greek and most modern work done on them. The idea of a polytope is sometimes generalised to include related kinds of geometrical object. Escape the Present with These 24 Historical Romances. All polygons are regular in the abstract world, for example, whereas only those having equal angles and edges of equal length are regular in the classical world. Easier to understand are 3-d models of the projections. Regular polytopes are the generalized analog in any number of dimensions of regular polygons for example, the square or the regular pentagon and regular polyhedra for example, the cube. Wikimedia Commons. So would B and G, and so on. By the way, Coxeter was racist. As he and others refined these ideas, such sets came to be called abstract polytopes. The five Platonic solids were known to them. Jose Veloso rated it it was amazing Jul 17, In a hemicube, A and H would be treated as the same corner. Of course reasonably accurate approximations can be constructed by a range of methods; while theoretically possible constructions may be impractical. We can instruct a graphics computer to display the image of any of these polytopes in the plane, or we can use the animation capabilities of the machine to create a motion picture of the image in three-space. The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analog of Euler's polyhedral formula:. He wrote is first paper in the subject in at the age of For example, klikko provides sets of plastic triangles, squares, pentagons and hexagons that can be joined edge-to-edge in a large number of different ways. Join the ends to form a square ACBD. The imagination is the limit. Certain restrictions are imposed on the set that are similar to properties satisfied by the classical regular polytopes including the Platonic solids. Sherk, F. The corresponding faces of the two cubes are connected to form the remaining 6 cubical faces of the tesseract. Categories : Polytopes Symmetry Multi-dimensional geometry. Regular Polytopes Read Online This procedure always will yield a figure with a large amount of symmetry, but usually there will be cells of different shape. The mathematics department at UIUC has a number of pictures of what one would see if embedded in a tessellation of hyperbolic space with dodecahedra. Alberto Lara Pompa rated it liked it Jan 07, Pythagoras knew of at least three of them and Theaetetus c. Trivia About Regular Polytopes. Andrew Cavallo rated it it was amazing Aug 18, In that case, we can't The symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The symmetry groups of the classical regular polytopes were generalised into what are now called Coxeter groups. To obtain a fold-out net of a polyhedron, one takes the surface of the polyhedron and cuts it along just enough edges so that the surface may be laid out flat. The vertex figure of a regular polytope is the dual of the dual polytope's facet. Ben Kim rated it it was amazing Dec 24, The cell cannot be formed with regular geometry in flat Euclidean hyperspace, but only in positively curved elliptic hyperspace. To see what your friends thought of this book, please sign up. Regular Polytopes by H. The same applies to star polyhedra, although here we must be careful to make the net for only the visible outer surface. However, a 4-polytope can be considered a tessellation of a 3-dimensional non-Euclidean space, namely, a tessellation of the surface of a four-dimensional sphere a 4-dimensional spherical tiling. For example, in the three-dimensional cube, the 12 points found in the centers of edges are vertices of a cuboctahedron with 8 triangular faces and 6 square faces. John H Bishop rated it it was amazing May 31, Princeton University Press. Each group has 2 regular star-polychora, except for two groups which are self-dual, having only one. Thomas Bradwardine Bradwardinus was the first to record a serious study of star polygons. The English word "construct" has the connotation of systematically building the thing constructed. Thus, any geometric polytope may be described by the appropriate abstract poset, though not all abstract polytopes have proper geometric realizations. https://files8.webydo.com/9583539/UploadedFiles/912E05D4-4120-EE0D-87C3-85E7FA6F59F2.pdf https://cdn.starwebserver.se/shops/razmusblomqvistao/files/east-west-street-on-the-origins-of-genocide-and-crimes-against-humanity-511.pdf https://files8.webydo.com/9583187/UploadedFiles/F64AA59C-6459-0FF2-59A4-04C9E5B0CE37.pdf https://cdn.starwebserver.se/shops/razmusblomqvistao/files/the-beginners-guide-to-android-game-development-705.pdf https://files8.webydo.com/9582789/UploadedFiles/BA9969C4-768C-3A80-4B54-2339F481CBA0.pdf https://files8.webydo.com/9583145/UploadedFiles/3DB5270E-E582-97DA-D59A-5CB8EEB274F4.pdf.
Recommended publications
  • Interaction of the Past of Parallel Universes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Interaction of the Past of parallel universes Alexander K. Guts Department of Mathematics, Omsk State University 644077 Omsk-77 RUSSIA E-mail: [email protected] October 26, 1999 ABSTRACT We constructed a model of five-dimensional Lorentz manifold with foliation of codimension 1 the leaves of which are four-dimensional space-times. The Past of these space-times can interact in macroscopic scale by means of large quantum fluctuations. Hence, it is possible that our Human History consists of ”somebody else’s” (alien) events. In this article the possibility of interaction of the Past (or Future) in macroscopic scales of space and time of two different universes is analysed. Each universe is considered as four-dimensional space-time V 4, moreover they are imbedded in five- dimensional Lorentz manifold V 5, which shall below name Hyperspace. The space- time V 4 is absolute world of events. Consequently, from formal standpoints any point-event of this manifold V 4, regardless of that we refer it to Past, Present or Future of some observer, is equally available to operate with her.Inotherwords, modern theory of space-time, rising to Minkowsky, postulates absolute eternity of the World of events in the sense that all events exist always. Hence, it is possible interaction of Present with Past and Future as well as Past can interact with Future. Question is only in that as this is realized. The numerous articles about time machine show that our statement on the interaction of Present with Past is not fantasy, but is subject of the scientific study.
    [Show full text]
  • Abstract Regular Polytopes
    ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Abstract Regular Polytopes PETER MMULLEN University College London EGON SCHULTE Northeastern University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org c Peter McMullen and Egon Schulte 2002 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United States of America Typeface Times New Roman 10/12.5 pt. System LATEX2ε [] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data McMullen, Peter, 1955– Abstract regular polytopes / Peter McMullen, Egon Schulte. p. cm. – (Encyclopedia of mathematics and its applications) Includes bibliographical references and index. ISBN 0-521-81496-0 1. Polytopes. I. Schulte, Egon, 1955– II. Title. III. Series. QA691 .M395 2002 516.35 – dc21 2002017391 ISBN 0 521 81496 0 hardback Contents Preface page xiii 1 Classical Regular Polytopes 1 1A The Historical Background 1 1B Regular Convex Polytopes 7 1C Extensions
    [Show full text]
  • Chapter 10 RADIOSITY METHOD
    Chapter 10 RADIOSITY METHOD The radiosity metho d is based on the numerical solution of the shading equation by the nite element metho d. It sub divides the surfaces into small elemental surface patches. Supp osing these patches are small, their intensity distribution over the surface can b e approximated by a constant value which dep ends on the surface and the direction of the emission. We can get rid of this directional dep endency if only di use surfaces are allowed, since di use surfaces generate the same intensity in all directions. This is exactly the initial assumption of the simplest radiosity mo del, so we are also going to consider this limited case rst. Let the energy leaving a unit area of surface i in a unit time in all directions b e B , and assume that the light i density is homogeneous over the surface. This light density plays a crucial role in this mo del and is also called the radiosity of surface i. The dep endence of the intensityon B can b e expressed by the following i argument: 1. Consider a di erential dA element of surface A. The total energy leaving the surface dA in unit time is B dA, while the ux in the solid angle d! is d=IdA cos d! if is the angle b etween the surface normal and the direction concerned. 2. Expressing the total energy as the integration of the energy contribu- tions over the surface in all directions and assuming di use re ection 265 266 10.
    [Show full text]
  • Uniform Polychora
    BRIDGES Mathematical Connections in Art, Music, and Science Uniform Polychora Jonathan Bowers 11448 Lori Ln Tyler, TX 75709 E-mail: [email protected] Abstract Like polyhedra, polychora are beautiful aesthetic structures - with one difference - polychora are four dimensional. Although they are beyond human comprehension to visualize, one can look at various projections or cross sections which are three dimensional and usually very intricate, these make outstanding pieces of art both in model form or in computer graphics. Polygons and polyhedra have been known since ancient times, but little study has gone into the next dimension - until recently. Definitions A polychoron is basically a four dimensional "polyhedron" in the same since that a polyhedron is a three dimensional "polygon". To be more precise - a polychoron is a 4-dimensional "solid" bounded by cells with the following criteria: 1) each cell is adjacent to only one other cell for each face, 2) no subset of cells fits criteria 1, 3) no two adjacent cells are corealmic. If criteria 1 fails, then the figure is degenerate. The word "polychoron" was invented by George Olshevsky with the following construction: poly = many and choron = rooms or cells. A polytope (polyhedron, polychoron, etc.) is uniform if it is vertex transitive and it's facets are uniform (a uniform polygon is a regular polygon). Degenerate figures can also be uniform under the same conditions. A vertex figure is the figure representing the shape and "solid" angle of the vertices, ex: the vertex figure of a cube is a triangle with edge length of the square root of 2.
    [Show full text]
  • Classic Radiosity
    Classic radiosity LiU, ITN, TNCG15 Ali Khashan, [email protected] Fredrik Salomonsson, [email protected] VT 10 Abstract This report describes how a classic radiosity method can be solved using the hemicube method to calculate form factors and sorting for optimizing. First the scene is discretized by subdividing the faces uniformly into smaller faces, called patches. At each patch a hemicube is created where the scene is projected down onto the current hemicube to determine the visibility each patch has. After the scene has been projected onto the hemicube form factors are calculated using the data from the hemicube, to determine how much the light contribution from light sources and other objects in the scene. Finally when the form factors has been calculated the radiosity equation can be solved. To choose witch patch to place the hemicube onto all patches are sorted with regard to the largest unshot energy. The patch that comes on top at iteration of the radiosity equation is the one which the hemicube is placed onto. The equation is solved until a convergence of radiosity is reached, meaning when the difference between a patch’s old radiosity and the newly calculated radiosity reaches a certain threshold the radiosity algorithim stops. After the scene is done Gouraud shading is applied to achieve the bleeding of light between patches and objects. The scene is presented with a room and a few simple primitives using C++ and OpenGL with Glut. The results can be visualized by solving the radiosity equation for each of the three color channels and then applying them on the corresponding vertices in the scene.
    [Show full text]
  • Near-Death Experiences and the Theory of the Extraneuronal Hyperspace
    Near-Death Experiences and the Theory of the Extraneuronal Hyperspace Linz Audain, J.D., Ph.D., M.D. George Washington University The Mandate Corporation, Washington, DC ABSTRACT: It is possible and desirable to supplement the traditional neu rological and metaphysical explanatory models of the near-death experience (NDE) with yet a third type of explanatory model that links the neurological and the metaphysical. I set forth the rudiments of this model, the Theory of the Extraneuronal Hyperspace, with six propositions. I then use this theory to explain three of the pressing issues within NDE scholarship: the veridicality, precognition and "fear-death experience" phenomena. Many scholars who write about near-death experiences (NDEs) are of the opinion that explanatory models of the NDE can be classified into one of two types (Blackmore, 1993; Moody, 1975). One type of explana tory model is the metaphysical or supernatural one. In that model, the events that occur within the NDE, such as the presence of a tunnel, are real events that occur beyond the confines of time and space. In a sec ond type of explanatory model, the traditional model, the events that occur within the NDE are not at all real. Those events are merely the product of neurobiochemical activity that can be explained within the confines of current neurological and psychological theory, for example, as hallucination. In this article, I supplement this dichotomous view of explanatory models of the NDE by proposing yet a third type of explanatory model: the Theory of the Extraneuronal Hyperspace. This theory represents a Linz Audain, J.D., Ph.D., M.D., is a Resident in Internal Medicine at George Washington University, and Chief Executive Officer of The Mandate Corporation.
    [Show full text]
  • Quantum Local Testability Arxiv:1911.03069
    Quantum local testability arXiv:1911.03069 Anthony Leverrier, Inria (with Vivien Londe and Gilles Zémor) 27 nov 2019 Symmetry, Phases of Matter, and Resources in Quantum Computing A. Leverrier quantum LTC 27 nov 2019 1 / 25 We want: a local Hamiltonian such that I with degenerate ground space (quantum code) I the energy of an error scales linearly with the size of the error A. Leverrier quantum LTC 27 nov 2019 2 / 25 The current research on quantum error correction mostly concerned with the goal of building a (large) quantum computer desire for realistic constructions I LDPC codes: the generators of the stabilizer group act on a small number of qubits I spatial/geometrical locality: qubits on a 2D/3D lattice I main contenders: surface codes, or 3D variants A fairly reasonable and promising approach I good performance for topological codes: efficient decoders, high threshold I overhead still quite large for fault-tolerance (magic state distillation) but the numbers are improving regularly Is this it? A. Leverrier quantum LTC 27 nov 2019 3 / 25 Better quantum LDPC codes? from a math/coding point of view, topological codes in 2D-3D are not that good p I 2D toric code n, k = O(1), d = O( n) J K I topological codes on 2D Euclidean manifold (Bravyi, Poulin, Terhal 2010) kd2 ≤ cn I topological codes on 2D hyperbolic manifold (Delfosse 2014) kd2 ≤ c(log k)2n I things are better in 4D hyp. space: Guth-Lubotzky 2014 (also Londe-Leverrier 2018) n, k = Q(n), d = na , for a 2 [0.2, 0.3] J K what can we get by relaxing geometric locality in 3D? I we still want an LDPC construction, but allow for non local generators I a nice mathematical topic with many frustrating open questions! A.
    [Show full text]
  • Report on the Comparison of Tesseract and ABBYY Finereader OCR Engines
    IMPACT is supported by the European Community under the FP7 ICT Work Programme. The project is coordinated by the National Library of the Netherlands. Report on the comparison of Tesseract and ABBYY FineReader OCR engines Marcin Heliński, Miłosz Kmieciak, Tomasz Parkoła Poznań Supercomputing and Networking Center, Poland Table of contents 1. Introduction ............................................................................................................................ 2 2. Training process .................................................................................................................... 2 2.1 Tesseract training process ................................................................................................ 3 2.2 FineReader training process ............................................................................................. 8 3. Comparison of Tesseract and FineReader ............................................................................10 3.1 Evaluation scenario .........................................................................................................10 3.1.2 Evaluation criteria ......................................................................................................12 3.2. OCR recognition accuracy results ...................................................................................13 3.3 Comparison of Tesseract and FineReader recognition accuracy .....................................20 4 Conclusions ...........................................................................................................................23
    [Show full text]
  • 1 Critical Noncolorings of the 600-Cell Proving the Bell-Kochen-Specker
    Critical noncolorings of the 600-cell proving the Bell-Kochen-Specker theorem Mordecai Waegell* and P.K.Aravind** Physics Department Worcester Polytechnic Institute Worcester, MA 01609 *[email protected] ,** [email protected] ABSTRACT Aravind and Lee-Elkin (1998) gave a proof of the Bell-Kochen-Specker theorem by showing that it is impossible to color the 60 directions from the center of a 600-cell to its vertices in a certain way. This paper refines that result by showing that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly colored, and so provide more economical demonstrations of the theorem. Further, these subsets are shown to be critical in the sense that deleting even a single direction from any of them causes the proof to fail. The critical sets of size 36 and 30 are shown to belong to orbits of 200 and 240 members, respectively, under the symmetries of the polytope. A comparison is made between these critical sets and other such sets in four dimensions, and the significance of these results is discussed. 1. Introduction Some time back Lee-Elkin and one of us [1] gave a proof of the Bell-Kochen-Specker (BKS) theorem [2,3] by showing that it is impossible to color the 60 directions from the center of a 600- cell to its vertices in a certain way. This paper refines that result in two ways. Firstly, it shows that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly colored, and so provide more economical demonstrations of the theorem.
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • Arxiv:1902.02232V1 [Cond-Mat.Mtrl-Sci] 6 Feb 2019
    Hyperspatial optimisation of structures Chris J. Pickard∗ Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom and Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan (Dated: February 7, 2019) Anticipating the low energy arrangements of atoms in space is an indispensable scientific task. Modern stochastic approaches to searching for these configurations depend on the optimisation of structures to nearby local minima in the energy landscape. In many cases these local minima are relatively high in energy, and inspection reveals that they are trapped, tangled, or otherwise frustrated in their descent to a lower energy configuration. Strategies have been developed which attempt to overcome these traps, such as classical and quantum annealing, basin/minima hopping, evolutionary algorithms and swarm based methods. Random structure search makes no attempt to avoid the local minima, and benefits from a broad and uncorrelated sampling of configuration space. It has been particularly successful in the first principles prediction of unexpected new phases of dense matter. Here it is demonstrated that by starting the structural optimisations in a higher dimensional space, or hyperspace, many of the traps can be avoided, and that the probability of reaching low energy configurations is much enhanced. Excursions into the extra dimensions are progressively eliminated through the application of a growing energetic penalty. This approach is tested on hard cases for random search { clusters, compounds, and covalently bonded networks. The improvements observed are most dramatic for the most difficult ones. Random structure search is shown to be typically accelerated by two orders of magnitude, and more for particularly challenging systems.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]