The British Mission by Dennis C

Total Page:16

File Type:pdf, Size:1020Kb

The British Mission by Dennis C The British Mission by Dennis C. Fakley* ews of the discovery in early Henry Tizard, accompanied by Professor J. basis, and the Directorate of Tube Alloys—a 1939 of neutron-induced fission D. Cockcroft, led a mission to Washington. title chosen as a cover name—was formed in uranium immediately The MAUD Committee programme was within the Department of Scientific and N prompted ideas in the United described and was found to parallel the Industrial Research under the technical lead- Kingdom and elsewhere not only of a con- United States programme, although the lat- ership of W. A. Akers, recruited from Im- trolled fission chain reaction but also of an ter was being conducted with somewhat less perial Chemical Industries, and the policy uncontrolled, explosive chain reaction. Al- urgency. It was agreed that cooperation guidance of Sir John Anderson, Lord Presi- though official British circles viewed with a between the two countries would be mutually dent of the Council. high degree of skepticism the possible advantageous, and the necessary machinery Meanwhile, in the United States Dr. Van- significance of uranium fission for military was established. Even at this early stage the nevar Bush, head of the National Defense application, some research was initiated at British increasingly recognised that, with Research Committee, had asked the presi- British universities on the theoretical aspects their limited resources, they would have to dent of the National Academy of Sciences in of achieving an explosive reaction. Progress look to the immense production capacity of April 1941 to appoint a committee of was slow, the initial results were discourag- America for the expensive development physicists to review the uranium problem. ing, and, following the outbreak of World work; before long the MAUD Committee This committee, which was given copies of War II, the effort was reduced and resources was discussing the possibility of shifting the the MAUD reports, reached conclusions in were moved to more pressing and more main development work to America. November 1941 which were remarkably promising defence projects. The turning By the Spring of 1941, the MAUD Com- similar to those of the MAUD Committee, point came in March 1940 with the inspired mittee itself was convinced that a bomb was but it was less optimistic about the effective- memorandum by O. R. Frisch and R. E. feasible, that the quantity of uranium-235 ness of a uranium bomb, the time it would Peierls, then both of Birmingham University, required was small, and that a practical take to make one, and the costs. Surpris- in which they predicted that a reasonably method of producing uranium enriched in ingly, despite the discoveries made at small mass of pure uranium-235 would sup- uranium-235 could be developed. It had also Berkeley, the committee did not refer to the port a fast chain reaction and outlined a decided that there were no fundamental possibility of a plutonium weapon. On the method by which uranium-235 might be obstacles in the way of designing a uranium basis of the report of the National Academy assembled in a weapon. bomb. However, the possibility of a pluto- of Sciences, President Roosevelt ordered an The importance of the Frisch-Peierls nium bomb had been pushed into the back- all-out development programme under the memorandum was recognised with surpris- ground partly because of doubts about feasi- administration of the newly created Office of ing rapidity, and a uranium subcommittee of bility and partly because large resources Scientific Research and Development and the Committee for the Scientific Survey of appeared to be needed for the development endorsed a complete exchange of informa- Air Warfare was set up. This subcommittee, of a plutonium production route. The British tion with Britain. were unaware of the work on plutonium soon to assume an independent existence as *Assistant Chief Scientific Advisor (Nuclear), the MAUD Committee,** commissioned a already carried out by Professor E. O. Ministry of Defence, London. The author is series of theoretical and experimental re- Lawrence at Berkeley. indebted to Professor Margaret Gowing, Official search programmed at Liverpool, Bir- The MAUD Committee produced two Historian of the United Kingdom Atomic Energy Authority, from whose book Britain and Atomic mingham, Cambridge, and Oxford univer- reports on its work at the end of July 1941. Energy 1939-1945 this outline history has been sities and at Imperial Chemical Industries. These reports, “Use of Uranium for a drawn and to Lord Penney who was kind enough By the end of 1940, nothing had disturbed Bomb” and “Use of Uranium as a Source of to edit the text. the original prediction of Frisch and Peierls Power,” were formally processed through **The story of the choice of title for this commit-- that a bomb was possible, the separation of the Ministry of Aircraft Production, the tee bears retelling. When Denmark was occupied by the Germans, Niels Bohr sent a telegram to uranium-235 had been shown to be in- high-level Scientific Advisory Committee, Frisch, who had worked in Bohr’s Copenhagen dustrially feasible, and a route for producing and the Chiefs of Staff to Prime Minister laboratory, asking him at the end of the message plutonium-239 as a potentially valuable Churchill, but, as a result of a great deal of to “tell Cockcroft and Maud Ray Kent. ”Maud Ray Kent was assumed to be a cryptic reference bomb material had been identified. unofficial lobbying, Churchill had made the to radium or possibly uranium disintegration, and The first official contact between decision that the bomb project should MAUD was chosen as a code name for the American and British nuclear research fol- proceed before the official recommendations uranium committee. Only after the war was Maud Ray identified as a former governess to Bohr’s lowing the outbreak of the war in Europe reached him. It was recognised that the children who was then living in the county of took place in the Fall of 1940 when Sir project had to be set up on a more formal Kent. 186 Winter/Spring 1983 LOS ALAMOS SCIENCE OTHER PERSPECTIVES Although information exchange continued would use the bomb against or disclose it to Oliphant had taken up indefinite residence in until the middle of 1942, the British were a third party without mutual consent, and America. Chadwick was occupied mostly in ambivalent about complete integration of the recognition of the United States’ right to Washington with diplomatic and ad- bomb project and expressed reservations limit whatever postwar commercial advan- ministrative functions but spent some time in which, with hindsight, make strange reading. tages of the project might accrue to Great Los Alamos; Peierls worked initially on By August 1942, when Sir John Anderson Britain. A mission to Washington by gaseous diffusion but later at Los Alamos; offered written proposals for cooperation Anderson reached agreement on provisions and Oliphant, with three colleagues, worked beyond a mere information exchange, the for establishment of a General Policy Com- at Berkeley with Lawrence’s electromagnetic American project had been transferred from mittee and for renewal of information ex- team; a further two scientists were attached the scientists to the U.S. Army under Gen- change. These provisions together with the to Los Alamos. eral L. R. Groves. Britain was probably no points in the draft agreement were in- The exodus of British scientists to longer regarded by the Americans as being corporated in the Quebec Agreement, which America accelerated in the early months of able to make any useful contribution, and the was signed by Roosevelt and Churchill on 19 1944. However, those who joined the question of integration was deferred. August 1943. gaseous diffusion programme did not stay Further, the imposition of a rigid security There were still some minor hurdles to be long, and all were withdrawn by the Fall of system by the U.S. Army led to such severe surmounted before the Quebec Agreement 1944. The British team which joined Law- restrictions on the information exchange that could be implemented in detail, but they were rence at Berkeley built up rapidly to about the only real traffic related to the gaseous overcome more rapidly than might have 35 and was completely integrated into the diffusion process for producing enriched been expected by anyone who had ex- American group; most stayed until the end uranium and to the use of heavy water as a perienced the difficult days in the first half of of the war. The British team assembled at reactor moderator. 1943. The increased cordiality of Anglo- Los Alamos finally numbered 19,* and, as at The change in the United States’ attitude American relations was due almost entirely Berkeley, the scientists were assigned to toward cooperating with Britain came as a to personal relations built up at the working existing groups in the Laboratory (although great shock to the British. Prime Minister level. Of pre-eminent importance was the not to those groups concerned with the Churchill took up the issue with President rapport established between General Groves preparation of plutonium and its chemistry Roosevelt in early 1943 without any early and Professor James Chadwick, senior tech- and metallurgy). sensible effect. Meanwhile, the British nical adviser to the British members of the The first British scientists to go to Los studied the implications of a wholly inde- Combined Policy Committee. Alamos were mainly nuclear physicists. pendent programme and reached what With the resumption of cooperation, the They included Frisch, who led the Anglo- would now appear to be the self-evident first task was an updating one. The British American group that first demonstrated the conclusion that such a programme could not handed over a pile of reports on the progress critical mass of uranium-235, and E.
Recommended publications
  • Chapter 4. CLASSIFICATION UNDER the ATOMIC ENERGY
    Chapter 4 CLASSIFICATION UNDER THE ATOMIC ENERGY ACT INTRODUCTION The Atomic Energy Act of 1946 was the first and, other than its successor, the Atomic Energy Act of 1954, to date the only U.S. statute to establish a program to restrict the dissemination of information. This Act transferred control of all aspects of atomic (nuclear) energy from the Army, which had managed the government’s World War II Manhattan Project to produce atomic bombs, to a five-member civilian Atomic Energy Commission (AEC). These new types of bombs, of awesome power, had been developed under stringent secrecy and security conditions. Congress, in enacting the 1946 Atomic Energy Act, continued the Manhattan Project’s comprehensive, rigid controls on U.S. information about atomic bombs and other aspects of atomic energy. That Atomic Energy Act designated the atomic energy information to be protected as “Restricted Data” and defined that data. Two types of atomic energy information were defined by the Atomic Energy Act of 1954, Restricted Data (RD) and a type that was subsequently termed Formerly Restricted Data (FRD). Before discussing further the Atomic Energy Act of 1946 and its unique requirements for controlling atomic energy information, some of the special information-control activities that accompanied the research, development, and production efforts that led to the first atomic bomb will be mentioned. Realization that an atomic bomb was possible had a profound impact on the scientists who first became aware of that possibility. The implications of such a weapon were so tremendous that the U.S. scientists conducting the initial, basic research related to nuclear fission voluntarily restricted the publication of their scientific work in this area.
    [Show full text]
  • The Price of Alliance: American Bases in Britain
    / THE PRICE OF ALLIANCE: AMERICAN BASES IN BRITAIN John Saville In 1984 there were 135 American military bases in Britain, most of them operational, some still being planned or built. This total was made up of 25 major operational bases or military headquarters, 35 minor or reserve bases, and 75 facilities used by the US Armed Forces. There were also about 30 housing sites for American personnel and their families. The term 'facility' covers a variety of different functions, and includes intelligence centres, stores, fuel supply points, aircraft weapon ranges and at least fourteen contingency military hospitals. Within this military complex there are five confirmed US nuclear weapon stores in the United Kingdom: at Lakenheath in East Anglia; Upper Heyford in Northampton- shire; Holy Loch and Machrihanish in south-west Scotland; and St. Mawgan in Cornwall. Other bases, notably Woodbridge and Alconbury, are thought to have storage facilities for peacetime nuclear weapons. All this information and much more, is provided in the only compre- hensive published survey of American military power in Britain. This is the volume by Duncan Campbell, The Unsinkable Aircraft Carrier. American Military Power in Britain, published by Michael Joseph in 1984. It is an astonishing story that Campbell unfolds, and the greater part of it-and certainly its significance for the future of the British people- has remained largely unknown or ignored by both politicians and public. The use of British bases by American planes in April 1986 provided the beginnings of a wider awareness of the extent to which the United Kingdom has become a forward operational base for the American Armed Forces within the global strategy laid down by the Joint Chiefs of Staff in Washington; but it would be an exaggeration to believe that there is a general awareness, or unease of living in an arsenal of weapons controlled by an outside power.
    [Show full text]
  • The Development of Military Nuclear Strategy And
    The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew.
    [Show full text]
  • Reginald Victor Jones CH FRS (1911-1997)
    Catalogue of the papers and correspondence of Reginald Victor Jones CH FRS (1911-1997) by Alan Hayward NCUACS catalogue no. 95/8/00 R.V. Jones 1 NCUACS 95/8/00 Title: Catalogue of the papers and correspondence of Reginald Victor Jones CH FRS (1911-1997), physicist Compiled by: Alan Hayward Description level: Fonds Date of material: 1928-1998 Extent of material: 230 boxes, ca 5000 items Deposited in: Churchill Archives Centre, Churchill College, Cambridge CB3 0DS Reference code: GB 0014 2000 National Cataloguing Unit for the Archives of Contemporary Scientists, University of Bath. NCUACS catalogue no. 95/8/00 R.V. Jones 2 NCUACS 95/8/00 The work of the National Cataloguing Unit for the Archives of Contemporary Scientists, and the production of this catalogue, are made possible by the support of the Research Support Libraries Programme. R.V. Jones 3 NCUACS 95/8/00 NOT ALL THE MATERIAL IN THIS COLLECTION MAY YET BE AVAILABLE FOR CONSULTATION. ENQUIRIES SHOULD BE ADDRESSED IN THE FIRST INSTANCE TO: THE KEEPER OF THE ARCHIVES CHURCHILL ARCHIVES CENTRE CHURCHILL COLLEGE CAMBRIDGE R.V. Jones 4 NCUACS 95/8/00 LIST OF CONTENTS Items Page GENERAL INTRODUCTION 6 SECTION A BIOGRAPHICAL A.1 - A.302 12 SECTION B SECOND WORLD WAR B.1 - B.613 36 SECTION C UNIVERSITY OF ABERDEEN C.1 - C.282 95 SECTION D RESEARCH TOPICS AND SCIENCE INTERESTS D.1 - D.456 127 SECTION E DEFENCE AND INTELLIGENCE E.1 - E.256 180 SECTION F SCIENCE-RELATED INTERESTS F.1 - F.275 203 SECTION G VISITS AND CONFERENCES G.1 - G.448 238 SECTION H SOCIETIES AND ORGANISATIONS H.1 - H.922 284 SECTION J PUBLICATIONS J.1 - J.824 383 SECTION K LECTURES, SPEECHES AND BROADCASTS K.1 - K.495 450 SECTION L CORRESPONDENCE L.1 - L.140 495 R.V.
    [Show full text]
  • 571 Write Up.Pdf
    This paper comprises a brief history of the origins and early development of radar meteorology. Therefore, it will cover the time period from a few years before World War II through about the 1970s. The earliest developments of radar meteorology occurred in England, the United States, and Canada. Among these three nations, however, most of the first discoveries and developments were made in England. With the exception of a few minor details, it is there where the story begins. Even as early as 1900, Nicola Tesla wrote of the potential for using waves of a frequency from the radio part of the electromagnetic spectrum to detect distant objects. Then, on 11 December 1924, E. V. Appleton and M.A.F. Barnett, two Englishmen, used a radio technique to determine the height of the ionosphere using continuous wave (CW) radio energy. This was the first recorded measurement of the height of the ionosphere using such a method, and it got Appleton a Nobel Prize. However, it was Merle A. Tuve and Gregory Breit (the former of Johns Hopkins University, the latter of the Carnegie Institution), both Americans, who six months later – in July 1925 – did the same thing using pulsed radio energy. This was a simpler and more direct way of doing it. As the 1930s rolled on, the British sensed that the next world war was coming. They also knew they would be forced to defend themselves against the German onslaught. Knowing they would be outmanned and outgunned, they began to search for solutions of a technological variety. This is where Robert Alexander Watson Watt – a Scottish physicist and then superintendent of the Radio Department at the National Physical Laboratory in England – came into the story.
    [Show full text]
  • Scientists, Statesmen and War: the Case of the Scientific Advisory Committee
    James Goodchild Ex Historia 46 James Goodchild 1 University of Exeter Scientists, Statesmen and War: The Case of the Scientific Advisory Committee. The now extensive historiography of the Second World War confirms with fascinating certainty that twentieth-century total technological warfare forced developed nation states to marry their statesmen to their scientists. While the long-term marriage itself proved a near cataclysmic affair, the wedding too had many moments of turbulence. This article examines one particular event in twentieth-century British history of scientific and technological institutionalisation. Piecing together previously unconnected primary evidence, this article re-interprets the uneasy beginnings of the Scientific Advisory Committee (SAC) to the War Cabinet established in October 1940. This article further demonstrates that even in an emergency so immense as modern war, science and politics continued to remain as awkward bedfellows. It was during the First World War that the British Government began to appreciate the value of a permanent civil partnership developing between scientists and the state. From the high pinnacles of David Lloyd George’s ‘Garden Suburbs’ – ideas men attached to the Cabinet – down to the nitty-gritty of keeping common men alive through the work of the Medical Research Committee, science began to permeate the Whitehall corridors of power in an unprecedented fashion essentially as a consequence of total war. 2 This scientific incursion was 1 James Goodchild’s ([email protected] ) academic interests are the inter-relations between twentieth-century war, science and technology, and the British state and society. He holds a BA (Hons.) in history and an M.Res (distinction) which specialised in the scientific developments of the Great War.
    [Show full text]
  • The First Americans the 1941 US Codebreaking Mission to Bletchley Park
    United States Cryptologic History The First Americans The 1941 US Codebreaking Mission to Bletchley Park Special series | Volume 12 | 2016 Center for Cryptologic History David J. Sherman is Associate Director for Policy and Records at the National Security Agency. A graduate of Duke University, he holds a doctorate in Slavic Studies from Cornell University, where he taught for three years. He also is a graduate of the CAPSTONE General/Flag Officer Course at the National Defense University, the Intelligence Community Senior Leadership Program, and the Alexander S. Pushkin Institute of the Russian Language in Moscow. He has served as Associate Dean for Academic Programs at the National War College and while there taught courses on strategy, inter- national relations, and intelligence. Among his other government assignments include ones as NSA’s representative to the Office of the Secretary of Defense, as Director for Intelligence Programs at the National Security Council, and on the staff of the National Economic Council. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: (Top) Navy Department building, with Washington Monument in center distance, 1918 or 1919; (bottom) Bletchley Park mansion, headquarters of UK codebreaking, 1939 UNITED STATES CRYPTOLOGIC HISTORY The First Americans The 1941 US Codebreaking Mission to Bletchley Park David Sherman National Security Agency Center for Cryptologic History 2016 Second Printing Contents Foreword ................................................................................
    [Show full text]
  • Nuclear Weapons Technology 101 for Policy Wonks Bruce T
    NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex .
    [Show full text]
  • Historic Barriers to Anglo-American Nuclear Cooperation
    3 HISTORIC BARRIERS TO ANGLO- AMERICAN NUCLEAR COOPERATION ANDREW BROWN Despite being the closest of allies, with shared values and language, at- tempts by the United Kingdom and the United States to reach accords on nuclear matters generated distrust and resentment but no durable arrangements until the Mutual Defense Agreement of 1958. There were times when the perceived national interests of the two countries were unsynchronized or at odds; periods when political leaders did not see eye to eye or made secret agreements that remained just that; and when espionage, propaganda, and public opinion caused addi- tional tensions. STATUS IMBALANCE The Magna Carta of the nuclear age is the two-part Frisch-Peierls mem- orandum. It was produced by two European émigrés, Otto Frisch and Rudolf Peierls, at Birmingham University in the spring of 1940. Un- like Einstein’s famous letter to President Franklin D. Roosevelt, with its vague warning that a powerful new bomb might be constructed from uranium, the Frisch-Peierls memorandum set out detailed technical arguments leading to the conclusion that “a moderate amount of U-235 [highly enriched uranium] would indeed constitute an extremely effi- cient explosive.” Like Einstein, Frisch and Peierls were worried that the Germans might already be working toward an atomic bomb against which there would be no defense. By suggesting “a counter-threat with a similar bomb,” they first enunciated the concept of mutual deterrence and recommended “start[ing] production as soon as possible, even if 36 Historic Barriers to Anglo-American Nuclear Cooperation 37 it is not intended to use the bomb as a means of attack.”1 Professor Mark Oliphant from Birmingham convinced the UK authorities that “the whole thing must be taken rather seriously,”2 and a small group of senior scientists came together as the Maud Committee.
    [Show full text]
  • Nuclear Scholars Initiative a Collection of Papers from the 2013 Nuclear Scholars Initiative
    Nuclear Scholars Initiative A Collection of Papers from the 2013 Nuclear Scholars Initiative EDITOR Sarah Weiner JANUARY 2014 Nuclear Scholars Initiative A Collection of Papers from the 2013 Nuclear Scholars Initiative EDITOR Sarah Weiner AUTHORS Isabelle Anstey David K. Lartonoix Lee Aversano Adam Mount Jessica Bufford Mira Rapp-Hooper Nilsu Goren Alicia L. Swift Jana Honkova David Thomas Graham W. Jenkins Timothy J. Westmyer Phyllis Ko Craig J. Wiener Rizwan Ladha Lauren Wilson Jarret M. Lafl eur January 2014 ROWMAN & LITTLEFIELD Lanham • Boulder • New York • Toronto • Plymouth, UK About CSIS For over 50 years, the Center for Strategic and International Studies (CSIS) has developed solutions to the world’s greatest policy challenges. As we celebrate this milestone, CSIS scholars are developing strategic insights and bipartisan policy solutions to help decisionmakers chart a course toward a better world. CSIS is a nonprofi t or ga ni za tion headquartered in Washington, D.C. The Center’s 220 full-time staff and large network of affi liated scholars conduct research and analysis and develop policy initiatives that look into the future and anticipate change. Founded at the height of the Cold War by David M. Abshire and Admiral Arleigh Burke, CSIS was dedicated to fi nding ways to sustain American prominence and prosperity as a force for good in the world. Since 1962, CSIS has become one of the world’s preeminent international institutions focused on defense and security; regional stability; and transnational challenges ranging from energy and climate to global health and economic integration. Former U.S. senator Sam Nunn has chaired the CSIS Board of Trustees since 1999.
    [Show full text]
  • M-1392 Publication Title: Bush-Conant File
    Publication Number: M-1392 Publication Title: Bush-Conant File Relating to the Development of the Atomic Bomb, 1940-1945 Date Published: n.d. BUSH-CONANT FILE RELATING TO THE DEVELOPMENT OF THE ATOMIC BOMB, 1940-1945 The Bush-Conant File, reproduced on the 14 rolls of this microfilm publication, M1392, documents the research and development of the atomic bomb from 1940 to 1945. These records were maintained in Dr. James B. Conant's office for himself and Dr. Vannevar Bush. Bush was director of the Office of Scientific Research and Development (OSRD, 1941-46), chairman of the National Defense Research Committee (NDRC) prior to the establishment of OSRD (1940-41), chairman of the Military Policy Committee (1942-45) and member of the Interim Committee (May-June 1945). During this period Conant served under Bush as chairman of the National Defense Research Committee of OSRD (1941-46), chairman of the S-1 Executive Committee (1942-43), alternate chairman of the Military Policy Committee (1942-45), scientific advisor to Maj. Gen. Leslie R. Groves (1943-45), and member of the Interim Committee (May-June 1945). The file, which consists primarily of letters, memorandums, and reports, is part of the Records of the Office of Scientific Research and Development, Record Group (RG) 227. The Bush-Conant File documents OSRD's role in promoting basic scientific research and development on nuclear fission before August 1942. In addition, the files document Bush and Conant's continuing roles, as chairman and alternate chairman of the Military Policy Committee, in overseeing the army's development of the atomic bomb during World War II and, as members of the short-lived Interim Committee, in advising on foreign policy and domestic legislation for the regulation of atomic energy immediately after the war.
    [Show full text]
  • Physics, Physicists and the Bomb
    editorial Physics, physicists and the bomb Scientists involved in nuclear research before and after the end of the Second World War continue to be the subjects of historical and cultural fascination. Almost 70 years since Hiroshima and Nagasaki, the military, historical and moral implications of the nuclear bomb remain firmly lodged in the public’s consciousness. Images of mushroom clouds serve as powerful reminders of the destructive capability that countries armed with nuclear weapons have access to — a capability that continues to play a primary role in shaping the present geopolitical landscape of the world. For physicists, the development of the nuclear bomb generally brings up conflicting feelings. On the one hand, physicists played a central role in helping to create it; on the SCIENCE SOURCE/SCIENCE PHOTO LIBRARY PHOTO SOURCE/SCIENCE SCIENCE other, they were also among the first to realize © its terrifying power. This contradiction is most Manhattan Project physicists at Los Alamos. From left to right: Kenneth Bainbridge, Joseph Hoffman, famously epitomized by Robert Oppenheimer, Robert Oppenheimer, Louis Hempelmann, Robert Bacher, Victor Weisskopf and Richard Dodson. the scientific director of the Manhattan Project, who, on witnessing the first test of the atomic bomb, the Trinity test, in July 1945, in this context that the public can truly come race following the Second World War, there was reminded of a quote from the Hindu to feel the growing sense of disillusionment is no question that Churchill was an early scripture Bhagavad Gita: “Now, I am become of those scientists as they realized their goal; and influential champion for government- Death, the destroyer of worlds.” a sense of lost innocence, that knowledge that sponsored science and technology in Britain.
    [Show full text]