The Hindenburg Wall. a Review of Existing Knowledge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Buden-Etal2005.Pdf
98 PACIFIC SCIENCE . January 2005 Figure 1. Location of the Caroline Islands. along the shore. The average annual rainfall spp.) are the dominant trees on all but the ranges from about 363 cm in Chuuk (Merlin smallest atoll islands, where coastal scrub and and Juvik 1996) to 1,015 cm estimated in the strand predominate. All of the islands fall mountains on Pohnpei (Merlin et al. 1992). within the equatorial rain belt and are wet The land area on the numerous, wide- enough to support a mesophytic vegetation spread, low (1–4 m high) coralline atolls is (Mueller-Dombois and Fosberg 1998). All of miniscule. Satawan Atoll in the Mortlock the atolls visited during this survey are in- Islands, southern Chuuk State, has the largest habited or (in the case of Ant Atoll) have been total land area, with 4.6 km2 distributed so in the recent past. Ornamental shrubs, among approximately 49 islets (Bryan 1971). trees, and herbs are common in the settle- Houk (¼ Pulusuk Atoll), a lone islet west of ments, which are usually located on one or Chuuk Lagoon, is the largest single island several of the larger islets; the others are vis- (2.8 km2) among all of these outlyers. Coco- ited frequently to harvest coconuts, crabs, and nut (Cocos nucifera) and breadfruit (Artocarpus other forest products used by the community. Butterflies of the Eastern Caroline Islands . Buden et al. 99 materials and methods record from Kosrae, but this sight record re- quires confirmation.] Butterflies were collected by D.W.B. when the opportunity arose during biological sur- veys of several different taxonomic groups, Family Lycaenidae including birds, reptiles, odonates, and milli- Catochrysops panormus (C. -
Title Butterflies Collected in and Around Lambir Hills National Park
Butterflies collected in and around Lambir Hills National Park, Title Sarawak, Malaysia in Borneo ITIOKA, Takao; YAMAMOTO, Takuji; TZUCHIYA, Taizo; OKUBO, Tadahiro; YAGO, Masaya; SEKI, Yasuo; Author(s) OHSHIMA, Yasuhiro; KATSUYAMA, Raiichiro; CHIBA, Hideyuki; YATA, Osamu Contributions from the Biological Laboratory, Kyoto Citation University (2009), 30(1): 25-68 Issue Date 2009-03-27 URL http://hdl.handle.net/2433/156421 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contn bioL Lab, Kyoto Univ., Vot. 30, pp. 25-68 March 2009 Butterflies collected in and around Lambir Hills National ParK SarawaK Malaysia in Borneo Takao ITioKA, Takuji YAMAMo'rD, Taizo TzucHiyA, Tadahiro OKuBo, Masaya YAGo, Yasuo SEKi, Yasuhiro OHsHIMA, Raiichiro KATsuyAMA, Hideyuki CHiBA and Osamu YATA ABSTRACT Data ofbutterflies collected in Lambir Hills National Patk, Sarawak, Malaysia in Borneo, and in ks surrounding areas since 1996 are presented. In addition, the data ofobservation for several species wimessed but not caught are also presented. In tota1, 347 butterfly species are listed with biological information (habitat etc.) when available. KEY WORDS Lepidoptera! inventory1 tropical rainforesti species diversity1 species richness! insect fauna Introduction The primary lowland forests in the Southeast Asian (SEA) tropics are characterized by the extremely species-rich biodiversity (Whitmore 1998). Arthropod assemblages comprise the main part of the biodiversity in tropical rainforests (Erwin 1982, Wilson 1992). Many inventory studies have been done focusing on various arthropod taxa to reveal the species-richness of arthropod assemblages in SEA tropical rainforests (e.g. Holloway & lntachat 2003). The butterfly is one of the most studied taxonomic groups in arthropods in the SEA region; the accumulated information on the taxonomy and geographic distribution were organized by Tsukada & Nishiyama (1980), Yata & Morishita (1981), Aoki et al. -
A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion. -
Checklist of the Mammals of Indonesia
CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia. -
Nature Conservation (Wildlife) Regulation 2006
Queensland Nature Conservation Act 1992 Nature Conservation (Wildlife) Regulation 2006 Current as at 1 September 2017 Queensland Nature Conservation (Wildlife) Regulation 2006 Contents Page Part 1 Preliminary 1 Short title . 5 2 Commencement . 5 3 Purpose . 5 4 Definitions . 6 5 Scientific names . 6 Part 2 Classes of native wildlife and declared management intent for the wildlife Division 1 Extinct in the wild wildlife 6 Native wildlife that is extinct in the wild wildlife . 7 7 Declared management intent for extinct in the wild wildlife . 8 8 Significance of extinct in the wild wildlife to nature and its value 8 9 Proposed management intent for extinct in the wild wildlife . 8 10 Principles for the taking, keeping or use of extinct in the wild wildlife 9 Division 2 Endangered wildlife 11 Native wildlife that is endangered wildlife . 10 12 Declared management intent for endangered wildlife . 10 13 Significance of endangered wildlife to nature and its value . 10 14 Proposed management intent for endangered wildlife . 11 15 Principles for the taking, keeping or use of endangered wildlife . 12 Division 3 Vulnerable wildlife 16 Native wildlife that is vulnerable wildlife . 13 17 Declared management intent for vulnerable wildlife . 13 18 Significance of vulnerable wildlife to nature and its value . 13 19 Proposed management intent for vulnerable wildlife . 14 20 Principles for the taking, keeping or use of vulnerable wildlife . 15 Nature Conservation (Wildlife) Regulation 2006 Contents Division 4 Near threatened wildlife 26 Native wildlife that is near threatened wildlife . 16 27 Declared management intent for near threatened wildlife . 16 28 Significance of near threatened wildlife to nature and its value . -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome B and 16S Rrna Sequences J
MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 10, No. 1, August, pp. 67–81, 1998 ARTICLE NO. FY970471 Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome b and 16S rRNA Sequences J. Scott Keogh,*,†,1 Richard Shine,* and Steve Donnellan† *School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia; and †Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia Received April 24, 1997; revised September 4, 1997 quence data support many of the conclusions reached Phylogenetic relationships among the venomous Aus- by earlier studies using other types of data, but addi- tralo-Papuan elapid snake radiation remain poorly tional information will be needed before the phylog- resolved, despite the application of diverse data sets. eny of the Australian elapids can be fully resolved. To examine phylogenetic relationships among this 1998 Academic Press enigmatic group, portions of the cytochrome b and 16S Key Words: mitochondrial DNA; cytochrome b; 16S rRNA mitochondrial DNA genes were sequenced from rRNA; reptile; snake; elapid; sea snake; Australia; New 19 of the 20 terrestrial Australian genera and 6 of the 7 Guinea; Pacific; Asia; biogeography. terrestrial Melanesian genera, plus a sea krait (Lati- cauda) and a true sea snake (Hydrelaps). These data clarify several significant issues in elapid phylogeny. First, Melanesian elapids form sister groups to Austra- INTRODUCTION lian species, indicating that the ancestors of the Austra- lian radiation came via Asia, rather than representing The diverse, cosmopolitan, and medically important a relict Gondwanan radiation. Second, the two major elapid snakes are a monophyletic clade of approxi- groups of sea snakes (sea kraits and true sea snakes) mately 300 species and 61 genera (Golay et al., 1993) represent independent invasions of the marine envi- primarily defined by their unique venom delivery sys- ronment. -
Caesalpinia Decapetala
Caesalpinia decapetala Caesalpinia decapetala Cat's claw Introduction The genus Caesalpinia contains more than 100 species, occurring in tropical and temperate regions worldwide. Seventeen species are reported from China, occurring primarily in the southwest and north [200]. Species of Caesalpinia in China Leaves and flowers of Caesalpinia Scientific Name Scientific Name decapetala. C. bonduc (Linn.) Roxb. C. millettii Hook. et Arn. uplands, and along streams in temperate C. caesia Hand.-Mazz. C. mimosoides Lam. and tropical regions [200]. C. crista Linn. C. minax Hance Distribution C. cucullata Roxb. C. pulcherrima (Linn.) Sw. C. decapetala is found in Anhui, Fujian, C. decapetala (Roth) Alston C. sappan Linn. Gansu, Guangdong, Guangxi, Guizhou, C. digyna Rottler C. sinensis (Hemsl.) Vidal Hainan, Henan, Hubei, Hunan, Jiangsu, C. enneaphylla Roxb. C. tortuosa Roxb. Jiangxi, Shaanxi, Sichuan, Yunnan, and Zhejiang provinces [159][200]. C. hymenocarpa (Prain) Hattink C. vernalis Champ. C. magnifoliolata Metc. Economic Importance The bitter tasting stems and roots can brown seeds, are ligule-shaped, 6-12 Taxonomy be used medicinally, while other parts cm long and 2.5 –3 cm wide, beaked Family: Leguminoseae of the plant are useful in the chemical at both ends, splitting along the ventral (Fabaceae) industry. The fruits and bark are rich in suture at maturity [200]. Genus: Caesalpinia Linn. tannin. With an oil content of 35 percent, the seeds serve as a source of lubricant Habitat Description and soap. C. decapetala is also grown C. decapetala occurs on bushy hillsides, [200] C. decapetala is a shrub bearing thorns as a hedge plant in China . and fine hairs on the inflorescence and red stems. -
Record of Two New Butterflies for Bangladesh JEZS 2016; 4(3): 32-34 © 2016 JEZS Received: 05-03-2016 Accepted: 06-04-2016 Mohan Kumar Das, Shawan Chowdhury
Journal of Entomology and Zoology Studies 2016; 4(3): 32-34 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Record of two new butterflies for Bangladesh JEZS 2016; 4(3): 32-34 © 2016 JEZS Received: 05-03-2016 Accepted: 06-04-2016 Mohan Kumar Das, Shawan Chowdhury Mohan Kumar Das Abstract Department of Zoology, Butterflies are considered as one of the most studied groups of insects and are termed as bio-indicator. University of Dhaka, Hence the total number of butterflies of a certain region should be well documented. In the field survey Bangladesh. of Pablakhali Wildlife Sanctuary and Madhabkunda Eco Park, we found two butterflies which are new to Shawan Chowdhury Bangladesh, according to the most recent checklist. The Plane (Bindahara phocides, Fabricus) was Department of Zoology, recorded from Pablakhali Wildlife Sanctuary and Orange Tail Awl (Bibasis sena, Moore) from University of Dhaka, Madhabkunda Eco Park. Though Plane was recorded by Gladman (1947) and Emmet (1948) but Larsen Bangladesh. did not find this species. In addition, no one ever recorded Orange Tail Awl from this region. Keywords: Biodiversity, Bibasis sena, Bindahara phocides, Conservation, Discovery Introduction Tropical regions are very rich in biodiversity but we know very little about them. Because of that, almost 40000 already estimates to have gone extinct over the past 600 years, only 70 have been documented, half of which were Lepidoptera [1]. The world contains roughly 18000- 20000 species of butterflies, of which most are distributed in the tropical region [2, 3]. Butterflies are a biodiversity indicator group and the redundancy of a forest or an area largely depends upon the abundance and diversity of butterflies [4]. -
A Rapid Biodiversity Survey of Papua New Guinea’S Manus and Mussau Islands
A Rapid Biodiversity Survey of Papua New Guinea’s Manus and Mussau Islands edited by Nathan Whitmore Published by: Wildlife Conservation Society Papua New Guinea Program PO BOX 277, Goroka, Eastern Highlands Province PAPUA NEW GUINEA Tel: +675-532-3494 www.wcs.org Editor: Nathan Whitmore. Authors: Ken P. Aplin, Arison Arihafa, Kyle N. Armstrong, Richard Cuthbert, Chris J. Müller, Junior Novera, Stephen J. Richards, William Tamarua, Günther Theischinger, Fanie Venter, and Nathan Whitmore. The Wildlife Conservation Society is a private, not-for-profit organisation exempt from federal income tax under section 501c(3) of the Inland Revenue Code. The opinions expressed in this publication are those of the contributors and do not necessarily reflect those of the Wildlife Conservation Society, the Criticial Ecosystems Partnership Fund, nor the Papua New Guinean Department of Environment or Conservation. Suggested citation: Whitmore N. (editor) 2015. A rapid biodiversity survey of Papua New Guinea’s Manus and Mussau Islands. Wildlife Conservation Society Papua New Guinea Program. Goroka, PNG. ISBN: 978-0-9943203-1-5 Front cover Image: Fanie Venter: cliffs of Mussau. ©2015 Wildlife Conservation Society A rapid biodiversity survey of Papua New Guinea’s Manus and Mussau Islands. Edited by Nathan Whitmore Table of Contents Participants i Acknowledgements iii Organisational profiles iv Letter of support v Foreword vi Executive summary vii Introduction 1 Chapters 1: Plants of Mussau Island 4 2: Butterflies of Mussau Island (Lepidoptera: Rhopalocera) -
SYSTEMATICS of VAGRANTINI BUTTERFLIES (LEPIDOPTERA: Nymphalidae)
Treubia 2003 33 (1) 71-87 SYSTEMATICS OF VAGRANTINI BUTTERFLIES (LEPIDOPTERA: NYMPHAlIDAE). PART 1. CLADISTIC ANALYSIS Djunijanti Peggie . Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences JI. Raya Jakarta Bogor Km. 46, Cibinong 16911, Indonesia Abstract Eiglit ge/lera of lndo-Australian butterjiies: Algia. Algiachroa, Cirrochroa, Cupha, Phalanta, Terinos, Vagrans, and Vindula are presented here. These genera together with two Afrotropical genera: Lachnoptera and Smerina, and a Central American genlls Euptoieta were previollsly placed as subiribe uncertain. One-hundred adult morphological characters were scored for fifty-four taxa, and were analyzed simultaneousuj (Nixon and Carpenter, 1993). The cladistic analysis showed that all species were properly assigned to monophyletic genera, and the arrangement of the outgroup taxa is in concordance with the classification previously suggested. The eight lndo-Australian and two Afrotropical genera belong to the tribe Vagrantini within the subfamily Heliconiinae. Key words: Heliconiines, Vagrantini, Indo-Australian, butterflies. Introduction The subfamily Heliconiinae is recognized by most authorities but the included taxa may differ. Ackery (in Vane-Wright and Ackery, 1984) suggested that the heliconiines may prove to represent a highly specialized subgroup of the Argynnini sensu lato. Heliconiinae sensu Harvey (in Nijhout, 1991) also include Acraeinae and Argynninae of Ackery (1988).Parsons (1999)included argynnines within Heliconiinae but retained Acraeinae as a distinct subfamily. Harvey (in N ijhou t, 1991) recognized three tribes of Heliconiinae: Pardopsini, Acraeini, and Heliconiini. The Heliconiini include the Neotropical Heliconiina (Brower, 2000), some genera which were placed as "subtribe uncertain", Argynnina, Boloriina and three other genera (the Neotropical genusYramea, the Oriental Kuekenthaliella, and Prokuekenthaliella) with uncertain relationships.