Recurrence Relation in Number Theory

Total Page:16

File Type:pdf, Size:1020Kb

Recurrence Relation in Number Theory International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 885-893 RECURRENCE RELATION IN NUMBER THEORY Mannu Arya1 and Vipin Verma2 1,2Department of Mathematics, School of Chemical Engineering and Physical Sciences Lovely Professional University, Phagwara 144411, Punjab (INDIA) ABSTRACT The research is on recurrence relation in number theory, with the sole aim of reviewing subtle and far- ending relationships in selected natural numbers which includes the composite and perfect numbers. Related literature was reviewed on which serves as the basis for critical analysis of the natural numbers. From the findings, it was found that there is a degree of relationship between prime numbers and perfect numbers including composite numbers. The nth composite number (푐푛) can be generated using the Wolfram Language code. This is a machine code. It is very difficult to establish a manual formula to extrapolate far composite numbers, but Dirichlet generating function is used to establish the characteristic function of the composite numbers. Furthermore, the relation in perfect numbers can be addressed thus as follows; (Power of Two) × (Double that Power - 1). The prime number formula is given by(2푛−1). To get the Perfect Number, the formula becomes (2푛−1). (2푛 − 1). Getting the nth sequence of a perfect number is dependent on the equivalent nth sequence of prime numbers. The research finally concludes with the call for researchers to team up to make more explicit, the recurrence relation in composite numbers. Keywords: Number Theory, Recurrence Relation, Perfect numbers, composite numbers, wolfram language code, Dirichlet generating function 1.0. INTRODUCTION The study of subtle and far-reaching relationships of numbers is Number Theory [3]. Number Theory is the study of positive numbers (1,2,3,4,5,6,7…) which scrutinize the properties of integers, the natural numbers which is common as -1,-2,0,1,2 and so forth. It is part theoretical and part experimental, as mathematics seeks to discover fascinating and even unexpected mathematical interactions [5]. Since ancient times, people have separated the natural numbers into a variety of different types which includes but not restricted to odd numbers (1,3,5,7,9,11...), cube numbers (1,8,27,64,125...), prime numbers (2,3,5,7,11,13,17,19,23,29,31…), composite numbers (4,6,8,9,10,12,14,15,16…), 1(modulo 4) numbers (1,5,9,13,17,21,25…), 3( modulo 4) numbers (3,7,11,15,19,23,27…), triangular numbers ( 1,3,6,10,15,21…), perfect numbers ( 6,28,496…), Fibonacci numbers ( 1,1,2,3,5,8,13,21….) [4][5]. Many of these types of numbers are undoubtedly already known to us. Others such as the “Modulo 4” numbers may not be familiar. A number is said to be congruent to 1 (modulo 4) if it leaves a remainder of 1 when divided by 4, and similarly for the 3 (modulo 4) numbers. A number is called triangular if the number of pebble can be arranged in a triangle, with one pebble at the top, two pebbles in the next row, and so on. The Fibonacci numbers are created by starting with 1 and 1. Then to get the next number in the list, just add the previous two. Finally, a number is perfect if the sum of all its divisors, other than itself, adds back up to the original number. Thus the numbers dividing 6 are 1, 2 and 3 and 1 + 2+ 3 = 6. Similarly, the divisors of 28 are 1,2,4,7 and 14 and 1+ 2 + 4+ 7+ 14 = 28 [4][5]. Number theory involves analyzing such mathematical relationship, as well as asking new questions about them. The main goal of number theory is to discover interesting and unexpected relationships between different sorts of numbers to prove that these relationships are true. These relationships are drafted using recurrence relation [5]. ISSN: 2005-4238 IJAST 885 Copyright ⓒ 2020 SERSC International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 885-893 Recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous terms. The simplest form of a recurrence relation is the case where the next term depends only on the immediate previous term. If we denote the nth term of the sequence by ( Xn). Such a recurrence relation is of the form [2][8][10] Xn+1 = f(Xn) A recurrence relation can also be higher order, where the term Xn+1could depend not only on the previous term Xnbut also on earlier terms such as, Xn−1, Xn−2, etc. A second order recurrence relation depends just onXnand Xn−1and is of the form [2][4][8][10] Xn+1 = f(Xn, Xn−1) For some f with two inputs. For example, the recurrence relation Xn+1 = Xn + Xn−1can generate sequence based on a recurrence relation; one must start with some initial values. For a first order recursion, Xn+1 = f(Xn), one just need to start with an initial value X0 and can generate all remaining terms using the recurrence relation. For a second order recursion, Xn+1 = f(Xn, Xn−1) one needs to begin with two values X0 and X1. Higher order recurrence relations require corresponding more initial values [2][4][8][10]. Amongst the complex natural numbers mentioned earlier, the recurrence relation for Fibonacci, has being highly researched on. So, for the purpose of this research, composite and perfect numbers will be looked into. From the conclusions, observations made on recurrence relation would be used to explain the relationship between the different numbers involved, stating conflicting issues [2][4][8][10]. 2.0. LITERATURE REVIEW This session review related literature on recursion relation of natural numbers. 2.1. Concept of Number Theory Number Theory is the study of positive numbers (1,2,3,4,5,6,7…) which scrutinize the properties of integers, the natural numbers which is common as -1,-2,0,1,2 and so forth. It is part theoretical and part experimental, as mathematics seeks to discover fascinating and even unexpected mathematical interactions. It is the study of subtle and far-reaching relationships of numbers. This far end reaching relationships have its application in computer algorithm as in Fibonacci numbers [4][5]. Since ancient times, people have separated the natural numbers into a variety of different types which includes but not restricted to odd numbers, cube numbers, prime numbers, composite numbers, 1(modulo 4) numbers, 3( modulo 4) numbers, triangular numbers, perfect numbers, Fibonacci numbers, etc. Not withstanding, the major concentration will be on Perfect and composite numbers. Some of these numbers outlined above are summarized in the table below [5]; Table 1: Classifications of Natural Numbers Number Type Samples Odd 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35……………. Cube 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331……………………….. Prime 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 ……………… Composite 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 19……………………………….. 1 ( Modulo 4) 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49 …………………………. ISSN: 2005-4238 IJAST 886 Copyright ⓒ 2020 SERSC International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 885-893 3 ( Modulo 4) 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59………………. Triangular 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91 ………………………. Perfect 6, 28, 496, 8128, 2096128, 33550336………………………………….. Fibonacci 1, 1, 2, 3, 5, 8, 13, 21 …………………………………………….. Source: Classifications of Natural Numbers [5] The table above has shown some of the common and uncommon natural numbers. Some of the mathematical relationship between some of them can be easily figured out while some are complicated to figure out or have not attained a well-defined explanation of the relationship between them. Some research works however, have shown that there is a relationship between prime and perfectnumbers. For clear and deductive purpose, the composite and perfect numbers will be looked into shortly [5]. 2.2. Recurrence Relation Recursive relation is a recursive definition without the initial conditions. Recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous terms. The simplest form of a recurrence relation is the case where the next term depends only on the immediate previous term. If we denote the nth term of the sequence byXnSuch a recurrence relation is of the form Xn+1 = f(Xn)[2], [8],[10],[18], [19]. 2.3. Methods of Recursion Recursion is the process of repetition (repetition), and a recursive method is the use of recursion in a finite or infinite way to define, constructs, or analyzes a mathematical object. Often times a recursive structure will have a closed form counterpart. For instance, the Fibonacci numbers are expressed through the recursive definition Fn = Fn−1 + FN−2forn ≥ 2 such that F0 = 0 andF1 = 1 , with Benit’s formula [2], [8], [10]. ( 1 + √5)푛 − (1 − √5)푛 퐹푛 = 2푛√5 For푛 ∈ 푁 ∈ as the closed form counterpart. The closed form allows for rapid computation of the nth Fibonacci number, but the recursive definition is more convenient for proving identities and a more natural approach to the sequence. Generating functions such as the formal power series ∞ 푛 G (t) = ∑푛=0 푎푛푡 Provide a straightforward connection between the recursively defined anand the closed G (t).
Recommended publications
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • Sequences of Primes Obtained by the Method of Concatenation
    SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd
    [Show full text]
  • Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected]
    Transformations Volume 2 Article 5 Issue 2 Winter 2016 12-27-2016 Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected] Denise Gates Janice Haramis Farrah Bell Claude Manigat See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/transformations Part of the Curriculum and Instruction Commons, Science and Mathematics Education Commons, Special Education and Teaching Commons, and the Teacher Education and Professional Development Commons Recommended Citation Su, Hui Fang Huang; Gates, Denise; Haramis, Janice; Bell, Farrah; Manigat, Claude; Hierpe, Kristin; and Da Silva, Lourivaldo (2016) "Number Pattern," Transformations: Vol. 2 : Iss. 2 , Article 5. Available at: https://nsuworks.nova.edu/transformations/vol2/iss2/5 This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more information, please contact [email protected]. Number Pattern Cover Page Footnote This article is the result of the MAT students' collaborative research work in the Pre-Algebra course. The research was under the direction of their professor, Dr. Hui Fang Su. The ap per was organized by Team Leader Denise Gates. Authors Hui Fang Huang Su, Denise Gates, Janice Haramis, Farrah Bell, Claude Manigat, Kristin Hierpe, and Lourivaldo Da Silva This article is available in Transformations: https://nsuworks.nova.edu/transformations/vol2/iss2/5 Number Patterns Abstract In this manuscript, we study the purpose of number patterns, a brief history of number patterns, and classroom uses for number patterns and magic squares.
    [Show full text]
  • Correspondent Speaks
    CORRESPONDENT SPEAKS In today’s changing scenario, there is an increasing necessity of empowering the students through innovative education. They should also be made aware of their rights and responsibilities. In the present system, students gain mere subject knowledge through the educational institutions. A healthy educational environment will cultivate positive personality among the students. “Students of today are the citizens of tomorrow” and so, they should be motivated towards the right direction. This magazine encompassing Puzzles, Aptitude questions, Vedic Maths and many more will create flourishing impact in the mind of the readers. I wish all the budding mathematics genius, a good luck. FROM THE PRINCIPAL’ S DESK Creativity keeps the human being on the path of progress and helps for perpetuity and comfort. Innovative thoughts make global changes. This magazine is a testimony to the creative skills of our students. Roll of honour and the achievements of the department are milestones of the department. The articles of the creators embellish this magazine. Wish them all a great success. HEAD OF THE DEPARTMENT’S MESSAGE Warm Greetings . I would like to express my gratitude to the patron Thiru P.Sachithanandan, Correspondent, KASC, the editorial board of this MATHEZINE and all the contributors. Sit back, relax and have sweet memories of the year passed. I feel proud to get published in this magazine, our successful activities and events of the academic year 2013-14. With hope and confidence in the family of mathemat ics at Kongu Arts and Science College, which is marching towards progress and prosperity, I pray to the almighty for a healthy, wealthy and pr osperous life to all my students.
    [Show full text]
  • Ramanujan, Robin, Highly Composite Numbers, and the Riemann Hypothesis
    Contemporary Mathematics Volume 627, 2014 http://dx.doi.org/10.1090/conm/627/12539 Ramanujan, Robin, highly composite numbers, and the Riemann Hypothesis Jean-Louis Nicolas and Jonathan Sondow Abstract. We provide an historical account of equivalent conditions for the Riemann Hypothesis arising from the work of Ramanujan and, later, Guy Robin on generalized highly composite numbers. The first part of the paper is on the mathematical background of our subject. The second part is on its history, which includes several surprises. 1. Mathematical Background Definition. The sum-of-divisors function σ is defined by 1 σ(n):= d = n . d d|n d|n In 1913, Gr¨onwall found the maximal order of σ. Gr¨onwall’s Theorem [8]. The function σ(n) G(n):= (n>1) n log log n satisfies lim sup G(n)=eγ =1.78107 ... , n→∞ where 1 1 γ := lim 1+ + ···+ − log n =0.57721 ... n→∞ 2 n is the Euler-Mascheroni constant. Gr¨onwall’s proof uses: Mertens’s Theorem [10]. If p denotes a prime, then − 1 1 1 lim 1 − = eγ . x→∞ log x p p≤x 2010 Mathematics Subject Classification. Primary 01A60, 11M26, 11A25. Key words and phrases. Riemann Hypothesis, Ramanujan’s Theorem, Robin’s Theorem, sum-of-divisors function, highly composite number, superabundant, colossally abundant, Euler phi function. ©2014 American Mathematical Society 145 This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 146 JEAN-LOUIS NICOLAS AND JONATHAN SONDOW Figure 1. Thomas Hakon GRONWALL¨ (1877–1932) Figure 2. Franz MERTENS (1840–1927) Nowwecometo: Ramanujan’s Theorem [2, 15, 16].
    [Show full text]
  • On Types of Elliptic Pseudoprimes
    journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N.
    [Show full text]
  • The History of the Primality of One—A Selection of Sources
    THE HISTORY OF THE PRIMALITY OF ONE|A SELECTION OF SOURCES ANGELA REDDICK, YENG XIONG, AND CHRIS K. CALDWELLy This document, in an altered and updated form, is available online: https:// cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html. Please use that document instead. The table below is a selection of sources which address the question \is the number one a prime number?" Whether or not one is prime is simply a matter of definition, but definitions follow use, context and tradition. Modern usage dictates that the number one be called a unit and not a prime. We choose sources which made the author's view clear. This is often difficult because of language and typographical barriers (which, when possible, we tried to reproduce for the primary sources below so that the reader could better understand the context). It is also difficult because few addressed the question explicitly. For example, Gauss does not even define prime in his pivotal Disquisitiones Arithmeticae [45], but his statement of the fundamental theorem of arithmetic makes his stand clear. Some (see, for example, V. A. Lebesgue and G. H. Hardy below) seemed ambivalent (or allowed it to depend on the context?)1 The first column, titled `prime,' is yes when the author defined one to be prime. This is just a raw list of sources; for an evaluation of the history see our articles [17] and [110]. Any date before 1200 is an approximation. We would be glad to hear of significant additions or corrections to this list. Date: May 17, 2016. 2010 Mathematics Subject Classification.
    [Show full text]
  • POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti
    POWERFUL AMICABLE NUMBERS PAUL POLLACK P Abstract. Let s(n) := djn; d<n d denote the sum of the proper di- visors of the natural number n. Two distinct positive integers n and m are said to form an amicable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first example of an amicable pair, known already to the ancients, is f220; 284g. We do not know if there are infinitely many amicable pairs. In the opposite direction, Erd}osshowed in 1955 that the set of amicable numbers has asymptotic density zero. Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n whenever the prime p divides n. As shown by Erd}osand 1=` Szekeres in 1935, the number of `-full n ≤ x is asymptotically c`x , as x ! 1. Here c` is a positive constant depending on `. We show that for each fixed `, the set of amicable `-full numbers has relative density zero within the set of `-full numbers. 1. Introduction P Let s(n) := djn; d<n d be the sum of the proper divisors of the natural number n. Two distinct natural numbers n and m are said to form an ami- cable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first amicable pair, 220 and 284, was known already to the Pythagorean school. Despite their long history, we still know very little about such pairs.
    [Show full text]
  • On the Number of Distinct Exponents in the Prime Factorization of an Integer
    Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:27 https://doi.org/10.1007/s12044-020-0556-y On the number of distinct exponents in the prime factorization of an integer CARLO SANNA Department of Mathematics, Università degli Studi di Genova, Genoa, Italy E-mail: [email protected] MS received 25 February 2019; revised 5 September 2019; accepted 11 November 2019 Abstract. Let f (n) be the number of distinct exponents in the prime factorization of the natural number n. We prove some results about the distribution of f (n). In particular, for any positive integer k, we obtain that #{n ≤ x : f (n) = k}∼Ak x and Bx(log log x)k #{n ≤ x : f (n) = ω(n) − k}∼ , k! log x as x →+∞,whereω(n) is the number of prime factors of n and Ak, B > 0 are some explicit constants. The latter asymptotic extends a result of Akta¸s and Ram Murty (Proc. Indian Acad. Sci. (Math. Sci.) 127(3) (2017) 423–430) about numbers having mutually distinct exponents in their prime factorization. Keywords. Prime factorization; squarefree numbers; powerful number. 2010 Mathematics Subject Classification. Primary: 11N25; Secondary: 11N37, 11N64. 1. Introduction = a1 ··· as > < Let n p1 ps be the factorization of the natural number n 1, where p1 ··· < ps are prime numbers and a1,...,as are positive integers. Several functions of the exponents a1,...,as have been studied, including their product [17], their arithmetic mean [2,4,5,7], and their maximum and minimum [11,13,15,18]. See also [3,8]fora more general function.
    [Show full text]
  • Digits Harshad Number *1 2 3 S
    ISSN: 2277-9655 [Mohamed* et al., 6(8): August, 2017] Impact Factor: 4.116 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SPECIAL PAIRS OF PYTHAGOREAN TRIANGLES AND 3 –DIGITS HARSHAD NUMBER *1 2 3 S. Yahya Mohamed , S. Prem Kumar and V. Somu *1 PG & Research Derpartment of Mathematics, Govt. Arts College, Trichy-22. 2M.Phil. Research Scholar, Govt. Arts College, Trichy-22 & 3BT Assisstant, Ayyanar Corporation High School, Srirangam. DOI: 10.5281/zenodo.843869 ABSTRACT Here, we present pairs of Pythagorean triangles such that in each pair, the difference between their perimeters is four times the 3-digit Harshad number 108. Also we present the number of pairs of primitive and non- primitive Pythagorean triangles. KEYWORDS: Pairs of Pythagorean Triangle, Harshad number, Prime numbers. I. INTRODUCTION Number theory is broad and diverse part of Mathematics that developed from the study of the integers. Mathematics all over the ages have been fascinated by Pythagorean Theorem and problem related to it there by developing Mathematics. Pythagorean triangle which first studied by the Pythagorean around 400 B.C., remains one of the fascinated topics for those who just adore the number. In this communication, we search for pairs of Pythagorean triangles, such that in each pair, the difference between their perimeters is 4 times the 3digit Harshad number 108. II. BASIC DEFINITIONS Definition 2.1 2 2 2 The ternary quadric Diophantine equation given by x y z is known as Pythagorean equation where x, y, z are natural numbers. The above equation is also referred to as Pythagorean triangle and denote it by T(x ,y, z).
    [Show full text]
  • Pra C Tice Ques Tions
    Factors and Multiples 2.9 TEST Your CONCEPTS Very Short Answer Type Questions Direction for questions from 1 to 5: Fill in the Direction for questions from 12 to 16: Fill in the blanks. blanks. 1. The number of factors of 24 is ______. 12. The number of common multiples of 6 and 15 is _____. 2. The greatest 2-digit multiple of 8 is _____. 13. The least common multiple of two co-primes is 3. The greatest common factor of 9 and 15 is _____. _____. 4. The number of prime factors of 48 is ______. 14. LCM (a, b) × HCF (a, b) = _____. 5. The greatest pair of twin primes of 2-digit 15. The largest 3-digit number divisible by 9 is _____. numbers is _____. 16. The smallest 4-digit number divisible by 11 is Direction for questions from 6 to 10: Select the _____. correct alternative from the given choices. Direction for questions from 17 to 22: Select the 6. Which of the following is a prime number? correct alternative from given choices. (a) 87 (b) 69 (c) 57 (d) 97 17. The LCM of a and b is 220. Which of the follow- 7. Which of the following is not a sphenic number? ing can be the HCF of a and b? (a) 30 (b) 42 (c) 60 (d) 70 (a) 33 (b) 15 (c) 20 (d) 12 8. Which of the following is a composite number? 18. Which of the following pairs of numbers have (a) 37 (b) 47 (c) 57 (d) 67 their LCM 144? 9.
    [Show full text]