Congenital Myopathies and Muscular Dystrophies

Total Page:16

File Type:pdf, Size:1020Kb

Congenital Myopathies and Muscular Dystrophies ManagementSectionSection Topic Congenital myopathies and muscular dystrophies ongenital myopathies are a distinct group of Author Laboratory investigations can be non-specific (mild- Cinherited disorders of skeletal muscle which (1) ly raised serum creatine kinase) or difficult to inter- present predominantly in the perinatal period; (2) are pret (EMG in a neonate). In the absence of a fami- non-progressive or only very slowly progressive; (3) ly history, muscle biopsy is necessary for diagnosis. share some clinical features and (4) have characteris- Supportive medical intervention is limited to tic structural abnormalities on muscle immunohisto- monitoring respiratory function, cardiac function chemistry. ‘Congenital’ myopathies can present later (core pulmonale) and spinal scoliosis. In addition, in childhood and these children may have a milder individuals with central core disease have to be course. Occasionally, adults presenting with limb-gir- screened for susceptibility to malignant hyperther- dle weakness or exercise intolerance have the same mia and warned of the risks of anaesthetic agents. histological findings. Multiple gene defects can give rise to similar clinical and ultrastructural phenotypes Dr Wojtek Rakowicz is a Congenital myopathies so the congenital myopathies remain defined by Specialist Registrar in Neurology. CENTRAL CORE DISEASE After training in Norwich and Central core disease was the first congenital muscle immunohistochemistry. Cambridge he worked in the Congenital muscular dystrophies (CMDs) are dis- Neuromuscular Division at myopathy to be described and many of its clinical tinguished by the immunohistochemical finding of Washington University in St features are characteristic of this group of disorders. prominent ‘dystrophic’ changes: muscle fibre necro- Louis. He is currently at the Infants present at or shortly after birth with hypoto- National Hospital for Neurology sis and regeneration, increased endomysial connec- and Neurosurgery. nia, areflexia, delayed motor milestones, proximal tive tissue, and replacement of muscle with fat tissue. limb weakness and often mild facial weakness. Classical CMDs are clinically confined to the muscu- Accompanying skeletal abnormalities include short loskeletal system but other CMDs are characterised by signifi- stature, kyphoscoliosis, pes cavus and congenital dislocation of cant cerebral neuronal migration defects and eye abnormalities. the hips. The condition is usually non-progressive with affected Classical CMDs are further subdivided according to the pres- children remaining ambulatory into adult life. Central core dis- ence or absence of merosin (laminin-2). ease can present in adulthood with muscle cramps or limb-gir- dle weakness but may also be asymptomatic. An important Presentations and management additional part of the phenotype, specific to central core dis- Congenital myopathies are most commonly evident at birth with ease, is the co-existence of susceptibility to anaesthesia-related infants exhibiting a loss of axial and appendicular tone malignant hyperthermia in one third of patients. Individuals (‘floppy infant’), decreased spontaneous movement and, later, within the same family may exhibit one or both phenotypes. At- delayed acquisition of motor milestones. However, congenital risk individuals can be screened with an in vitro contracture test muscle disease has to be distinguished from more common performed on a fresh muscle sample. causes of the same presentation, especially systemic disease or Central core disease is inherited in an autosomal dominant global developmental delay (Table 1). fashion with mutations in the ryanodine receptor gene (RYR1) In utero weakness from any cause can result in skeletal accounting for up to 50% of cases. The gene encodes a sar- deformities and contractures. Recognised skeletal deformi- coplasmic reticulum calcium channel that releases intracellular ties include congenital dislocation of the hips, kyphoscoliosis calcium as a step in excitation-contraction coupling. The char- and pes cavus. Contractures are particularly common in, but not acteristic immunohistochemical finding is the presence of specific to, CMDs. Arthrogryposis is the term used to describe densely packed disorganised myofibrils (‘cores’) in the centre of multiple severe bony deformities and contractures in the new- the majority of type 1 muscle fibres. These cores extend along born. the length of the fibres, excluding mitochondria and many mus- Facial weakness and respiratory insufficiency are more cle enzymes (cytochrome oxidase, NADH), giving rise to a char- common in congenital myopathies (Table 2) but no single clin- acteristic central pallor (Fig. 1a.). ical finding is diagnostic. These features may also be present in congenital myasthenia or congenital myasthenic syndrome. NEMALINE MYOPATHY Typical nemaline myopathy presents sporadically at birth Table 1. Causes of hypotonia in infants with severe floppiness and weakness. Feeding difficulties are common and respiratory muscle involvement can be a cause of anatomical localisation pathological processes early death but improvement and weaning are usually achieved. central nervous system deep tendon reflexes typically preserved Childhood presentations, characterised by weakness and brain/systemic disease hypoxic-ischaemic encephalopathy delayed motor milestones, are relatively benign and individuals sepsis usually remain ambulant. Affected children typically have an congestive cardiac failure elongated, weak face, tent-shaped mouth due to facial weak- ness, a high-arched palate and a nasal voice. Limb weakness is brainstem Down's syndrome diffuse and initially greater in proximal muscles but distal weak- Prader-Willi syndrome ness is also a feature of some of the nemaline myopathy syn- craniocervical junction congenital malformations dromes. perinatal cord injury The inheritance of nemaline myopathy is most commonly motor unit autosomal recessive but can be autosomal dominant. The dis- ease has been linked to mutations in three very different genes anterior horn cell spinal muscular atrophy (encoding α-actin, tropomyosin-3 and nebulin) but it is unclear peripheral nerve hereditary motor-sensory neuropathy how these bring about a common phenotype. Careful exami- nation of the parents, possibly combined with muscle biopsy, is neuromuscular junction myasthenia myasthenic syndromes needed to confirm the mode of inheritance. The name of nema- line myopathy is derived from the histological hallmark of gran- muscle congenital myopathies ules or rods of filamentous material (nema = thread in Greek) metabolic myopathies which tend to aggregate under the sarcolemma (Fig.1b). muscular dystrophies Nemaline rods are accumulations of disorganised Z-disk mater- ACNR • VOLUME 2 NUMBER 6 JANUARY/FEBRUARY 2003 11 Management Topic Section Table 2. The major clinical features of the congenital myopathies and congenital muscular dystrophies Main Clinical Features hypotonia limb facial respiratory clinical CNS eye additional weakness weakness insufficiency involvement involvement features Congenital Myopathies Central Core Disease • • (•) ± malignant hyperthermia Nemaline Myopathy •••• Centronuclear Myopathy •••• ptosis severe course (usu.); ophthalmoplegia Congenital muscular dystrophies Merosin-positive CMD • • (•) Merosin-deficient CMD •• • white matter changes on MRI Fukuyama CMD ••••• severe course; seen in Japan Muscle-Eye-Brain Disease •• ••• Walker-Warburg Syndrome • (•) • • • severe course; blind at birth ial, best seen in sections stained with the modified Gomori nism of weakness in these individuals remains a puzzle. Small trichrome technique. Rods can also be seen in denervated mus- type 1 fibres are also seen in other congenital myopathies such cle and in HIV myopathy. as nemaline and centronuclear myopathies. Multicore (mini- core) disease is a mild non-progressive disorder in which mus- CENTRONUCLEAR (MYOTUBULAR) MYOPATHY cle fibres contain multiple cores that share many of the features Centronuclear myopathy most commonly presents in boys of those seen in central core disease but are smaller in size (X-linked) at birth with severe hypotonia and weakness. (minicores) and not confined to the centre of the fibre. Facial Ventilatory insufficiency and feeding difficulties may lead to weakness, ptosis and ophthalmoplegia are also commonly seen. death over days to weeks though longer survival occurs in a Multicore disease can be caused by mutations in RYR1, the gene subset of infants. Evidence for the condition starting in utero responsible for central core disease. comes from a maternal history of polyhydramnios or of miscar- riages/perinatal death of male infants. As with nemaline myopa- Congenital muscular dystrophies (CMDs) thy, affected infants have an elongated, expressionless face, CLASSICAL CMDs tent-shaped mouth and a high-arched palate. Kyphoscoliosis Merosin-deficient CMD accounts for around a half of classical and pes cavus may be present. Autosomal recessive and domi- CMD and has a consistently severe phenotype with multiple nant forms that are more mild have onsets later in childhood or contractures and joint deformities (arthrogryposis) at birth. early adulthood. Facial weakness remains a prominent feature, Infants can succumb to respiratory failure and death but, if ade- usually accompanied by ophthalmoplegia and ptosis and prox- quately supported, they can often be weaned off ventilatory imal muscle weakness. support. A proportion will achieve independent sitting but The
Recommended publications
  • Centronuclear Myopathies Under Attack: a Plethora of Therapeutic Targets Hichem Tasfaout, Belinda Cowling, Jocelyn Laporte
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archive Ouverte en Sciences de l'Information et de la Communication Centronuclear myopathies under attack: A plethora of therapeutic targets Hichem Tasfaout, Belinda Cowling, Jocelyn Laporte To cite this version: Hichem Tasfaout, Belinda Cowling, Jocelyn Laporte. Centronuclear myopathies under attack: A plethora of therapeutic targets. Journal of Neuromuscular Diseases, IOS Press, 2018, 5, pp.387 - 406. 10.3233/JND-180309. hal-02438924 HAL Id: hal-02438924 https://hal.archives-ouvertes.fr/hal-02438924 Submitted on 14 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Neuromuscular Diseases 5 (2018) 387–406 387 DOI 10.3233/JND-180309 IOS Press Review Centronuclear myopathies under attack: A plethora of therapeutic targets Hichem Tasfaouta,b,c,d, Belinda S. Cowlinga,b,c,d,1 and Jocelyn Laportea,b,c,d,1,∗ aDepartment of Translational Medicine and Neurogenetics, Institut de G´en´etique et de Biologie Mol´eculaire et Cellulaire (IGBMC), Illkirch, France bInstitut National de la Sant´eetdelaRechercheM´edicale (INSERM), U1258, Illkirch, France cCentre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France dUniversit´e de Strasbourg, Illkirch, France Abstract.
    [Show full text]
  • Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry
    Journal of Personalized Medicine Article Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry 1, 1, 1,2, Kenji Rowel Q. Lim y , Quynh Nguyen y and Toshifumi Yokota * 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; [email protected] (K.R.Q.L.); [email protected] (Q.N.) 2 The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada * Correspondence: [email protected]; Tel.: +1-780-492-1102 These authors contributed equally to this work. y Received: 29 October 2020; Accepted: 21 November 2020; Published: 23 November 2020 Abstract: Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder generally caused by out-of-frame mutations in the DMD gene. In contrast, in-frame mutations usually give rise to the milder Becker muscular dystrophy (BMD). However, this reading frame rule does not always hold true. Therefore, an understanding of the relationships between genotype and phenotype is important for informing diagnosis and disease management, as well as the development of genetic therapies. Here, we evaluated genotype–phenotype correlations in DMD and BMD patients enrolled in the Canadian Neuromuscular Disease Registry from 2012 to 2019. Data from 342 DMD and 60 BMD patients with genetic test results were analyzed. The majority of patients had deletions (71%), followed by small mutations (17%) and duplications (10%); 2% had negative results. Two deletion hotspots were identified, exons 3–20 and exons 45–55, harboring 86% of deletions. Exceptions to the reading frame rule were found in 13% of patients with deletions.
    [Show full text]
  • Affected Female Carriers of MTM1 Mutations Display a Wide Spectrum
    Acta Neuropathol DOI 10.1007/s00401-017-1748-0 ORIGINAL PAPER Afected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues Valérie Biancalana1,2,3,4,5 · Sophie Scheidecker1 · Marguerite Miguet1 · Annie Laquerrière6 · Norma B. Romero7,8 · Tanya Stojkovic8 · Osorio Abath Neto9 · Sandra Mercier10,11,12 · Nicol Voermans13 · Laura Tanner14 · Curtis Rogers15 · Elisabeth Ollagnon‑Roman16 · Helen Roper17 · Célia Boutte18 · Shay Ben‑Shachar19 · Xavière Lornage2,3,4,5 · Nasim Vasli2,3,4,5 · Elise Schaefer20 · Pascal Laforet21 · Jean Pouget22 · Alexandre Moerman23 · Laurent Pasquier24 · Pascale Marcorelle25,26 · Armelle Magot12 · Benno Küsters27 · Nathalie Streichenberger28 · Christine Tranchant29 · Nicolas Dondaine1 · Raphael Schneider2,3,4,5,30 · Claire Gasnier1 · Nadège Calmels1 · Valérie Kremer31 · Karine Nguyen32 · Julie Perrier12 · Erik Jan Kamsteeg33 · Pierre Carlier34 · Robert‑Yves Carlier35 · Julie Thompson30 · Anne Boland36 · Jean‑François Deleuze36 · Michel Fardeau7,8 · Edmar Zanoteli9 · Bruno Eymard21 · Jocelyn Laporte2,3,4,5 Received: 9 May 2017 / Revised: 24 June 2017 / Accepted: 2 July 2017 © Springer-Verlag GmbH Germany 2017 Abstract X-linked myotubular myopathy (XLMTM), a females and to delineate diagnostic clues, we character- severe congenital myopathy, is caused by mutations in the ized 17 new unrelated afected females and performed a MTM1 gene located on the X chromosome. A majority of detailed comparison with previously reported cases at the afected males die in the early postnatal period, whereas clinical, muscle imaging, histological, ultrastructural and female carriers are believed to be usually asymptomatic. molecular levels. Taken together, the analysis of this large Nevertheless, several afected females have been reported. cohort of 43 cases highlights a wide spectrum of clini- To assess the phenotypic and pathological spectra of carrier cal severity ranging from severe neonatal and generalized weakness, similar to XLMTM male, to milder adult forms.
    [Show full text]
  • Muscular Dystrophies and the Heart: the Emerging Role of Cardiovascular Magnetic Resonance Imaging
    REVIEW Muscular dystrophies and the heart: The emerging role of cardiovascular magnetic resonance imaging Sophie Mavrogeni MD1, George Markousis-Mavrogenis MD1, Antigoni Papavasiliou MD2, Elias Gialafos MD3, Stylianos Gatzonis MD4, George Papadopoulos MD5, Genovefa Kolovou MD1 S Mavrogeni, G Markousis-Mavrogenis, A Papavasiliou, et al. hypertrophy and, potentially, evidence of myocardial necrosis, depend- Muscular dystrophies and the heart: The emerging role of ing on the type of MD. Echocardiography is a routine technique used to cardiovascular magnetic resonance imaging. Curr Res Cardiol assess left ventricular dysfunction, independent of age of onset or muta- 2015;2(2):53-62. tion. In some cases, it can also identify early, silent cardiac dysfunction. CMR is the best technique for accurate and reproducible quantification of ventricular volumes, mass and ejection fraction. CMR has docu- Muscular dystrophies (MD) constitute a group of inherited disorders, mented a pattern of epicardial fibrosis in both dystrophinopathy patients characterized by progressive skeletal muscle weakness and heart involve- and mutation carriers that can be observed even if overt muscular disease ment. Cardiac disease is common and not necessarily related to the is absent. Recently, CMR techniques, such as postcontrast myocardial T1 degree of skeletal myopathy; it may be the predominant manifestation mapping, have been used in Duchenne muscular dystrophy to detect dif- with or without any other evidence of muscular disease. Death is usually fuse myocardial fibrosis. A combined approach using clinical assessment due to ventricular dysfunction, heart block or malignant arrhythmias. and CMR evaluation may motivate early cardioprotective treatment in In addition to MD patients, female carriers may present with cardiac both patients and asymptomatic carriers, and prevent the development of involvement.
    [Show full text]
  • Current and Emerging Therapies in Becker Muscular Dystrophy (BMD)
    Acta Myologica • 2019; XXXVIII: p. 172-179 OPEN ACCESS © Gaetano Conte Academy - Mediterranean Society of Myology Current and emerging therapies in Becker muscular dystrophy (BMD) Corrado Angelini, Roberta Marozzo and Valentina Pegoraro Neuromuscular Center, IRCCS San Camillo Hospital, Venice, Italy Becker muscular dystrophy (BMD) has onset usually in child- tients with a deletion in the dystrophin gene that have nor- hood, frequently by 11 years. BMD can present in several ways mal muscle strength and endurance, but present high CK, such as waddling gait, exercise related cramps with or with- and so far their follow-up and treatment recommenda- out myoglobinuria. Rarely cardiomyopathy might be the pre- senting feature. The evolution is variable. BMD is caused by tions are still a matter of debate. Patients with early cardi- dystrophin deficiency due to inframe deletions, mutations or omyopathy are also a possible variant of BMD (4, 5) and duplications in dystrophin gene (Xp21.2) We review here the may be susceptible either to specific drug therapy and/or evolution and current therapy presenting a personal series of to cardiac transplantation (6-8). Here we cover emerging cases followed for over two decades, with multifactorial treat- therapies considering follow-up, and exemplifying some ment regimen. Early treatment includes steroid treatment that phenotypes and treatments by a few study cases. has been analized and personalized for each case. Early treat- ment of cardiomyopathy with ACE inhibitors is recommended and referral for cardiac transplantation is appropriate in severe cases. Management includes multidisciplinary care with physi- Pathophysiology and rationale of otherapy to reduce joint contractures and prolong walking.
    [Show full text]
  • 226Th ENMC International Workshop: Towards Validated and Qualified Biomarkers for Therapy Development for Duchenne Muscular Dyst
    Available online at www.sciencedirect.com ScienceDirect Neuromuscular Disorders 28 (2018) 77–86 www.elsevier.com/locate/nmd Workshop report 226th ENMC International Workshop: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20–22 January 2017, Heemskerk, The Netherlands Annemieke Aartsma-Rus a,*, Alessandra Ferlini b,c, Elizabeth M. McNally d, Pietro Spitali a, H. Lee Sweeney e, on behalf of the workshop participants a Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands b Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy c Dubowitz Neuromuscular Unit, UCL, London d Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA e Myology Institute, Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA Received 25 July 2017 Keywords: Duchenne muscular dystrophy; Biomarker; Dystrophin; MRI; Biobank 1. Introduction therapeutic biomarkers are designed to predict or measure response to treatment [1]. Therapeutic biomarkers can indicate Twenty-three participants from 6 countries (England; whether a therapy is having an effect. This type of biomarker is Germany; Italy; Sweden, The Netherlands; USA) attended the called a pharmacodynamics biomarker and can be used to e.g. 226th ENMC workshop on Duchenne biomarkers “Towards show that a missing protein is restored after a therapy. Safety validated and qualified biomarkers for therapy development for biomarkers assess likelihood, presence, or extent of toxicity as Duchenne Muscular Dystrophy.” The meeting was a follow-up an adverse effect, e.g. through monitoring blood markers of the 204th ENMC workshop on Duchenne muscular indicative of liver or kidney damage.
    [Show full text]
  • Psykisk Utviklingshemming Og Forsinket Utvikling
    Psykisk utviklingshemming og forsinket utvikling Genpanel, versjon v03 Tabellen er sortert på gennavn (HGNC gensymbol) Navn på gen er iht. HGNC >x10 Andel av genet som har blitt lest med tilfredstillende kvalitet flere enn 10 ganger under sekvensering x10 er forventet dekning; faktisk dekning vil variere. Gen Gen (HGNC Transkript >10x Fenotype (symbol) ID) AAAS 13666 NM_015665.5 100% Achalasia-addisonianism-alacrimia syndrome OMIM AARS 20 NM_001605.2 100% Charcot-Marie-Tooth disease, axonal, type 2N OMIM Epileptic encephalopathy, early infantile, 29 OMIM AASS 17366 NM_005763.3 100% Hyperlysinemia OMIM Saccharopinuria OMIM ABCB11 42 NM_003742.2 100% Cholestasis, benign recurrent intrahepatic, 2 OMIM Cholestasis, progressive familial intrahepatic 2 OMIM ABCB7 48 NM_004299.5 100% Anemia, sideroblastic, with ataxia OMIM ABCC6 57 NM_001171.5 93% Arterial calcification, generalized, of infancy, 2 OMIM Pseudoxanthoma elasticum OMIM Pseudoxanthoma elasticum, forme fruste OMIM ABCC9 60 NM_005691.3 100% Hypertrichotic osteochondrodysplasia OMIM ABCD1 61 NM_000033.3 77% Adrenoleukodystrophy OMIM Adrenomyeloneuropathy, adult OMIM ABCD4 68 NM_005050.3 100% Methylmalonic aciduria and homocystinuria, cblJ type OMIM ABHD5 21396 NM_016006.4 100% Chanarin-Dorfman syndrome OMIM ACAD9 21497 NM_014049.4 99% Mitochondrial complex I deficiency due to ACAD9 deficiency OMIM ACADM 89 NM_000016.5 100% Acyl-CoA dehydrogenase, medium chain, deficiency of OMIM ACADS 90 NM_000017.3 100% Acyl-CoA dehydrogenase, short-chain, deficiency of OMIM ACADVL 92 NM_000018.3 100% VLCAD
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
    US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep.
    [Show full text]
  • 107Th ENMC International Workshop: the Management of Cardiac Involvement in Muscular Dystrophy and Myotonic Dystrophy
    Neuromuscular Disorders 13 (2003) 166–172 www.elsevier.com/locate/nmd Workshop report 107th ENMC International Workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th–9th June 2002, Naarden, the Netherlands K. Bushby*, F. Muntoni, J.P. Bourke Department of Neuromuscular Genetics, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK Received 1 August 2002; accepted 16 August 2002 1. Introduction symptomatic presentation [13,14]. Although evidence in these rare conditions of the effect of treatment is lacking Sixteen participants from Austria, France, Germany, [15], extrapolation from other conditions causing heart fail- Italy, the Netherlands and the UK met to discuss the cardiac ure with dilated cardiomyopathy means that there is a strong implications of the diagnosis of muscular dystrophy and case for the use of ACE inhibitors and potentially also beta myotonic dystrophy. The group included both myologists blockers, certainly in the presence of detectable abnormal- and cardiologists from nine different European centers. The ities and possibly preventatively [16–25]. aims of the workshop were to agree and report minimum The recommendations of the group are as follows. recommendations for the investigation and treatment of cardiac involvement in muscular and myotonic dystrophies, 2.1. DMD and define areas where further research is needed. During the workshop, all participants contributed to a review and † Patients should have a cardiac investigation (echo and assessment of the published evidence in each area and electrocardiogram (ECG)) at diagnosis. current practice amongst the group. Consensus statements † DMD patients should have cardiac investigations before for the management of dystrophinopathy, myotonic dystro- any surgery, every 2 years to age 10 and annually after phy, limb-girdle muscular dystrophy, Emery Dreifuss age 10.
    [Show full text]
  • The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies Review Article
    Review Article 04/25/2018 on mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== by https://journals.lww.com/continuum from Downloaded Downloaded from Address correspondence to https://journals.lww.com/continuum Dr Stanley Jones P. Iyadurai, Ohio State University, Wexner The Limb-Girdle Medical Center, Department of Neurology, 395 W 12th Ave, Columbus, OH 43210, Muscular Dystrophies and [email protected]. Relationship Disclosure: by mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== Dr Iyadurai has received the Dystrophinopathies personal compensation for serving on the advisory boards of Allergan; Alnylam Stanley Jones P. Iyadurai, MSc, PhD, MD; John T. Kissel, MD, FAAN Pharmaceuticals, Inc; CSL Behring; and Pfizer, Inc. Dr Kissel has received personal ABSTRACT compensation for serving on a consulting board of AveXis, Purpose of Review: The classic approach to identifying and accurately diagnosing limb- Inc; as journal editor of Muscle girdle muscular dystrophies (LGMDs) relied heavily on phenotypic characterization and & Nerve; and as a consultant ancillary studies including muscle biopsy. Because of rapid advances in genetic sequencing for Novartis AG. Dr Kissel has received research/grant methodologies,
    [Show full text]
  • Myopathies Infosheet
    The University of Chicago Genetic Services Laboratories 5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 Toll Free: (888) UC GENES (888) 824 3637 Local: (773) 834 0555 FAX: (773) 702 9130 [email protected] dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49 Gene tic Testing for Congenital Myopathies/Muscular Dystrophies Congenital Myopathies Congenital myopathies are typically characterized by the presence of specific structural and histochemical features on muscle biopsy and clinical presentation can include congenital hypotonia, muscle weakness, delayed motor milestones, feeding difficulties, and facial muscle involvement (1). Serum creatine kinase may be normal or elevated. Heterogeneity in presenting symptoms can occur even amongst affected members of the same family. Congenital myopathies can be divided into three main clinicopathological defined categories: nemaline myopathy, core myopathy and centronuclear myopathy (2). Nemaline Myopathy Nemaline Myopathy is characterized by weakness, hypotonia and depressed or absent deep tendon reflexes. Weakness is typically proximal, diffuse or selective, with or without facial weakness and the diagnostic hallmark is the presence of distinct rod-like inclusions in the sarcoplasm of skeletal muscle fibers (3). Core Myopathy Core Myopathy is characterized by areas lacking histochemical oxidative and glycolytic enzymatic activity on histopathological exam (2). Symptoms include proximal muscle weakness with onset either congenitally or in early childhood. Bulbar and facial weakness may also be present. Patients with core myopathy are typically subclassified as either having central core disease or multiminicore disease. Centronuclear Myopathy Centronuclear Myopathy (CNM) is a rare muscle disease associated with non-progressive or slowly progressive muscle weakness that can develop from infancy to adulthood (4, 5).
    [Show full text]
  • Prenatal Testing Requisition Form
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 PRENATAL COMPREHENSIVE REQUISITION FORM PATIENT INFORMATION NAME (LAST,FIRST, MI): DATE OF BIRTH (MM/DD/YY): HOSPITAL#: ACCESSION#: REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: SAMPLE INFORMATION CLINICAL INDICATION FETAL SPECIMEN TYPE Pregnancy at risk for specific genetic disorder DATE OF COLLECTION: (Complete FAMILIAL MUTATION information below) Amniotic Fluid: cc AMA PERFORMING PHYSICIAN: CVS: mg TA TC Abnormal Maternal Screen: Fetal Blood: cc GESTATIONAL AGE (GA) Calculation for AF-AFP* NTD TRI 21 TRI 18 Other: SELECT ONLY ONE: Abnormal NIPT (attach report): POC/Fetal Tissue, Type: TRI 21 TRI 13 TRI 18 Other: Cultured Amniocytes U/S DATE (MM/DD/YY): Abnormal U/S (SPECIFY): Cultured CVS GA ON U/S DATE: WKS DAYS PARENTAL BLOODS - REQUIRED FOR CMA -OR- Maternal Blood Date of Collection: Multiple Pregnancy Losses LMP DATE (MM/DD/YY): Parental Concern Paternal Blood Date of Collection: Other Indication (DETAIL AND ATTACH REPORT): *Important: U/S dating will be used if no selection is made. Name: Note: Results will differ depending on method checked. Last Name First Name U/S dating increases overall screening performance. Date of Birth: KNOWN FAMILIAL MUTATION/DISORDER SPECIFIC PRENATAL TESTING Notice: Prior to ordering testing for any of the disorders listed, you must call the lab and discuss the clinical history and sample requirements with a genetic counselor.
    [Show full text]