NASA Ames Spacecraft to Look for Ice at Lunar South Pole NASA Announced April 10 That a the Lunar Vicinity Independent of the the Moon

Total Page:16

File Type:pdf, Size:1020Kb

NASA Ames Spacecraft to Look for Ice at Lunar South Pole NASA Announced April 10 That a the Lunar Vicinity Independent of the the Moon National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA April 2006 NASA Ames spacecraft to look for ice at lunar south pole NASA announced April 10 that a the lunar vicinity independent of the the moon. The Shepherding Spacecraft small, 'secondary payload' spacecraft, LRO satellite. On the way to the moon, will fly through the plume, and instru- the LCROSS spacecraft's two main parts, ments on the spacecraft will analyze the the Shepherding Spacecraft (S-S/C) and cloud to look for signs of water and other the Earth Departure Upper Stage compounds. Additional space and Earth- (EDUS), will remain coupled. based instruments also will study the As the spacecraft approaches the 2.2-million-pound (1000-metric-ton) moon's south pole, the upper stage will plume. separate, and then will impact a crater Then, the Shepherding Spacecraft in the south pole area. A plume from the itself will become an impactor, creating upper stage crash will develop as the a second plume visible to lunar-orbiting Shepherding Spacecraft heads in toward continued on page 2 Worden named Ames center director Artist’s concept of the LCROSS upper stage NASA Administrator Michael rector level positions with the Air Force (appears smaller) followed by the ‘sheparding Griffin announced on April 21 that Space Command, where he was respon- satellite,’ before they both impact the moon in Simon P. "Pete" Worden will be the next sible for developing new programs, in- January 2009. cluding next generation launch concepts. He was commander of the 50th Space Wing, U.S. Air Force Space Command. to be developed by a team at NASA He also served as 2nd deputy for tech- Ames, has been selected for launch in nology with the Strategic Defense Initia- October 2008 to begin a trip to the moon tive Organization, where he received to look for precious water ice. Prior to the NASA Outstanding Leadership impacting the moon, the spacecraft will Medal for directing the 1994 Clementine orbit Earth twice for about 80 days, and lunar probe mission. then will strike the lunar south pole in Worden holds a bachelor's degree in January 2009. astronomy from the University of Michi- The smaller secondary payload gan, Ann Arbor, and a doctorate in as- spacecraft will begin its trip to the moon tronomy from the University of Arizona. He authored or co-authored more than with the Lunar Reconnaissance Orbiter 150 scientific technical papers in astro- (LRO) satellite on the same rocket, the physics, space sciences and strategic Evolved Expendable Launch Vehicle studies and was a co-investigator for (EELV), to be launched from Kennedy two NASA space science missions. Space Center, Florida. The secondary BY MICHAEL MEWHINNEY payload mission spacecraft is called the Photo courtesy US Air Force Lunar CRater Observation and Sensing Simon P. “Pete” Worden was recently Satellite (LCROSS). appointed the tenth director of NASA Ames by On the Inside . "The LCROSS mission gives the NASA’s tenth administrator Michael Griffin. agency an excellent opportunity to an- Page 3 - Christensen delivers all- hands talk swer the question about water ice on the director of NASA's Ames Research Cen- moon," said Daniel Andrews of NASA ter. Page 5 - Ames’ Mark Leon receives Ames, whose team proposed the Worden, a retired U.S. Air Force prestigious Hispanic award LCROSS mission. "We think we have brigadier general, is a research profes- Page 9 - Upcoming events assembled a very creative, highly inno- sor of astronomy at the University of Page 10 - NASA scientists study vative mission, turning the upper stage Arizona, Tucson. Worden is expected health benefits of exercise of the rocket that brought us to the moon to assume his new duties at Ames in May. for astronauts into a substantial impactor on the moon." Page 11-Implementation of new After launch, the secondary pay- During his Air Force service, NASA training form load LCROSS spacecraft will arrive in Worden held director and deputy di- www.nasa.gov NASA Ames spacecraft to look for ice at lunar south pole continued from front page spacecraft and Earth-based observato- inside the dark craters of the south pole "An exploration science program ries. may well be different from what we with a sustained human presence on the "The LCROSS mission will help us found during Apollo," Colaprete ob- moon gives us the opportunity to con- determine if there is water hidden in the served. duct fundamental science in lunar geol- ogy, history of the solar system, physics and the biological response to partial (Earth) gravity," said Christopher McKay, lunar exploration program sci- entist at Ames. The space agency specified that the winning proposal must demonstrate an affordable concept beneficial to RLEP, according to the document that asked NASA centers to submit suggestions for the secondary payload. NASA specified that the secondary payload mission should cost no more than $80 million. NASA also required that the payload mass not exceed 2,205 pounds (1,000 kilograms). NASA encouraged its field centers to team with industry to develop pro- posals. On Jan. 10, NASA issued a re- quest for information to industry to al- low businesses to provide secondary payload concepts to NASA. Each NASA NASA photo by Renee Bouchard center reviewed ideas from industry as During the NASA news conference on April 10, agency officials unveiled the Lunar CRater well as secondary payload concepts de- Observation and Sensing Satellite (LCROSS) which will launch piggyback with the Lunar veloped internally. The LCROSS prime Reconnaissance Orbiter spacecraft in October 2008. On the panel during the conference were (left to contractor for the spacecraft and the right) Scott Horowitz, associate administrator, Exploration Systems Mission Directorate, NASA HQ; spacecraft integration is Northrop Daniel Andrews of Ames, the LCROSS-project manager; and Butler Hine of Ames, deputy program Grumman. manager, Robotic Lunar Exploration Program (RLEP). NASA asked that the concepts ad- vance the Vision for Space Exploration to include missions that evolve lunar permanently dark craters of the moon's Earlier, NASA had requested pro- science, characterize the lunar environ- south pole," said Marvin (Chris) posals internally from its NASA field ment and support identification sites for Christensen, Robotic Lunar Exploration centers for existing or reasonably ma- future human missions as well as the Program (RLEP) manager, and acting tured concepts for secondary payloads utility of those sites. director of NASA Ames. "If we find that would offer cost-effective contribu- The space agency said that it was substantial amounts of water ice there, it tions to RLEP. looking for missions that demonstrate could be used by astronauts who later To prepare for the return of astro- technology that could enhance future visit the moon to make rocket fuel," nauts to the moon, NASA will conduct exploration, that show operational Christensen added. various RLEP robotic missions from 2008 schemes to support exploration, that "We'll be able distinguish between to potentially 2016 to study, to map and develop or emplace infrastructure in water vapor, water ice and hydrated to learn about the lunar surface. These support of exploration, that advance minerals like salts or clays that contain early missions will help determine lu- commercial opportunities and those molecularly-bound water," said Tony nar landing sites and whether resources, missions that would collect engineering Colaprete, LCROSS principal investiga- such as oxygen, hydrogen and metals, data to support the Constellation pro- tor, and a planetary scientist at NASA are available for use in NASA's long- gram. That program is developing Ames. "We'll be able to compare the term lunar exploration objectives. NASA's new spaceship, the Crew Ex- moon dirt from the permanently shad- "Establishing research stations on ploration Vehicle. owed regions of craters at the lunar south the moon will give us the experience BY JOHN BLUCK pole with moon soil samples collected and capabilities to extend to Mars and during the Apollo mission at much lower beyond," noted robotics deputy program latitudes, near the equator. The stuff manager Butler Hine of Ames. Astrogram 2 April 2006 Christensen upbeat about Ames' future -- Provides frank assessment; lays out blueprint for success “The one constant in life is change,” for FY 07 is $533 million, he said, a sion support organizations, all of which began Marvin 'Chris' Christensen in his further major reduction. are pitching in to help the program of- April 20 all-hands address to a stand- Exploration is where most of the fice save SOFIA and prepare Ames for ing-room only crowd in the main Ames funding currently is, and exploration is future mission management responsi- “where we're bilities. However, there's still a lot of going to go” work to be done, he said. We must en- to increase sure that Ames' existing processes are Ames' budget, streamlined to ensure timely comple- Christensen tion of mission tasks or “we'll just have added, noting to get other processes,” he observed to that Ames must enthusiastic applause. Indeed, at establish a role in Christensen's urging, NASA headquar- core NASA pro- ters recently ran a pilot workshop at NASA photo by Tom Trower grams. Given Ames designed to perform a joint 'insti- all of the changes tutional readiness review' of Ames' mis- in the agency, sion support organizations. The objec- Ames' Explora- tive is to determine ways to strengthen tion Technology Ames' support organizations to enhance directorate the center's capabilities in project and was “unravel- mission management. ing” in 2005, Christensen said. But, by finding a “The future is ours to way back into the shape and to capture.” “mainstream of Ames' acting director, Marvin "Chris" Christensen, gave a frank but upbeat NASA .
Recommended publications
  • Solar System Exploration
    Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system.
    [Show full text]
  • Nasa Langley Research Center 2012
    National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model.
    [Show full text]
  • A 1 Case-PR/ }*Rciofft.;Is Report
    .A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash).
    [Show full text]
  • New Lunar Impact Melt Flows As Revealed by Mini-Rf on Lro
    43rd Lunar and Planetary Science Conference (2012) 2388.pdf NEW LUNAR IMPACT MELT FLOWS AS REVEALED BY MINI-RF ON LRO. C. D. Neish1, N. Glines2, L. M. Carter3, V. J. Bray4, B. R. Hawke5, D. B. J. Bussey1, and the Mini-RF Science Team, 1The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723 ([email protected]), 2Mount Holyoke College, South Hadley, MA, 01075, 3NASA Goddard Spaceflight Center, Greenbelt, MD, 20770, 4The University of Ari- zona, Tucson, AZ, 85721, 5The University of Hawai’i at Manoa, Honolulu, HI, 96822. Introduction: Flow-like deposits of impact melt fying impact melts. After a candidate melt is identified, are commonly observed on the Moon, typically around data from the LRO Camera (LROC) was used to iden- young fresh craters. These flows are thought to be mix- tify additional features associated with impact melt tures of clasts and melted material that are emplaced deposits, such as cooling cracks in ponds and tension during the late stages of impact crater formation [1]. cracks in veneers, confirming these features as impact Lunar impact melts have been primarily studied at op- melts. tical wavelengths, but complementary information can be obtained by observing impact melts at radar wave- lengths. Radar data is sensitive to surface and sub- surface roughness, and thus can highlight these rough surface features, even when they not easily seen in optical data due to burial or imperfect lighting condi- tions (Fig. 1). Impact melts have been identified in radar data on the lunar near side [2], but they have yet to be studied in depth on the lunar far side, given the lack of global radar data prior to the launch of NASA’s Mini-RF instrument on the Lunar Reconnaissance Or- biter (LRO) in 2009.
    [Show full text]
  • MATTHEW P. DANIELS Office of the Secretary Of
    MATTHEW P. DANIELS Office of the Secretary of Defense, Washington, DC National Aeronautics and Space Administration (NASA), Washington, DC [email protected] Current Positions and Affiliations Advisor, Office of the Secretary of Defense Senior Technical Advisor, Office of the NASA Administrator Affiliate, MIT and Stanford Adjunct Professor, Georgetown University Education Ph.D. Stanford University, Management Science & Engineering, 2015 Dissertation: Optimization of Spacecraft Architectures for Earth-Orbit Satellite Projects Committee: M. Elisabeth Paté-Cornell (advisor), Ronald Howard, S. Pete Worden, Sigrid Close M.S. Stanford University, Aeronautics & Astronautics, 2010 B.A. Cornell University, Physics, 2007 Academic Appointments Research Affiliate, MIT Media Lab Massachusetts Institute of Technology (MIT), Cambridge, MA (2018-) Adjunct Professor, Edmund A. Walsh School of Foreign Service Georgetown University, Washington, DC (2016-) Affiliate, Stanford Center for International Security and Cooperation Stanford University, Stanford, CA (2015-) Predoctoral Science Fellow, Center for International Security and Cooperation Stanford University, Stanford, CA (2013-2014) Predoctoral Science Fellow, Center for International Security and Cooperation Stanford University, Stanford, CA (2012-2013) 1 Relevant Professional Experience Advisor, Office of the Secretary of Defense (2015-present) Principal areas of focus include U.S. space programs, deep space exploration, and artificial intelligence. Create and analyze strategies for space programs at the whole-enterprise level of the U.S. Department of Defense. Manage teams of researchers and independent scholars. Assess long-term trends relevant to space technology, commercial and entrepreneurial aerospace ventures, information technology, and international security. Provide analysis and alternative strategies to the office of the Secretary of Defense and the office of the NASA Administrator. Host strategy seminars with government leaders, technology investors, and private executives.
    [Show full text]
  • Kadiworking Paper Finalcorrected
    ACADEMY OF EUROPEAN LAW EUI Working Papers AEL 2009/10 ACADEMY OF EUROPEAN LAW CHALLENGING THE EU COUNTER-TERRORISM MEASURES THROUGH THE COURTS edited by Marise Cremona, Francesco Francioni and Sara Poli EUROPEAN UNIVERSITY INSTITUTE , FLORENCE ACADEMY OF EUROPEAN LAW ROBERT SCHUMAN CENTRE FOR ADVANCED STUDIES Challenging the EU Counter-terrorism Measures through the Courts EDITED BY MARISE CREMONA , FRANCESCO FRANCIONI AND SARA POLI EUI W orking Paper AEL 2009/10 This text may be downloaded for personal research purposes only. Any additional reproduction for other purposes, whether in hard copy or electronically, requires the consent of the author(s), editor(s). If cited or quoted, reference should be made to the full name of the author(s), editor(s), the title, the working paper or other series, the year, and the publisher. The author(s)/editor(s) should inform the Academy of European Law if the paper is to be published elsewhere, and should also assume responsibility for any consequent obligation(s). ISSN 1831-4066 © 2009 Marise Cremona, Francesco Francioni and Sara Poli (editors) Printed in Italy European University Institute Badia Fiesolana I – 50014 San Domenico di Fiesole (FI) Italy www.eui.eu cadmus.eui.eu Abstract This collection of papers examines the implications of the European Court of Justice’s approach to UN-related counter-terrorism measures against individuals (so-called ‘smart sanctions’), as expressed by its ruling in Case C-402/05P Kadi v Council and Commission , in which it annulled an EC act implementing a UN Security Council resolution. The impact of this seminal judgment on the EC legal order, on its relationship with the UN Charter, and on the case-law of the European Court of Human rights is the theme of this collection.
    [Show full text]
  • Obituaries, A
    OBITUARIES, A - K Updated 7/31/2020 Bernardsville Library Local History Room NAME TITLE DATE OF DEATH SOURCE EDITION PAGE AGE NOTES NJ Archives Abstract & Aaron, Robert 01/13/1802 Wills Vol.X 1801-1805 7 Abantanzo, Marie 01/13/1923 Bernardsville News 01/18/1923 4 Abbate, Michael 06/22/1955 Bernardsville News 06/23/1955 1 Abberman, Jay 04/10/2005 Bernardsville News 04/14/2005 10 82 Abbey, E. Mrs. 06/02/1957 Bernardsville News 06/06/1957 4 Abbond, Doris Weakley 03/27/2000 Bernardsville News 03/30/2000 10 80 Abbond, Robert R. 02/09/1995 Bernardsville News 02/15/1995 10 82 Abbondanzo, Delores L. 11/03/2001 Bernardsville News 11/08/2001 11 75 Abbondanzo, Francis J. 12/26/1993 Bernardsville News 12/29/1993 10 69 Abbondanzo, L. Mrs. 12/22/1962 Bernardsville News 01/03/1963 2 Abbondanzo, Lena I. 05/08/2003 Bernardsville News 05/15/2003 10 80 Abbondanzo, Louis 12/23/1979 Bernardsville News 01/03/1980 6 89 Abbondanzo, Louis J. 12/25/1993 Bernardsville News 12/29/1993 10 65 Abbondanzo, Mary G. 06/12/2014 Bernardsville News 06/26/2014 8 88 Abbondanzo, Patricia A. 11/21/1983 Bernardsville News 11/24/1983 Abbondanzo, Patrick J. 12/11/2000 Bernardsville News 12/14/2000 10 78 Abbondanzo, Rose 12/22/1962 Bernardsville News 01/03/1963 2 63 Abbondanzo, Sharon J. 08/28/2013 Bernardsville News 09/05/2013 9 78 Abbondanzo, Vincent J. 07/26/1996 Bernardsville News 07/31/1996 10 66 Abbott, Charles Cortez Jr.
    [Show full text]
  • Neptune Polar Orbiter with Probes*
    NEPTUNE POLAR ORBITER WITH PROBES* 2nd INTERNATIONAL PLANETARY PROBE WORKSHOP, AUGUST 2004, USA Bernard Bienstock(1), David Atkinson(2), Kevin Baines(3), Paul Mahaffy(4), Paul Steffes(5), Sushil Atreya(6), Alan Stern(7), Michael Wright(8), Harvey Willenberg(9), David Smith(10), Robert Frampton(11), Steve Sichi(12), Leora Peltz(13), James Masciarelli(14), Jeffrey Van Cleve(15) (1)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (2)University of Idaho, PO Box 441023, Moscow, ID 83844-1023, [email protected] (3)JPL, 4800 Oak Grove Blvd., Pasadena, CA 91109-8099, [email protected] (4)NASA Goddard Space Flight Center, Greenbelt, MD 20771, [email protected] (5)Georgia Institute of Technology, 320 Parian Run, Duluth, GA 30097-2417, [email protected] (6)University of Michigan, Space Research Building, 2455 Haward St., Ann Arbor, MI 48109-2143, [email protected] (7)Southwest Research Institute, Department of Space Studies, 1050 Walnut St., Suite 400, Boulder, CO 80302, [email protected] (8)NASA Ames Research Center, Moffett Field, CA 94035-1000, [email protected] (9)4723 Slalom Run SE, Owens Cross Roads, AL 35763, [email protected] (10) Boeing NASA Systems, MC H013-A318, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (11)Boeing NASA Systems, MC H012-C349, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099 [email protected] (12)Boeing Satellite Systems, MC W-S50-X382, P.O. Box 92919, Los Angeles, CA 90009-2919, [email protected] (13) )Boeing NASA Systems, MC H013-C320, 5301 Bolsa Ave., Huntington Beach, CA 92647-2099, [email protected] (14)Ball Aerospace & Technologies Corp., P.O.
    [Show full text]
  • NASA Langley Research Center
    National Aeronautics and Space Administration LANGLEY RESEARCH CENTER www.nasa.gov contents NASA is on a reinvigorated “path of exploration, innovation and technological development leading to an array of challenging destinations and missions. — Charles Bolden” NASA Administrator Director’s Message ........................................ 2-3 Exploration Developing a New Launch Crew Vehicle ................. 4-5 Aeronautics Forging Tomorrow’s Flight Today ............................... 6 NASA Tests Biofuels for Commercial Jets .................. 7 Science Tracking Dynamic Change ......................................... 8 Airborne Air-Quality Campaign Created a Buzz ........... 9 Systems Analysis Making the Complex Work ...................................... 10 Partnerships Collaborating to Transition NASA Technologies .......................................... 12-13 We Have Liftoff Two Launches Carried Langley Instruments into Space ..................................... 14-15 A Space Shuttle Tribute ........................... 16-17 Economics ................................................... 18-19 Langley People ........................................... 20-21 Outreach & Education .............................. 22-23 Awards & Patents ...................................... 24-26 Contacts/Leadership ...................................... 27 Virginia Air & Space Center ........................... 27 (Inside cover) Splashdown of a crew A conference room in Langley’s new headquarters capsule mockup in Langley’s new Hydro building uses
    [Show full text]
  • High Eyes in The
    AIR Y U SIT NI V ER Higher Eyes in the Sky The Feasibility of Moving AWACS and JSTARS Functions into Space KIMBERLY M. CORCORAN, Major, USAF School of Advanced Airpower Studies THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIRPOWER STUDIES, MAXWELL AIR FORCE BASE, ALABAMA, FOR COMPLETION OF GRADUATION REQUIREMENTS, ACADEMIC YEAR 1997–98. Air University Press Maxwell Air Force Base, Alabama October 1999 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the author, and do not necessar ily represent the vie ws of Air University, the United States Air F orce, the Department of Defense, or any other US government agency. Cleared for public release: dis­ tribution unlimited. ii Contents Chapter Page DISCLAIMER . ii ABSTRACT . v ABOUT THE AUTHOR . vii 1 INTRODUCTION . 1 Notes . 3 2 THE EVOLUTION OF MOVING TARGET INDICATOR RADAR SYSTEMS . 5 Notes . 11 3 THE MECHANICS OF SPACE OPERATIONS . 13 Notes . 23 4 UNITED STATES SPACE ORGANIZATIONS THAT MAY AFFECT SPACE-BASED SURVEILLANCE SYSTEM DEVELOPMENT . 27 Notes . 34 5 TECHNOLOGICAL DESCRIPTION OF CURRENT AIRBORNE MOVING TARGET INDICATOR SYSTEMS AND PROPOSED SPACE-BASED SYSTEMS . 35 Notes . 42 6 ISSUES TO CONSIDER FOR SPACE-BASED MOVING TARGET INDICATOR PLANNING . 45 Notes . 53 7 CONCLUSIONS . 55 Illustrations Figure 1 Orbital Terms . 14 2 Geosynchronous Ground Tracks . 15 3 Satellite Ground Tracks . 16 4 Air Force Space Command Organization Chart . 28 iii Abstract During the past few years, United States Air Force (USAF) leaders have begun to emphasize space operations. Global Engagement: A Vision for the 21st Century Air Force states that we will eventually transition fr om an air and space for ce into a space and air for ce and various leaders have opined that that air and space are seamless.
    [Show full text]
  • Planetary Science
    Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.
    [Show full text]
  • NASA Guidebook for Proposers, Appendix H
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) ********** GUIDEBOOK FOR PROPOSERS RESPONDING TO A NASA NOTICE OF FUNDING OPPORTUNITY (NOFO) Revised as of February 4, 2021 Effective as of February 15, 2021 TABLE OF CONTENTS Preface 1. Introduction to NASA’s Programs 2. Proposal Preparation and Organization 2.1 Submission Guidance 2.2 Submission Requirements and Restrictions 2.3 Notice of Intent (NOI) to Propose 2.4 Submission Process 2.5 Successor Proposals 2.6 Standard Proposal Style Format 2.7 Overview of Proposal 2.8 Required Proposal Elements 2.9 Certifications, Assurances, Representations and Sample Agreements 2.10 Proposal Summary/Abstract 2.11 Data Management Plan 2.12 Table of Contents 2.13 Scientific/Technical/Management Plan 2.14 References and Citations 2.15 Biographical Sketch 2.16 Current and Pending Support 2.17 Statements of Commitment and Letters of Resource Support 2.18 Proposal Budget with Budget Narrative and Budget Details 2.19 Facilities and Equipment 2.20 Table of Personnel and Work Effort 2.21 Special Notifications and/or Certifications 2.22 Assembly of Electronic Proposals 2.23 NASA Requirements for Uploaded PDF Files 3. Proposal Submission 3.1 NSPIRES Registration Requirements and Instructions 3.2 Submitting Proposals through NSPIRES 3.3 Submitting Proposals through Grants.gov 3.4 Other Submission Options 3.5 Proposal Receipt 4. Proposal Review and Selection 4.1 Administrative Review 4.2 Technical and Programmatic Review 4.3 Selection Based on Technical Merit 4.4 Budget, Cost Analysis and Financial 4.5 Withdrawal of Proposal 4.6 Proposal Rejected by NASA without Review 5.
    [Show full text]