Fast Transit: Mars & Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Fast Transit: Mars & Beyond Fast Transit: mars & beyond final Report Space Studies Program 2019 Team Project Final Report Fast Transit: mars & beyond final Report Internationali l Space Universityi i Space Studies Program 2019 © International Space University. All Rights Reserved. i International Space University Fast Transit: Mars & Beyond Cover images of Mars, Earth, and Moon courtesy of NASA. Spacecraft render designed and produced using CAD. While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. The 2019 Space Studies Program of the International Space University was hosted by the International Space University, Strasbourg, France. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu ii Space Studies Program 2019 ACKNOWLEDGEMENTS Our Team Project (TP) has been an international, interdisciplinary and intercultural journey which would not have been possible without the following people: Geoff Steeves, our chair, and Jaroslaw “JJ” Jaworski, our associate chair, provided guidance and motivation throughout our TP and helped us maintain our sanity. Øystein Borgersen and Pablo Melendres Claros, our teaching associates, worked hard with us through many long days and late nights. Our staff editors: on-site editor Ryan Clement, remote editor Merryl Azriel, and graphics editor Andrée-Anne Parent, helped us better communicate our ideas. Juan de Dalmau, Omar Hatamleh, Goktug “G2” Karacalioglu, and Alex Ryan, our ISU academic staff, supported our boundary-breaking concepts. Our knowledgeable experts, listed below, taught us more than we could have imagined about topics ranging from rocket science to space law. We would also like to separately mention our guest lecturer Buzz Aldrin, the second man to walk on the Moon, who awed us with his presence. Alastair Reynolds (Science Fiction Author) Angie Bukley (The Aerospace Corporation) Buzz Aldrin (Astronaut) Daniel Glover (Former NASA System Engineer) Dimitra Stefoudi (Space Lawyer) François Spiero (CNES Strategic Roadmaps) Gilles Clément (Space Medicine Specialist) Jacob Cohen (Chief Scientist, NASA AMES) Jancy McPhee (Human Exploration and Spaceflight) Jean-François Clervoy (Astronaut) Jim Green (Chief Scientist, NASA) John Connolly (NASA Johnson Space Center) Kathryn Denning (Anthropologist) Max Fagin (Made in Space) Michel van Pelt (Cost Engineer) Pete Worden (Former Director of NASA's AMES Research Center) Pieter Blue (Maxwell Institute, the University of Edinburgh) Ryan Weed (Positron Dynamics) Sebastian Frederiksen and Karl-Johan Sørensen (Space Architects) Stephanie Thomas (Princeton Satellite Systems) Steve Brody (Former NASA Program Executive) William Kramer (Extraterrestrial Environmental Analyst) ISU and Team Project Fast Transit To Mars wish to express their sincere appreciation to NASA, Lockheed Martin Corporation, and the UAE Space Agency for their sponsorship of this project. We shared laughs, tears, and hugs with our fellow SSP19 participants and will always remember this spectacular ISU SSP experience. International Space University iii LIST OF PARTICIPANTS Aditi Nilvarna Anastasia Medvedeva Bowen Han Cheng Cheng Daniel Saslavsky Erin Kennedy Feng Ji Gustavo Jamanca Lino Hamda Alshehhi Itai Norber Jacek Wrobel Jason Dowling Jennifer Zhu Jin Young Choi Julien Villa-Massone Kathiravan Thangavel Lisa Kucher Nathalie Kerstens Nitya Pandey Pablo Bedialauneta Padmdeo Mishra Praveen Kumar Thakur Qiang Gao Raphael Roettgen Rijin Kv Sumaya Al Hajeri Tess Morris-Paterson Tina Staebler Tommaso Tonina Xuemei Zou Yang Zhu Yushou Zhao Zihan Jiao International Space University iv ABSTRACT This document summarizes the research performed as part of the Fast Transit to Mars Team Project within the 2019 Space Studies Program (SSP) at the International Space University (ISU). Our goal was to determine a method for crewed fast transit using continuous acceleration to reduce the mission length from eighteen months to weeks. This will minimize exposure to radiation and microgravity for human travelers. Important project subteams were identified to handle mission feasibility and hazards, mission profile and orbits, aspects of business and law, spacecraft design, human performance in space, and humanities. The choice of these subteams reflected ISU’s spirit of interdisciplinary research. After defining the mission top level requirements, the Team Project (TP) reviewed and evaluated a wide range of propulsion technologies. This main outcome of the first part of our project was to identify two promising propulsion systems, antimatter catalyzed fusion propulsion and magnetic inertial confinement fusion. Despite our current level of technical readiness, we should be capable of achieving our mission of reaching up to 1g acceleration. In the second part of our project, we defined a mission scenario to demonstrate how this technology could be applied to a fast transit to Mars. In the final part of this report, we presented a roadmap to achieve the goal by 2050, identifying new opportunities arising from this technology and discussing potential impacts of this travel on our society. The report concludes with a summary and pledge for decision makers. International Space University v FACULTY PREFACE “Propulsion physics is certainly my #1 challenge. With the current chemical propulsion physics we have, humans will not move out of our solar system, and will probably get only as far as Mars.” - John Connolly - Mars Study Capability Team Lead at NASA Developing transportation technologies from the steam engine to the jet, has allowed us to easily traverse the vast distances of our planet. The result is reduced barriers to the movement of people, resources, and ideas. Beyond Earth, our ephemeral connections to the moon and solar system have been shaped by the technology of chemical propulsion. The modest energy densities of chemical bonds have enabled human flights into low Earth orbit and to the Moon, but new methods are required to migrate to Mars and beyond. Power derived through fission, fusion, and antimatter annihilation, will enable rapid transportation and exploration of the solar system. For nine weeks, a team of 33 people from 17 countries, investigated new propulsion technologies and potential effects on a burgeoning space society. The group has sourced hundreds of published journal articles and consulted with scientists, engineers, business professionals, lawyers, entrepreneurs, and policy makers. After conducting thorough research and analysis of existing knowledge gaps, the team identified ten possible propulsion technologies to consider. After an interdisciplinary review, they selected the most viable propulsion system, antimatter catalyzed nuclear fusion, as a technology capable of journeying to Mars in mere days. The team created a developmental roadmap to outline how this new propulsion system could be realized by 2050 and considered its societal impact. This work will empower decision-makers to boost research and development funding now and help bring about a new era within our lifetimes. It has been a great pleasure to work alongside the participants of TP Fast Transit, an ambitious and determined group, eager to make a difference. You are stars shining with a brilliance to surpass great distances. Geoff Steeves Jaroslaw Jaworski International Space University vi PARTICIPANT PREFACE The SSP experience is something out of this world. For two months, you are placed within a semi-confined environment with hundreds of people only to meet the most incredible individuals, speak to the crème de la crème of the space world, make friends and learn about yourself. This year, being the 50th anniversary of the Apollo 11 landing, gave us big shoes to fill. The moment when the first people walked on the Moon, represented a single moment in history encapsulating what humanity can achieve when challenged with an audacious target. Since then, images and stories about the astronauts have spread across the world and inspired generations to come. The Apollo missions were the culmination of a new era of ambitious thinking. We wanted to exceed our limits and build a case for a Fast Transit to Mars. Realizing that the scope, the propulsion, and the whole mission concept was in our hands, we decided to imagine something inspiring, daring, and possible. Please enjoy this journey where the imagination, technological ingenuity, and perseverance of our team has led us. The sky is not the limit. Thank you to everyone who challenged us and made us become better interplanetary citizens. “Get your ass to Mars!” Buzz Aldrin ISU, July 2019 International Space University vii TABLE OF CONTENTS Acknowledgements ................................................................................................................................ iii List of Participants .................................................................................................................................. iv Abstract ................................................................................................................................................... v Faculty Preface ......................................................................................................................................
Recommended publications
  • Modelling and the Transit of Venus
    Modelling and the transit of Venus Dave Quinn University of Queensland <[email protected]> Ron Berry University of Queensland <[email protected]> Introduction enior secondary mathematics students could justifiably question the rele- Svance of subject matter they are being required to understand. One response to this is to place the learning experience within a context that clearly demonstrates a non-trivial application of the material, and which thereby provides a definite purpose for the mathematical tools under consid- eration. This neatly complements a requirement of mathematics syllabi (for example, Queensland Board of Senior Secondary School Studies, 2001), which are placing increasing emphasis on the ability of students to apply mathematical thinking to the task of modelling real situations. Success in this endeavour requires that a process for developing a mathematical model be taught explicitly (Galbraith & Clatworthy, 1991), and that sufficient opportu- nities are provided to students to engage them in that process so that when they are confronted by an apparently complex situation they have the think- ing and operational skills, as well as the disposition, to enable them to proceed. The modelling process can be seen as an iterative sequence of stages (not ) necessarily distinctly delineated) that convert a physical situation into a math- 1 ( ematical formulation that allows relationships to be defined, variables to be 0 2 l manipulated, and results to be obtained, which can then be interpreted and a n r verified as to their accuracy (Galbraith & Clatworthy, 1991; Mason & Davis, u o J 1991). The process is iterative because often, at this point, limitations, inac- s c i t curacies and/or invalid assumptions are identified which necessitate a m refinement of the model, or perhaps even a reassessment of the question for e h t which we are seeking an answer.
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons
    Astronomy & Astrophysics manuscript no. ms c ESO 2016 June 21, 2016 Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons René Heller1, Michael Hippke2, Ben Placek3, Daniel Angerhausen4, 5, and Eric Agol6, 7 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany; [email protected] 2 Luiter Straße 21b, 47506 Neukirchen-Vluyn, Germany; [email protected] 3 Center for Science and Technology, Schenectady County Community College, Schenectady, NY 12305, USA; [email protected] 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 5 USRA NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 6 Astronomy Department, University of Washington, Seattle, WA 98195, USA; [email protected] 7 NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, WA 98195, USA Received 22 March 2016; Accepted 12 April 2016 ABSTRACT We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto unde- scribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet’s orbit around the planet–moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multi-moons in orbital mean motion reso- nance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report.
    [Show full text]
  • MATTHEW P. DANIELS Office of the Secretary Of
    MATTHEW P. DANIELS Office of the Secretary of Defense, Washington, DC National Aeronautics and Space Administration (NASA), Washington, DC [email protected] Current Positions and Affiliations Advisor, Office of the Secretary of Defense Senior Technical Advisor, Office of the NASA Administrator Affiliate, MIT and Stanford Adjunct Professor, Georgetown University Education Ph.D. Stanford University, Management Science & Engineering, 2015 Dissertation: Optimization of Spacecraft Architectures for Earth-Orbit Satellite Projects Committee: M. Elisabeth Paté-Cornell (advisor), Ronald Howard, S. Pete Worden, Sigrid Close M.S. Stanford University, Aeronautics & Astronautics, 2010 B.A. Cornell University, Physics, 2007 Academic Appointments Research Affiliate, MIT Media Lab Massachusetts Institute of Technology (MIT), Cambridge, MA (2018-) Adjunct Professor, Edmund A. Walsh School of Foreign Service Georgetown University, Washington, DC (2016-) Affiliate, Stanford Center for International Security and Cooperation Stanford University, Stanford, CA (2015-) Predoctoral Science Fellow, Center for International Security and Cooperation Stanford University, Stanford, CA (2013-2014) Predoctoral Science Fellow, Center for International Security and Cooperation Stanford University, Stanford, CA (2012-2013) 1 Relevant Professional Experience Advisor, Office of the Secretary of Defense (2015-present) Principal areas of focus include U.S. space programs, deep space exploration, and artificial intelligence. Create and analyze strategies for space programs at the whole-enterprise level of the U.S. Department of Defense. Manage teams of researchers and independent scholars. Assess long-term trends relevant to space technology, commercial and entrepreneurial aerospace ventures, information technology, and international security. Provide analysis and alternative strategies to the office of the Secretary of Defense and the office of the NASA Administrator. Host strategy seminars with government leaders, technology investors, and private executives.
    [Show full text]
  • A Disintegrating Minor Planet Transiting a White Dwarf!
    A Disintegrating Minor Planet Transiting a White Dwarf! Andrew Vanderburg1, John Asher Johnson1, Saul Rappaport2, Allyson Bieryla1, Jonathan Irwin1, John Arban Lewis1, David Kipping1,3, Warren R. Brown1, Patrick Dufour4, David R. Ciardi5, Ruth Angus1,6, Laura Schaefer1, David W. Latham1, David Charbonneau1, Charles Beichman5, Jason Eastman1, Nate McCrady7, Robert A. Wittenmyer8, & Jason T. Wright9,10. ! White dwarfs are the end state of most stars, including We initiated follow-up ground-based photometry to the Sun, after they exhaust their nuclear fuel. Between better time-resolve the transits seen in the K2 data (Figure 1/4 and 1/2 of white dwarfs have elements heavier than S1). We observed WD 1145+017 frequently over the course helium in their atmospheres1,2, even though these of about a month with the 1.2-meter telescope at the Fred L. elements should rapidly settle into the stellar interiors Whipple Observatory (FLWO) on Mt. Hopkins, Arizona; unless they are occasionally replenished3–5. The one of the 0.7-meter MINERVA telescopes, also at FLWO; abundance ratios of heavy elements in white dwarf and four of the eight 0.4-meter telescopes that compose the atmospheres are similar to rocky bodies in the Solar MEarth-South Array at Cerro Tololo Inter-American system6,7. This and the existence of warm dusty debris Observatory in Chile. Most of these data showed no disks8–13 around about 4% of white dwarfs14–16 suggest interesting or significant signals, but on two nights we that rocky debris from white dwarf progenitors’ observed deep (up to 40%), short-duration (5 minutes), planetary systems occasionally pollute the stars’ asymmetric transits separated by the dominant 4.5 hour atmospheres17.
    [Show full text]
  • Contents JUPITER Transits
    1 Contents JUPITER Transits..........................................................................................................5 JUPITER Conjunct Sun..............................................................................................6 JUPITER Opposite Sun............................................................................................10 JUPITER Sextile Sun...............................................................................................14 JUPITER Square Sun...............................................................................................17 JUPITER Trine Sun..................................................................................................20 JUPITER Conjunct Moon.........................................................................................23 JUPITER Opposite Moon.........................................................................................28 JUPITER Sextile Moon.............................................................................................32 JUPITER Square Moon............................................................................................36 JUPITER Trine Moon................................................................................................40 JUPITER Conjunct Mercury.....................................................................................45 JUPITER Opposite Mercury.....................................................................................48 JUPITER Sextile Mercury........................................................................................51
    [Show full text]
  • High Eyes in The
    AIR Y U SIT NI V ER Higher Eyes in the Sky The Feasibility of Moving AWACS and JSTARS Functions into Space KIMBERLY M. CORCORAN, Major, USAF School of Advanced Airpower Studies THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIRPOWER STUDIES, MAXWELL AIR FORCE BASE, ALABAMA, FOR COMPLETION OF GRADUATION REQUIREMENTS, ACADEMIC YEAR 1997–98. Air University Press Maxwell Air Force Base, Alabama October 1999 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the author, and do not necessar ily represent the vie ws of Air University, the United States Air F orce, the Department of Defense, or any other US government agency. Cleared for public release: dis­ tribution unlimited. ii Contents Chapter Page DISCLAIMER . ii ABSTRACT . v ABOUT THE AUTHOR . vii 1 INTRODUCTION . 1 Notes . 3 2 THE EVOLUTION OF MOVING TARGET INDICATOR RADAR SYSTEMS . 5 Notes . 11 3 THE MECHANICS OF SPACE OPERATIONS . 13 Notes . 23 4 UNITED STATES SPACE ORGANIZATIONS THAT MAY AFFECT SPACE-BASED SURVEILLANCE SYSTEM DEVELOPMENT . 27 Notes . 34 5 TECHNOLOGICAL DESCRIPTION OF CURRENT AIRBORNE MOVING TARGET INDICATOR SYSTEMS AND PROPOSED SPACE-BASED SYSTEMS . 35 Notes . 42 6 ISSUES TO CONSIDER FOR SPACE-BASED MOVING TARGET INDICATOR PLANNING . 45 Notes . 53 7 CONCLUSIONS . 55 Illustrations Figure 1 Orbital Terms . 14 2 Geosynchronous Ground Tracks . 15 3 Satellite Ground Tracks . 16 4 Air Force Space Command Organization Chart . 28 iii Abstract During the past few years, United States Air Force (USAF) leaders have begun to emphasize space operations. Global Engagement: A Vision for the 21st Century Air Force states that we will eventually transition fr om an air and space for ce into a space and air for ce and various leaders have opined that that air and space are seamless.
    [Show full text]
  • Space Propulsion.Pdf
    Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles.
    [Show full text]
  • Muon-Catalyzed Fusion and Annihilation Energy Generation Supersede Non-Sustainable T+D Nuclear Fusion
    Muon-catalyzed fusion and annihilation energy generation supersede non-sustainable T+D nuclear fusion Leif Holmlid ( [email protected] ) University of Gothenburg Original article Keywords: ultra-dense hydrogen, nuclear fusion, annihilation, mesons: muon-catalyzed fusion Posted Date: October 30th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-97208/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract Background: Large-scale fusion reactors using hydrogen isotopes as fuel are still under development at several places in the world. These types of fusion reactors use tritium as fuel for the T +D reaction. However, tritium is not a sustainable fuel to use, since it will require ssion reactors for its production, and since it is a dangerous material due to its radioactivity. Thus, fusion relying on tritium fuel should be avoided, and at least two better methods for providing the nuclear energy needed in the world indeed exist already. The rst experiments with sustained laser-driven fusion above break-even using deuterium as fuel were published already in 2015. Results: The well-known muon-induced fusion (also called muon-catalyzed fusion) can use deuterium as fuel. With the recent development of a high intensity (patented) muon source, this method is technically and economically feasible today. The recently developed annihilation energy generation uses ordinary hydrogen as fuel. Conclusions: muon-induced fusion is able to directly replace most combustion-based power stations in the world, giving sustainable and environmentally harmless power (primarily heat), in this way eliminating most CO2 emissions of human energy generation origin.
    [Show full text]
  • Author's Instructions For
    Feasibility Analysis for a Manned Mars Free-Return Mission in 2018 Dennis A. Tito Grant Anderson John P. Carrico, Jr. Wilshire Associates Incorporated Paragon Space Development Applied Defense Solutions, Inc. 1800 Alta Mura Road Corporation 10440 Little Patuxent Pkwy Pacific Palisades, CA 90272 3481 East Michigan Street Ste 600 310-260-6600 Tucson, AZ 85714 Columbia, MD 21044 [email protected] 520-382-4812 410-715-0005 [email protected] [email protected] Jonathan Clark, MD Barry Finger Gary A Lantz Center for Space Medicine Paragon Space Development Paragon Space Development Baylor College Of Medicine Corporation Corporation 6500 Main Street, Suite 910 1120 NASA Parkway, Ste 505 1120 NASA Parkway, Ste 505 Houston, TX 77030-1402 Houston, TX 77058 Houston, TX 77058 [email protected] 281-702-6768 281-957-9173 ext #4618 [email protected] [email protected] Michel E. Loucks Taber MacCallum Jane Poynter Space Exploration Engineering Co. Paragon Space Development Paragon Space Development 687 Chinook Way Corporation Corporation Friday Harbor, WA 98250 3481 East Michigan Street 3481 East Michigan Street 360-378-7168 Tucson, AZ 85714 Tucson, AZ 85714 [email protected] 520-382-4815 520-382-4811 [email protected] [email protected] Thomas H. Squire S. Pete Worden Thermal Protection Materials Brig. Gen., USAF, Ret. NASA Ames Research Center NASA AMES Research Center Mail Stop 234-1 MS 200-1A Moffett Field, CA 94035-0001 Moffett Field, CA 94035 (650) 604-1113 650-604-5111 [email protected] [email protected] Abstract—In 1998 Patel et al searched for Earth-Mars free- To size the Environmental Control and Life Support System return trajectories that leave Earth, fly by Mars, and return to (ECLSS) we set the initial mission assumption to two crew Earth without any deterministic maneuvers after Trans-Mars members for 500 days in a modified SpaceX Dragon class of Injection.
    [Show full text]
  • Preliminary Agenda
    Next-Generation Suborbital Researchers Conference February 18–20, 2010 Boulder, Colorado Preliminary Agenda February 18, 2009 8:30 a.m. Welcome 8:45 a.m. Opening Plenary Russell Blink, Armadillo Aerospace Joshua Colwell, University of Central Florida George Nield, Associate Administrator, Federal Aviation Administration Alan Stern, Southwest Research Institute Fred Tarantino, Universities Space Research Association Pete Worden, Center Director, NASA Ames Research Center 10:30 a.m. REM Capabilities of Next-Generation Suborbital Vehicles Stephen Attenborough, Virgin Galactic Jeff Greason, XCOR Gary Lai, Blue Origin Mike Mealing, Masten Space Systems Max Vazoff, SpaceX Dragon 1:30 p.m. Space Life Sciences Mark Shelhammer, Johns Hopkins University (Chair) Erika Wagner, Massachusetts Institute of Technology (Chair) Owen Black, Neurotology Research, Legacy Health Jonathan B. Clark, National Space Biomedical Research Institute Jeffrey Sutton, National Space Biomedical Research Institute Larry Young, Massachusetts Institute of Technology Astronomy, Solar Physics, and Planetary Science Daniel Durda, Southwest Research Institute, Boulder (Chair) Craig DeForest, Southwest Research Institute Noam Izenberg, Johns Hopkins University/Applied Physics Laboratory Steve Osterman, University of Colorado/Center for Astrophysics and Space Astronomy Faith Vilas, University of Arizona/MMT Observatory Student Suborbital Experiment Proposals, hosted by the Colorado Space Grant Consortium Chris Koehler, Colorado Space Grant Consortium, University of Colorado at
    [Show full text]
  • Special Relativity 1
    Contents Contents i List of Figures ii 19 Special Relativity 1 19.1 Introduction ............................................. 1 19.1.1 Michelson-Morley experiment .............................. 1 19.1.2 Einsteinian and Galilean relativity ........................... 4 19.2 Intervals ............................................... 6 19.2.1 Proper time ......................................... 7 19.2.2 Irreverent problem from Spring 2002 final exam .................... 8 19.3 Four-Vectors and Lorentz Transformations ........................... 9 19.3.1 Covariance and contravariance ............................. 13 19.3.2 What to do if you hate raised and lowered indices .................. 14 19.3.3 Comparing frames ..................................... 15 19.3.4 Example I .......................................... 15 19.3.5 Example II ......................................... 16 19.3.6 Deformation of a rectangular plate ........................... 16 19.3.7 Transformation of velocities ............................... 17 19.3.8 Four-velocity and four-acceleration ........................... 19 19.4 Three Kinds of Relativistic Rockets ................................ 19 19.4.1 Constant acceleration model ............................... 19 i ii CONTENTS 19.4.2 Constant force with decreasing mass .......................... 20 19.4.3 Constant ejecta velocity .................................. 21 19.5 Relativistic Mechanics ....................................... 23 19.5.1 Relativistic harmonic oscillator ............................. 24 19.5.2
    [Show full text]