A Disintegrating Minor Planet Transiting a White Dwarf!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling and the Transit of Venus
Modelling and the transit of Venus Dave Quinn University of Queensland <[email protected]> Ron Berry University of Queensland <[email protected]> Introduction enior secondary mathematics students could justifiably question the rele- Svance of subject matter they are being required to understand. One response to this is to place the learning experience within a context that clearly demonstrates a non-trivial application of the material, and which thereby provides a definite purpose for the mathematical tools under consid- eration. This neatly complements a requirement of mathematics syllabi (for example, Queensland Board of Senior Secondary School Studies, 2001), which are placing increasing emphasis on the ability of students to apply mathematical thinking to the task of modelling real situations. Success in this endeavour requires that a process for developing a mathematical model be taught explicitly (Galbraith & Clatworthy, 1991), and that sufficient opportu- nities are provided to students to engage them in that process so that when they are confronted by an apparently complex situation they have the think- ing and operational skills, as well as the disposition, to enable them to proceed. The modelling process can be seen as an iterative sequence of stages (not ) necessarily distinctly delineated) that convert a physical situation into a math- 1 ( ematical formulation that allows relationships to be defined, variables to be 0 2 l manipulated, and results to be obtained, which can then be interpreted and a n r verified as to their accuracy (Galbraith & Clatworthy, 1991; Mason & Davis, u o J 1991). The process is iterative because often, at this point, limitations, inac- s c i t curacies and/or invalid assumptions are identified which necessitate a m refinement of the model, or perhaps even a reassessment of the question for e h t which we are seeking an answer. -
JOHN R. THORSTENSEN Address
CURRICULUM VITAE: JOHN R. THORSTENSEN Address: Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755-3528; (603)-646-2869 [email protected] Undergraduate Studies: Haverford College, B. A. 1974 Astronomy and Physics double major, High Honors in both. Graduate Studies: Ph. D., 1980, University of California, Berkeley Astronomy Department Dissertation : \Optical Studies of Faint Blue X-ray Stars" Graduate Advisor: Professor C. Stuart Bowyer Employment History: Department of Physics and Astronomy, Dartmouth College: { Professor, July 1991 { present { Associate Professor, July 1986 { July 1991 { Assistant Professor, September 1980 { June 1986 Research Assistant, Space Sciences Lab., U.C. Berkeley, 1975 { 1980. Summer Student, National Radio Astronomy Observatory, 1974. Summer Student, Bartol Research Foundation, 1973. Consultant, IBM Corporation, 1973. (STARMAP program). Honors and Awards: Phi Beta Kappa, 1974. National Science Foundation Graduate Fellow, 1974 { 1977. Dorothea Klumpke Roberts Award of the Berkeley Astronomy Dept., 1978. Professional Societies: American Astronomical Society Astronomical Society of the Pacific International Astronomical Union Lifetime Publication List * \Can Collapsed Stars Close the Universe?" Thorstensen, J. R., and Partridge, R. B. 1975, Ap. J., 200, 527. \Optical Identification of Nova Scuti 1975." Raff, M. I., and Thorstensen, J. 1975, P. A. S. P., 87, 593. \Photometry of Slow X-ray Pulsars II: The 13.9 Minute Period of X Persei." Margon, B., Thorstensen, J., Bowyer, S., Mason, K. O., White, N. E., Sanford, P. W., Parkes, G., Stone, R. P. S., and Bailey, J. 1977, Ap. J., 218, 504. \A Spectrophotometric Survey of the A 0535+26 Field." Margon, B., Thorstensen, J., Nelson, J., Chanan, G., and Bowyer, S. -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
UC Irvine UC Irvine Previously Published Works
UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V. -
Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons
Astronomy & Astrophysics manuscript no. ms c ESO 2016 June 21, 2016 Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons René Heller1, Michael Hippke2, Ben Placek3, Daniel Angerhausen4, 5, and Eric Agol6, 7 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany; [email protected] 2 Luiter Straße 21b, 47506 Neukirchen-Vluyn, Germany; [email protected] 3 Center for Science and Technology, Schenectady County Community College, Schenectady, NY 12305, USA; [email protected] 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 5 USRA NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 6 Astronomy Department, University of Washington, Seattle, WA 98195, USA; [email protected] 7 NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, WA 98195, USA Received 22 March 2016; Accepted 12 April 2016 ABSTRACT We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto unde- scribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet’s orbit around the planet–moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multi-moons in orbital mean motion reso- nance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. -
Massive Fast Rotating Highly Magnetized White Dwarfs: Theory and Astrophysical Applications
Massive Fast Rotating Highly Magnetized White Dwarfs: Theory and Astrophysical Applications Thesis Advisors Ph.D. Student Prof. Remo Ruffini Diego Leonardo Caceres Uribe* Dr. Jorge A. Rueda *D.L.C.U. acknowledges the financial support by the International Relativistic Astrophysics (IRAP) Ph.D. program. Academic Year 2016–2017 2 Contents General introduction 4 1 Anomalous X-ray pulsars and Soft Gamma-ray repeaters: A new class of pulsars 9 2 Structure and Stability of non-magnetic White Dwarfs 21 2.1 Introduction . 21 2.2 Structure and Stability of non-rotating non-magnetic white dwarfs 23 2.2.1 Inverse b-decay . 29 2.2.2 General Relativity instability . 31 2.2.3 Mass-radius and mass-central density relations . 32 2.3 Uniformly rotating white dwarfs . 37 2.3.1 The Mass-shedding limit . 38 2.3.2 Secular Instability in rotating and general relativistic con- figurations . 38 2.3.3 Pycnonuclear Reactions . 39 2.3.4 Mass-radius and mass-central density relations . 41 3 Magnetic white dwarfs: Stability and observations 47 3.1 Introduction . 47 3.2 Observations of magnetic white dwarfs . 49 3.2.1 Introduction . 49 3.2.2 Historical background . 51 3.2.3 Mass distribution of magnetic white dwarfs . 53 3.2.4 Spin periods of isolated magnetic white dwarfs . 53 3.2.5 The origin of the magnetic field . 55 3.2.6 Applications . 56 3.2.7 Conclusions . 57 3.3 Stability of Magnetic White Dwarfs . 59 3.3.1 Introduction . 59 3.3.2 Ultra-magnetic white dwarfs . 60 3.3.3 Equation of state and virial theorem violation . -
Contents JUPITER Transits
1 Contents JUPITER Transits..........................................................................................................5 JUPITER Conjunct Sun..............................................................................................6 JUPITER Opposite Sun............................................................................................10 JUPITER Sextile Sun...............................................................................................14 JUPITER Square Sun...............................................................................................17 JUPITER Trine Sun..................................................................................................20 JUPITER Conjunct Moon.........................................................................................23 JUPITER Opposite Moon.........................................................................................28 JUPITER Sextile Moon.............................................................................................32 JUPITER Square Moon............................................................................................36 JUPITER Trine Moon................................................................................................40 JUPITER Conjunct Mercury.....................................................................................45 JUPITER Opposite Mercury.....................................................................................48 JUPITER Sextile Mercury........................................................................................51 -
A Warm Terrestrial Planet with Half the Mass of Venus Transiting a Nearby Star∗
Astronomy & Astrophysics manuscript no. toi175 c ESO 2021 July 13, 2021 A warm terrestrial planet with half the mass of Venus transiting a nearby star∗ y Olivier D. S. Demangeon1; 2 , M. R. Zapatero Osorio10, Y. Alibert6, S. C. C. Barros1; 2, V. Adibekyan1; 2, H. M. Tabernero10; 1, A. Antoniadis-Karnavas1; 2, J. D. Camacho1; 2, A. Suárez Mascareño7; 8, M. Oshagh7; 8, G. Micela15, S. G. Sousa1, C. Lovis5, F. A. Pepe5, R. Rebolo7; 8; 9, S. Cristiani11, N. C. Santos1; 2, R. Allart19; 5, C. Allende Prieto7; 8, D. Bossini1, F. Bouchy5, A. Cabral3; 4, M. Damasso12, P. Di Marcantonio11, V. D’Odorico11; 16, D. Ehrenreich5, J. Faria1; 2, P. Figueira17; 1, R. Génova Santos7; 8, J. Haldemann6, N. Hara5, J. I. González Hernández7; 8, B. Lavie5, J. Lillo-Box10, G. Lo Curto18, C. J. A. P. Martins1, D. Mégevand5, A. Mehner17, P. Molaro11; 16, N. J. Nunes3, E. Pallé7; 8, L. Pasquini18, E. Poretti13; 14, A. Sozzetti12, and S. Udry5 1 Instituto de Astrofísica e Ciências do Espaço, CAUP, Universidade do Porto, Rua das Estrelas, 4150-762, Porto, Portugal 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007, Porto, Portugal 3 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa, Portugal 4 Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal 5 Observatoire de Genève, Université de Genève, Chemin Pegasi, 51, 1290 Sauverny, Switzerland 6 Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 7 Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain 8 Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain 9 Consejo Superior de Investigaciones Cientícas, Spain 10 Centro de Astrobiología (CSIC-INTA), Crta. -
Correlations Between Planetary Transit Timing Variations, Transit Duration Variations and Brightness fluctuations Due to Exomoons
Correlations between planetary transit timing variations, transit duration variations and brightness fluctuations due to exomoons April 4, 2017 K:E:Naydenkin1 and D:S:Kaparulin2 1 Academic Lyceum of Tomsk, High school of Physics and Math, Vavilova 8 [email protected] 2 Tomsk State University, Physics Faculty, Lenina av. 50 [email protected] Abstract Modern theoretical estimates show that with the help of real equipment we are able to detect large satellites of exoplanets (about the size of the Ganymede), although, numerical attempts of direct exomoon detection were unsuccessful. Lots of methods for finding the satellites of exoplanets for various reasons have not yielded results. Some of the proposed methods are oriented on a more accurate telescopes than those exist today. In this work, we propose a method based on relationship between the transit tim- ing variation (TTV) and the brightness fluctuations (BF) before and after the planetary transit. With the help of a numerical simulation of the Earth- Moon system transits, we have constructed data on the BF and the TTV for arXiv:1704.00202v1 [astro-ph.IM] 1 Apr 2017 any configuration of an individual transit. The experimental charts obtained indicate an easily detectable near linear dependence. Even with an artificial increase in orbital speed of the Moon and high-level errors in measurements the patterns suggest an accurate correlation. A significant advantage of the method is its convenience for multiple moons systems due to an additive properties of the TTV and the BF. Its also important that mean motion res- onance (MMR) in system have no affect on ability of satellites detection. -
Detection of Exoplanets Using the Transit Method
Detection of Exoplanets Using the Transit Method De nnis A fanase v , T h e Geo rg e W a s h i n g t o n Un i vers i t y *, Washington, DC 20052 [email protected] Abstract I conducted differential photometry on a star GSC 3281-0800, a known host to exoplanet HAT-P-32b, using analysis software AstroImageJ. I plotted the measurements from a series of images taken during the transit, via ADU count given from an earth-based digital CCD camera. I was able to establish a definite light curve and learn more about the properties of this exoplanet. * Columbian College of Arts and Sciences, 2020 Introduction Exoplanets are the planets found outside of the solar system. Since the first exoplanet was discovered in 1992, a number of methods for detection have been established. Specific to this paper, I will be evaluating the star known as HAT-P-32 (also catalogued as GSC 3281- 0800) and its exoplanet HAT-P-32b using the transit method. Figure 1. Light curve when planet passes in front of a star. When a planet passes in front of a star, the brightness of that star as Transit Method observed by us becomes dimmer; which I have conducted my research on depends on the size of the planet. The detecting exoplanets with the transit data we observe will show a dip in flux method. This method relies on taking if a planet is transiting the star we are the light flux of the target star and observing, as shown in Fig. -
Arxiv:2001.10147V1
Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis. -
L119 a Dusty Disk Around Gd 362, a White Dwarf with A
The Astrophysical Journal, 632:L119–L122, 2005 October 20 ᭧ 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DUSTY DISK AROUND GD 362, A WHITE DWARF WITH A UNIQUELY HIGH PHOTOSPHERIC METAL ABUNDANCE E. E. Becklin,1 J. Farihi,2 M. Jura,1 Inseok Song,2 A. J. Weinberger,3 and B. Zuckerman1 Received 2005 July 14; accepted 2005 September 9; published 2005 October 5 ABSTRACT Eighteen years after an infrared excess was discovered associated with the white dwarf G29-38, we report ground-based measurements (JHKs KLN ) with millijansky-level sensitivity of GD 362 that show it to be a second single white dwarf with an infrared excess. As a first approximation, the excess around GD 362, which amounts to ∼3% of the total stellar luminosity, can be explained by emission from a passive, flat, opaque dust disk that lies within the Roche radius of the white dwarf. The dust may have been produced by the tidal disruption of a large parent body such as an asteroid. Accretion from this circumstellar disk could account for the remarkably high abundance of metals in the star’s photosphere. Subject headings: circumstellar matter — minor planets, asteroids — white dwarfs Ϫ 1. INTRODUCTION of comets and asteroids with a rate of3 # 10 6 g s 1 (Fixsen & Dwek 2002), and analogous circumstellar dust debris pro- It is likely that many planetary systems survive a star’s evo- duced by the destruction of parent bodies is common around lution as a red giant and persist as the star becomes a white main-sequence stars (Zuckerman 2001).