Asteroids Upclose
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BENNU from OSIRIS-Rex APPROACH and PRELIMINARY SURVEY OBSERVATIONS
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1956.pdf VNIR AND TIR SPECTRAL CHARACTERISTICS OF (101955) BENNU FROM OSIRIS-REx APPROACH AND PRELIMINARY SURVEY OBSERVATIONS. V. E. Hamilton1, A. A. Simon2, P. R. Christensen3, D. C. Reuter2, D. N. Della Giustina4, J. P. Emery5, R. D. Hanna6, E. Howell4, H. H. Kaplan1, B. E. Clark7, B. Rizk4, D. S. Lauretta4, and the OSIRIS-REx Team, 1Southwest Research Institute, 1050 Walnut St. #300, Boulder, CO 80302 ([email protected]), 2NASA Goddard Space Flight Center, Greenbelt, MD, 3School of Earth & Space Ex- ploration, Arizona State University, Tempe, AZ 85287, 4Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, 5Dept. Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996, 6University of Texas, Austin, TX, 78712, 7Dept. Physics & Astronomy, Ithaca College, Ithaca, NY 14850. Introduction: Visible to near infrared (VNIR) and generation and application of a photometric model, thermal infrared (TIR) spectrometers onboard the Ori- production of bolometric Bond albedo, reflectance gins, Spectral Interpretation, Resource Identification, factor spectra, and the calculation of spectral indices. Security–Regolith Explorer (OSIRIS-REx) spacecraft For OTES, this includes deriving emissivity spectra have revealed evidence of hydrated phases across the and temperature information with emissivity being an surface of asteroid (101955) Bennu. Here we describe input into a linear least squares mixing model and a spectral features identified -
Modelling and the Transit of Venus
Modelling and the transit of Venus Dave Quinn University of Queensland <[email protected]> Ron Berry University of Queensland <[email protected]> Introduction enior secondary mathematics students could justifiably question the rele- Svance of subject matter they are being required to understand. One response to this is to place the learning experience within a context that clearly demonstrates a non-trivial application of the material, and which thereby provides a definite purpose for the mathematical tools under consid- eration. This neatly complements a requirement of mathematics syllabi (for example, Queensland Board of Senior Secondary School Studies, 2001), which are placing increasing emphasis on the ability of students to apply mathematical thinking to the task of modelling real situations. Success in this endeavour requires that a process for developing a mathematical model be taught explicitly (Galbraith & Clatworthy, 1991), and that sufficient opportu- nities are provided to students to engage them in that process so that when they are confronted by an apparently complex situation they have the think- ing and operational skills, as well as the disposition, to enable them to proceed. The modelling process can be seen as an iterative sequence of stages (not ) necessarily distinctly delineated) that convert a physical situation into a math- 1 ( ematical formulation that allows relationships to be defined, variables to be 0 2 l manipulated, and results to be obtained, which can then be interpreted and a n r verified as to their accuracy (Galbraith & Clatworthy, 1991; Mason & Davis, u o J 1991). The process is iterative because often, at this point, limitations, inac- s c i t curacies and/or invalid assumptions are identified which necessitate a m refinement of the model, or perhaps even a reassessment of the question for e h t which we are seeking an answer. -
Bennu: Implications for Aqueous Alteration History
RESEARCH ARTICLES Cite as: H. H. Kaplan et al., Science 10.1126/science.abc3557 (2020). Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history H. H. Kaplan1,2*, D. S. Lauretta3, A. A. Simon1, V. E. Hamilton2, D. N. DellaGiustina3, D. R. Golish3, D. C. Reuter1, C. A. Bennett3, K. N. Burke3, H. Campins4, H. C. Connolly Jr. 5,3, J. P. Dworkin1, J. P. Emery6, D. P. Glavin1, T. D. Glotch7, R. Hanna8, K. Ishimaru3, E. R. Jawin9, T. J. McCoy9, N. Porter3, S. A. Sandford10, S. Ferrone11, B. E. Clark11, J.-Y. Li12, X.-D. Zou12, M. G. Daly13, O. S. Barnouin14, J. A. Seabrook13, H. L. Enos3 1NASA Goddard Space Flight Center, Greenbelt, MD, USA. 2Southwest Research Institute, Boulder, CO, USA. 3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. 4Department of Physics, University of Central Florida, Orlando, FL, USA. 5Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA. 6Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA. 7Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. 8Jackson School of Geosciences, University of Texas, Austin, TX, USA. 9Smithsonian Institution National Museum of Natural History, Washington, DC, USA. 10NASA Ames Research Center, Mountain View, CA, USA. 11Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA. 12Planetary Science Institute, Tucson, AZ, Downloaded from USA. 13Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada. 14John Hopkins University Applied Physics Laboratory, Laurel, MD, USA. *Corresponding author. E-mail: Email: [email protected] The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. -
(101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo. -
An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1]. -
Impact Process of Boulders on the Surface of Asteroid 25143 Itokawa— Fragments from Collisional Disruption
Earth Planets Space, 60, 7–12, 2008 Impact process of boulders on the surface of asteroid 25143 Itokawa— fragments from collisional disruption A. M. Nakamura1, T. Michikami2, N. Hirata3, A. Fujiwara4, R. Nakamura5, M. Ishiguro6, H. Miyamoto7,8, H. Demura3, K. Hiraoka1, T. Honda1, C. Honda4, J. Saito9, T. Hashimoto4, and T. Kubota4 1Graduate School of Science, Kobe University, Kobe, 657-8501, Japan 2Fukushima National College of Technology, Iwaki, Fukushima 970-8034, Japan 3School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan 4Institute of Space and Astronautical Sciences (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 229-8510, Japan 5National Institute of Advanced Industrial Science and Technology, Tsukuba 306-8568, Japan 6Astronomy Department, Seoul National University, Seoul 151-747, Korea 7The University Museum, University of Tokyo, Tokyo 113-0033, Japan 8Planetary Science Institute, Tucson, AZ 85719, USA 9School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan (Received November 3, 2006; Revised March 29, 2007; Accepted April 11, 2007; Online published February 12, 2008) The subkilometer-size asteroid 25143 Itokawa is considered to have a gravitationally bounded rubble-pile structure. Boulders appearing in high-resolution images retrieved by the Hayabusa mission revealed the genuine outcome of the collisional event involving the asteroid’s parent body. Here we report that the boulders’ shapes and structures are strikingly similar to laboratory rock impact fragments despite differences of orders of magnitude in scale and complexities of the physical processes. These similarities suggest the universal character of the process throughout the range of these scales, and the brittle and structurally continuous nature regarding the parent body of the boulders. -
Topography of Large Craters and Equatorial Bulge of 162173 Ryugu
EPSC Abstracts Vol. 13, EPSC-DPS2019-1723-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Topography of large craters and equatorial bulge of 162173 Ryugu Noriyuki Namiki (1,2), Takahide Mizuno (2,3), Hiroki Senshu (4), Hirotomo Noda (1,2), Koji Matsumoto (1,2), Naru Hirata (5), Ryuhei Yamada (5), Yoshiaki Ishihara (6), Hitoshi Ikeda (3), Hiroshi Araki (1,2), Keiko Yamamoto (1), Sinsuke Abe (7), Yousuke Masuda (7), Fumi Yoshida (4), Sho Sasaki (8), Shoko Oshigami (1), Makoto Shizugami (1), Arika Higuchi (1), Seiitsu Tsuruta (1), Kazuyoshi Asari (1), Toshimichi Otsubo (9), Naoyuki Hirata (10), Fuyuto Terui (3), Teiji Kase (11), Katsunori Mayuzumi (11), Sei-ichiro Watanabe (12), Takanao Saiki (3), Satoru Nakazawa (3), Makoto Yoshikawa (3), and Yuichi Tsuda (3) (1) National Astronomical Observatory of Japan, Japan, (2) SOKENDAI (The Graduate University for Advanced Studies), Japan, (3) Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Japan, (4) Chiba Institute of Technology, Japan, (5) The University of Aizu, Japan, (6) National Institute of Advanced Industrial Science and Technology, Japan, (7) Nihon University, Japan, (8) Osaka University, Japan, (9) Hitotsubashi University, Japan, (10) Kobe University, Japan, (11) NEC Corporation, Japan, (12) Nagoya University, Japan ([email protected]) Abstract Lutetia, and Bennu which was recently visited by OSIRIS-REx spacecraft. Hayabusa2 Laser Altimeter (LIDAR) conducted two- dimensional scanning observation of the equatorial Ryugu is the second asteroid whose topography is band of asteroid, 162173 Ryugu on Oct. 30, 2018 to measured accurately by laser altimeter (LIDAR) [5] obtain detailed topography data. -
An Investigation of the Low-Deltav Near-Earth Asteroids (341843) 2008
Astronomy & Astrophysics manuscript no. 29093_astroph c ESO 2016 October 5, 2016 An investigation of the low-∆V near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA ? Two suitable targets for the ARM and MarcoPolo-M5 space missions D. Perna1, M. Popescu1; 2, F. Monteiro3, C. Lantz1, D. Lazzaro3, and F. Merlin1 1 LESIA – Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania 3 Observatório Nacional, R. Gal. José Cristino 77, 20921-400, Rio de Janeiro, Brazil Received 10 June 2016; accepted 14 September 2016 ABSTRACT Context. The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020’s for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. As D-types are very rare within the NEA population, considerable effort is still in progress to characterize easily accessible targets with unknown surface composition, in order to discover further asteroids that belong to this taxonomic group. Aims. We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-∆V NEAs (341843) 2008 EV5 and (52381) 1993 HA. -
Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons
Astronomy & Astrophysics manuscript no. ms c ESO 2016 June 21, 2016 Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons René Heller1, Michael Hippke2, Ben Placek3, Daniel Angerhausen4, 5, and Eric Agol6, 7 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany; [email protected] 2 Luiter Straße 21b, 47506 Neukirchen-Vluyn, Germany; [email protected] 3 Center for Science and Technology, Schenectady County Community College, Schenectady, NY 12305, USA; [email protected] 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 5 USRA NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 6 Astronomy Department, University of Washington, Seattle, WA 98195, USA; [email protected] 7 NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, WA 98195, USA Received 22 March 2016; Accepted 12 April 2016 ABSTRACT We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto unde- scribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet’s orbit around the planet–moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multi-moons in orbital mean motion reso- nance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report. -
Introduction 101955 Bennu Speed Variations Variations of Bennu's
Deflect an hazardous asteroid through kinetic impact 51st Annual Meeting of the Division on Dynamical Astronomy Bruno Chagas1, Antonio F.B. de A. Prado1;2, Othon Winter1 S~aoPaulo State University (UNESP), School of Engineering, Guaratinguet´a-SP, Brazil1 National Institute for Space Research, INPE, S~aoJos´edos Campos-SP, Brazil2 Introduction Asteroids are the smallest bodies in the solar system, usually with diameters on the order of a few hundred's, or even only tens of kilometers. The total mass of all asteroids in the solar system must be less than the mass of the Earth's Moon. Despite this fact, they are objects of great importance. They must contain information about the formation of the solar system, since its chemical and physical compositions remain practically constant over time. These bodies also pose a danger to Earth, as many of these bodies are on a trajectory that passes close to Earth. There is also the possibility of mining on asteroids, in order to extract precious metals and other natural resources. Within this context, the present work intends to focus on the application aimed at the deflect an hazardous asteroid through kinetic impact. The asteroid's orbit behavior will be analyzed to determined the accuracy of the technique. To do this, we will be measure the deviation and displacement obtained at the point of maximum approximation between the body and the Earth. 101955 Bennu Variations of Bennu's orbit The asteroid 101955 Bennu is part of the group of NEOs that can become objects with a The Mercury integrator package was used and the integrator used was Bulirsch-Stoer. -
Enhanced Gravity Tractor Technique for Planetary Defense
4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-11 ENHANCED GRAVITY TRACTOR TECHNIQUE FOR PLANETARY DEFENSE Daniel D. Mazanek(1), David M. Reeves(2), Joshua B. Hopkins(3), Darren W. Wade(4), Marco Tantardini(5), and Haijun Shen(6) (1)NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-1739, (2) NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-9256, (3)Lockheed Martin Space Systems Company, Mail Stop H3005, PO Box 179, Denver, CO 80201, USA, 1-303- 971-7928, (4)Lockheed Martin Space Systems Company, Mail Stop S8110, PO Box 179, Denver, CO 80201, USA, 1-303-977-4671, (5)Independent, via Tibaldi 5, Cremona, Italy, +393381003736, (6)Analytical Mechanics Associates, Inc., 21 Enterprise Parkway, Suite 300, Hampton, VA 23666, USA, 1-757-865-0000, Keywords: enhanced gravity tractor, in-situ mass augmentation, asteroid and comet deflection, planetary defense, low-thrust, high-efficiency propulsion, gravitational attraction, robotic mass collection Abstract Given sufficient warning time, Earth-impacting asteroids and comets can be deflected with a variety of different “slow push/pull” techniques. The gravity tractor is one technique that uses the gravitational attraction of a rendezvous spacecraft to the impactor and a low-thrust, high-efficiency propulsion system to provide a gradual velocity change and alter its trajectory. An innovation to this technique, known as the Enhanced Gravity Tractor (EGT), uses mass collected in-situ to augment the mass of the spacecraft, thereby greatly increasing the gravitational force between the objects. -
Stardust Sample Return
National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey