Mindestanforderungen Für Die Haltung Von Reptilien

Total Page:16

File Type:pdf, Size:1020Kb

Mindestanforderungen Für Die Haltung Von Reptilien DGHT-Landesgruppe Schweiz Mindestanforderungen für die Haltung von Reptilien • Schildkröten (Testudines) • Echsen (Sauria) • Doppelschleichen (Amphisbaenia) • Schlangen (Serpentes) • Krokodile (Crocodylia) • Brückenechsen (Rhynchocephalia) DGHT-Landesgruppe Schweiz Seite 1 DGHT-Landesgruppe Schweiz Vorbemerkung A. Die Gehegegrösse muss sich, unter anderem wegen der teils enormen Unterschiede zwischen adulten und juvenilen Tieren, nach der Körperlänge bzw. der Panzerlänge (Carapax-Stockmass) des gehaltenen Individuums richten. Die Gehegegrösse ergibt sich aus der Addition der für jedes einzelne Tier bestimmten Flächen und wird in der Tabelle in der Masseinheit «Körperlänge» (KL) angegeben. Die Körperlänge bedeutet bei Echsen, Krokodilen und Schwanzlurchen die Kopf- Rumpflänge, bei Schildkröten die Panzerlänge (Carapax-Stockmass) und bei Schlangen die Gesamtlänge. Werden mehrere unterschiedlich grosse Tiere zusammen gehalten, so ist die Grösse des grössten Tieres massgebend für die Berechnung. Wenn sich rechnerisch ein höherer Wert als 2 m ergibt, kann die geforderte Gehegehöhe bzw. Bassintiefe aus praktischen Gründen auf 2 m beschränkt werden. B. Die besonderen Ansprüche der jeweiligen Tierart an Temperatur (Ektothermie), Luftfeuchtigkeit und Licht sind zu berücksichtigen. Anstelle von Tageslicht können Reptilien auch unter Lampen mit einem tageslichtähnlichen Spektrum gehalten werden. Genaue Informationen sind der aktuellen Terraristikliteratur. C. Gehege für wehrhafte Reptilien wie Schnapp- und Geierschildkröten, giftige Reptilien (Krustenechsen, Giftschlangen), grosse Riesenschlangen sowie grosse Echsen sind so zu gestalten und zu betreiben, dass den Sicherheitsaspekten ausreichend Rechnung getragen wird. Die Gehege müssen mit Sicherheitsverschlüssen (Schlösser, Verschlussriegel usw.) ausgerüstet sein. In öffentlich zugänglichen Tierhaltungen müssen sie mit Sicherheitsglas sowie Schlupfkästen oder Absperranlagen versehen sein. D. Tiere können für die Quarantäne, zur Behandlung von Krankheiten und Unfällen, zur Eingewöhnung bzw. zur Zucht und Aufzucht vorübergehend in kleineren, strukturierten Gehegen gehalten werden. E. Angegeben ist die Wassertiefe an der tiefsten Stelle des Bassins. Bei manchen Arten sollen zudem flachere Bereiche vorhanden sein. Wenn sich rechnerisch ein grösserer Wert als 0.6 m ergibt, kann bei Schlangen und Echsen die geforderte Bassintiefe aus praktischen Gründen auf 0.6 m beschränkt werden. F. Die Nahrung der Reptilien muss vor allem aus ganzen Futtertieren (z.B. Insekten, Spinnentiere, Krebse, Würmer, Schnecken, Fische, Vögel und Säugetiere, bei Nahrungsspezialisten allenfalls auch Amphibien oder Reptilien) zusammengesetzt sein. Die Futtertiere müssen von guter Qualität, allenfalls mit Vitaminen und Mineralstoffen angereichert und als Ganzes schluckbar sein. Da die meisten Echsen, aber auch viele Schlangen Futtertiere insbesondere anhand ihrer Bewegungen als solche erkennen, und um die nötige Beschäftigung zu gewährleisten, müssen diesen Reptilienarten lebende Futtertiere oder frisch abgetötete, mittels geeigneter Werkzeuge bewegte Futtertiere angeboten werden. DGHT-Landesgruppe Schweiz Seite 2 DGHT-Landesgruppe Schweiz Schildkröten (Testudines) Gehege für Reptilien Für Gruppen bis zu n Tieren Für jedes weitere Tier Besondere Anforderungen Anzahl Landteil Bassin Gehege Landteil Bassin Tierarten (n) Flächec) Fläche Tiefe Höhed) Fläche Fläche KL KL KL KL KL KL Schildkröten (Testudines) Landschildkröten (Testudinidae) 1 Galapagos- und Seychellen-Riesenschildkröten b) 2 8x4 – – – 4x1 – 1) 2) 3) 5) 6) 7) 12) 26) 34) (Chelonoidis nigra ssp., Dipsochelys spp.) 2 Spornschildkröte (Geochelone (Centrochelys) a) 2 8x4 – – – 4x1 – 1) 2) 3) 5) 6) 7) 9) 12) 34) sulcata) 3 Tropische und subtropische Landschildkröten 2 8x4 – – – 4x1 – gewisse Arten 1) 3) 5) 12) (Astrochelys spp., Chelonoidis carbonaria, C. 26) gewisse Arten 34) chilensis, C. denticulata, Chersina angulata, Geochelone elegans, G. platynota, Gopherus spp., Homopus spp., Indotestudo, spp., Kinixys spp., Malacochersus tornieri, Manouria spp., Psammobates spp., Pyxis spp., Stigmochelys pardalis, Testudo kleinmanni) 4 Europäische Landschildkröten (Testudo graeca, 2 8x4 – – – 4x1 – 1) 4) 7) 9) 34) 36) hermanni, marginata, horsfieldii) Alligatorschildkröten (Chelydridae) 5 Schnapp- und Geierschildkröten (Chelydra spp. a) 1 2x1 3x2 1 – – 2x1 3) 5) 9) 12) 36) Macroclemys temminckii) Weichschildkröten (Trionychidae) 6 Grosse Weichschildkröten (Aspideretes nigricans, a) 1 2x2 5x3 2 – – 3x1 3) 5) 9) 18) Chitra indica, Pelochelys bibroni, Trionyx triunguis) 7 Kleine und mittelgrosse Weichschildkröten 1 2x2 6x3 2 – – 3x1 3) gewisse Arten 4) 5) 9) (Amydia cartilaginea, Apalone spp., Chitra 18) gewisse Arten 36) indica, C. vandijki, Cyclanorbis spp., Cycloderma spp, Dogaia subplana, Lissemys spp., Nilssonia spp., Palea steindachneri, Pelochelys cantorii, P. signifera, Pelodiscus spp., Rafetus spp.) Klappschildkrötenartige (Kinosternoidea) 8 Klapp-, Schlamm und Moschusschildkröten 2 3x2 5x3 1 – – 3x1 3) gewisse Arten 4) 9) 18) (Claudius angustatus, Dermatemys mawii, gewisse Arten 36) Kinosternon spp., Staurotypus salvinii, Sternotherus spp.) DGHT-Landesgruppe Schweiz Seite 3 DGHT-Landesgruppe Schweiz Gehege für Reptilien Für Gruppen bis zu n Tieren Für jedes weitere Tier Besondere Anforderungen Anzahl Landteil Bassin Gehege Landteil Bassin Tierarten (n) Flächec) Fläche Tiefe Höhed) Fläche Fläche KL KL KL KL KL KL Sumpfschildkröten (Emydidae) 9 Schmuck- und Zierschildkröten (Actinemys 2 2x2 5x3 2 – – 3x1 gewisse Arten 1) 3) 9) 18) marmorata, Chrysemys spp., Emydoidea 26) gewisse Arten 36) blandingii, Emys, spp., Glyptemys spp., Graptemys spp., Malaclemys terrapin, Pseudemys spp., Deirochelys spp., Trachemys spp.) 10 Dosenschildkröten (Terrapene spp.) 2 8x4 – – – 4x1 – 1) 4) 7) 9) gewisse Arten 22) 26) gewisse Arten 36) Asiatische Flussschildkröten (Geoemydidae) 11 Grosse Asiatische Flussschildkröten (Batagur a) 2 2x2 5x3 1 – – 3x1 3) 9) 18) borneensis, Orlitia borneensis) 12 Kleine und mittelgrosse, halbaquatisch lebende 2 2x2 5x3 2 – – 3x1 3) 5) 9) 18) Asiatische Flussschildkröten (Batagur baska, B. dhongoka, B. kachuga, B. trivittata, Cuora amboinensis, Cyclemys, spp., Geoclemys hamiltonii, Hardella thurjii, Heosemys spp., Leucocephalon yuwonoi, Malayemys spp., Mauremys spp., Melanochelys spp., Morenia spp., Notochelys platynota, Pangshura spp., Sacalia spp., Siebenrockiella crassicollis) 13 Kleine und mittelgrosse, mehrheitlich 2 8x4 - - – – 4x1 3) 5) 9) 12) 22) 26) landbewohnende Asiatische Flussschildkröten (Cuora glabinifrons, C. flavomarginata, C. mouhoti, Geoemyda spp., Heosemys depressa, Rhinoclemmys spp., Vijayachelys silvatica) Grosskopfschildkröten (Platysternidae) 14 Grosskopfschildkröte (Platysternum 2 2x2 5x3 1 – – 3x1 3) 5) 9) 18) megacephalum) Halswenderschildkröten (Pleurodira) 15 Pelomedusenschildkröten (Pelomedusa subrufa, 2 2x2 4x2 1 – – 2x1 3) 9) 18) 26) Pelusios spp.) 16 Schlangenhalsschildkröten (Acanthochelys spp., 2 2x2 5x3 2 – – 3x1 3) 5) 9) Chelodina spp., Chelus fimbriata, Elseya spp., Elusor macrurus, Emydura spp., Hydromedusa spp., Mesoclemmys spp., Myuchelys spp., Phrynops spp., Platemys platycephala, Pseudemydura umbrina, Rheodytes leukops, Rhinemys rufipes) 17 Grosse Schienenschildkröten (Podocnemis a) 2 2x2 4x2 1 – – 2x1 3) 5) 9) 18) 26) DGHT-Landesgruppe Schweiz Seite 4 DGHT-Landesgruppe Schweiz Gehege für Reptilien Für Gruppen bis zu n Tieren Für jedes weitere Tier Besondere Anforderungen Anzahl Landteil Bassin Gehege Landteil Bassin Tierarten (n) Flächec) Fläche Tiefe Höhed) Fläche Fläche KL KL KL KL KL KL expansa) 18 Kleine und mittelgrosse Schienenschildkröten 2 2x2 4x2 2 – – 2x1 3) 5) 9) 18) 26) (Erymnochelys madagascariensis, Peltocephalus dumeriliana, Podocnemis erythrocephala, P. lewyana, P. sextuberculata, P. unifilis, P. vogli) DGHT-Landesgruppe Schweiz Seite 5 DGHT-Landesgruppe Schweiz Echsen (Sauria) & Doppelschleichen (Amphisbaenia) Gehege für Reptilien Für Gruppen bis zu n Tieren Für jedes weitere Tier Besondere Anforderungen Anzahl Landteil Bassin Gehege Landteil Bassin Tierarten (n) Flächec) Fläche Tiefe Höhed) Fläche Fläche KL KL KL KL KL KL Echsen Geckos (Gekkota) 19 Nachtaktive, bodenbewohnende Geckos (z.B. 2 4x3 - - 2 3x1 - 3) 8) 9) Coleonyx, Diplodactylus, Eublepharis, Geckonia, Goniurosarus, Hemitheconyx, Nephrurus, Palmatogecko, Paroedura, Ptenopus, Stenodactylus, Teratolepis, Teratoscincus) 20 Tag- und nachtaktive, bodenbewohnende 2 10x5 - - 5 5x1 - 3) 8) 9) 27) Zwerggeckos (z.B. Alsophylax, Saurodactylus, Sphaerodactylus, Tropiocolotes) 21 Nachtaktive, boden- und fels- bzw. 2 4x3 - - 4 3x1 - 3) 8) 9) mauerbewohnende, aktiv jagende Geckos (z.B. Agamura) 22 Nachtaktive, boden- und stammbewohnende 2 4x3 - - 4 3x1 - 3) 8) 9) Geckos (z.B. Aeluroscalabotes, Cyrtodactylus) 23 Tag- und nachtaktive, boden- und 2 8x4 - - 8 4x1 - 3) 8) 9) 27) stammbewohnende Zwerggeckos (z.B. Gonatodes) 24 Nachtaktive, fels- oder mauerbewohnende, aktiv 2 6x2 - - 6 2x1 - 3) 8) 9) jagende Geckos (z.B. Gehyra, Hemidactylus, Tarentola; kleine und mittelgrosse Arten) 25 Nachtaktive, fels- oder mauerbewohnende, aktiv 2 4x2 - - 5 2x1 - 3) 5) 8) 9) jagende Tokees (z.B. Gecko) 26 Nachtaktive, fels- oder mauerbewohnende 2 4x2 - - 4 2x1 - 3) 8) 9) Geckos, Lauerjäger (z.B. Phyllurus, Saltuarius) 27 Tag- und nachtaktive, fels- oder 2 6x2 - - 6 2x1 - 3) 8) 9) 27) mauerbewohnende, aktiv jagende Geckos (z.B. Ptyodactylus) 28 Tagaktive, fels- oder mauerbewohnende, aktiv 2 6x2 - - 6 2x1 - 3) 8) 9) 26) 27) jagende Geckos (z.B. Lygodactylus, Quedenfeldtia,
Recommended publications
  • Fossil Amphibians and Reptiles from the Neogene Locality of Maramena (Greece), the Most Diverse European Herpetofauna at the Miocene/Pliocene Transition Boundary
    Palaeontologia Electronica palaeo-electronica.org Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary Georgios L. Georgalis, Andrea Villa, Martin Ivanov, Davit Vasilyan, and Massimo Delfino ABSTRACT We herein describe the fossil amphibians and reptiles from the Neogene (latest Miocene or earliest Pliocene; MN 13/14) locality of Maramena, in northern Greece. The herpetofauna is shown to be extremely diverse, comprising at least 30 different taxa. Amphibians include at least six urodelan (Cryptobranchidae indet., Salamandrina sp., Lissotriton sp. [Lissotriton vulgaris group], Lissotriton sp., Ommatotriton sp., and Sala- mandra sp.), and three anuran taxa (Latonia sp., Hyla sp., and Pelophylax sp.). Rep- tiles are much more speciose, being represented by two turtle (the geoemydid Mauremys aristotelica and a probable indeterminate testudinid), at least nine lizard (Agaminae indet., Lacertidae indet., ?Lacertidae indet., aff. Palaeocordylus sp., ?Scin- cidae indet., Anguis sp., five morphotypes of Ophisaurus, Pseudopus sp., and at least one species of Varanus), and 10 snake taxa (Scolecophidia indet., Periergophis micros gen. et sp. nov., Paraxenophis spanios gen. et sp. nov., Hierophis cf. hungaricus, another distinct “colubrine” morphotype, Natrix aff. rudabanyaensis, and another dis- tinct species of Natrix, Naja sp., cf. Micrurus sp., and a member of the “Oriental Vipers” complex). The autapomorphic features and bizarre vertebral morphology of Perier- gophis micros gen. et sp. nov. and Paraxenophis spanios gen. et sp. nov. render them readily distinguishable among fossil and extant snakes. Cryptobranchids, several of the amphibian genera, scincids, Anguis, Pseudopus, and Micrurus represent totally new fossil occurrences, not only for the Greek area, but for the whole southeastern Europe.
    [Show full text]
  • Vetagro Sup La Contention Et La Realisation De
    VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2014 - Thèse n° LA CONTENTION ET LA REALISATION DE PRELEVEMENTS EN VUE D’EXAMENS COMPLEMENTAIRES CHEZ LES REPTILES : REALISATION D’UN CD-ROM INTERACTIF THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 19 Décembre 2014 pour obtenir le grade de Docteur Vétérinaire par PETIT Xavier Né le 28 mai 1987 à TROYES VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2014 - Thèse n° LA CONTENTION ET LA REALISATION DE PRELEVEMENTS EN VUE D’EXAMENS COMPLEMENTAIRES CHEZ LES REPTILES : REALISATION D’UN CD-ROM INTERACTIF THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 19 Décembre 2014 pour obtenir le grade de Docteur Vétérinaire par PETIT Xavier Né le 28 mai 1987 à TROYES 2 Liste des Enseignants du Campus Vétérinaire de Lyon Civilité Nom Prénom Unités pédagogiques Grade M. ALOGNINOUWA Théodore Pathologie du bétail Professeur M. ALVES-DE-OLIVEIRA Laurent Gestion des élevages Maître de conférences Mme ARCANGIOLI Marie-Anne Pathologie du bétail Maître de conférences M. ARTOIS Marc Santé Publique et Vétérinaire Professeur M. BARTHELEMY Anthony Anatomie Chirurgie (ACSAI) Maître de conférences Mme BECKER Claire Pathologie du bétail MaîtreContractuel de conférences M. BELLI Patrick Pathologie morphologique et clinique des animaux de Maître de conférences Mme BENAMOU-SMITH Agnès Equinecompagnie MaîtreContractuel de conférences M. BENOIT Etienne Biologie fonctionnelle Professeur M. BERNY Philippe Biologie fonctionnelle Professeur Mme BERTHELET Marie-Anne Anatomie Chirurgie (ACSAI) Maître de conférences Mme BONNET-GARIN Jeanne-Marie Biologie fonctionnelle Professeur Mme BOULOCHER Caroline Anatomie Chirurgie (ACSAI) Maître de conférences M.
    [Show full text]
  • A Taxonomic Framework for Typhlopid Snakes from the Caribbean and Other Regions (Reptilia, Squamata)
    caribbean herpetology article A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata) S. Blair Hedges1,*, Angela B. Marion1, Kelly M. Lipp1,2, Julie Marin3,4, and Nicolas Vidal3 1Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA. 2Current address: School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA. 3Département Systématique et Evolution, UMR 7138, C.P. 26, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75231 Paris cedex 05, France. 4Current address: Department of Biology, Pennsylvania State University, University Park, PA 16802-5301 USA. *Corresponding author ([email protected]) Article registration: http://zoobank.org/urn:lsid:zoobank.org:pub:47191405-862B-4FB6-8A28-29AB7E25FBDD Edited by: Robert W. Henderson. Date of publication: 17 January 2014. Citation: Hedges SB, Marion AB, Lipp KM, Marin J, Vidal N. 2014. A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribbean Herpetology 49:1–61. Abstract The evolutionary history and taxonomy of worm-like snakes (scolecophidians) continues to be refined as new molec- ular data are gathered and analyzed. Here we present additional evidence on the phylogeny of these snakes, from morphological data and 489 new DNA sequences, and propose a new taxonomic framework for the family Typhlopi- dae. Of 257 named species of typhlopid snakes, 92 are now placed in molecular phylogenies along with 60 addition- al species yet to be described. Afrotyphlopinae subfam. nov. is distributed almost exclusively in sub-Saharan Africa and contains three genera: Afrotyphlops, Letheobia, and Rhinotyphlops. Asiatyphlopinae subfam. nov. is distributed in Asia, Australasia, and islands of the western and southern Pacific, and includes ten genera:Acutotyphlops, Anilios, Asiatyphlops gen.
    [Show full text]
  • P. 1 AC27 Inf. 7 (English Only / Únicamente En Inglés / Seulement
    AC27 Inf. 7 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Species trade and conservation IUCN RED LIST ASSESSMENTS OF ASIAN SNAKE SPECIES [DECISION 16.104] 1. The attached information document has been submitted by IUCN (International Union for Conservation of * Nature) . It related to agenda item 19. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Inf. 7 – p. 1 Global Species Programme Tel. +44 (0) 1223 277 966 219c Huntingdon Road Fax +44 (0) 1223 277 845 Cambridge CB3 ODL www.iucn.org United Kingdom IUCN Red List assessments of Asian snake species [Decision 16.104] 1. Introduction 2 2. Summary of published IUCN Red List assessments 3 a. Threats 3 b. Use and Trade 5 c. Overlap between international trade and intentional use being a threat 7 3. Further details on species for which international trade is a potential concern 8 a. Species accounts of threatened and Near Threatened species 8 i. Euprepiophis perlacea – Sichuan Rat Snake 9 ii. Orthriophis moellendorfi – Moellendorff's Trinket Snake 9 iii. Bungarus slowinskii – Red River Krait 10 iv. Laticauda semifasciata – Chinese Sea Snake 10 v.
    [Show full text]
  • [email protected] Biodiversity @Maddreptiles
    Timothy Colston Biological Science Harnessing NGS Technologies to Understand Biological Diversification: From Microbes to Macroevolutionary Patterns [email protected] Biodiversity @maddreptiles Source: International Conference on Biodiversity Motivation & Tools –Molecular [email protected] @maddreptiles (NGS) [email protected] Biodiversity @maddreptiles Source: International Conference on Biodiversity [email protected] Biodiversity @maddreptiles [email protected] Biodiversity –the “microbiome” @maddreptiles NGS Sequencing [email protected] Biodiversity –the “microbiome” @maddreptiles NGS Sequencing [email protected] Biodiversity –the “microbiome” @maddreptiles • Plants and Animals are “metagenomic organisms” – Co‐evolution • Host‐associated microbial cells ~ 10X number of host cells – Fitness/Selection – Heritable by Gaby D'Allesandro / © AMNH [email protected] Biodiversity –the “microbiome” @maddreptiles • Plants and Animals are “metagenomic organisms” – Co‐evolution • Host‐associated microbial genes > 10X number of host cells – Fitness/Selection – Heritable by Gaby D'Allesandro / © AMNH [email protected] Biodiversity –the “microbiome” @maddreptiles Mammals Fish Birds Amphibians Reptiles Colston, T.J. & Jackson, C.R. (2016) Molecular Ecology The Reptile Microbiome C h a m A a g e a A l m e m V o L i a p d n a h a i r H d a n i s e e L t T a n b h S l a r a i A o e A d o a c h X e d n g n a n e i n D e T e o n g r e o n i n t n r r a d i u i L t i s m o o e d o c i a e i d a p p a l s t d e i a y l h o i e a u d a i a l d t C c i B o r u
    [Show full text]
  • Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians)
    pathogens Review Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians) Nicodemus M. Masila 1,2 , Kirstin E. Ross 1 , Michael G. Gardner 1,3 and Harriet Whiley 1,* 1 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; [email protected] (N.M.M.); Kirstin.ross@flinders.edu.au (K.E.R.); michael.gardner@flinders.edu.au (M.G.G.) 2 Kenya Tsetse and Trypanosomiasis Eradication Council (KENTTEC), P.O. BOX 66290, Westlands, Nairobi 00800, Kenya 3 Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia * Correspondence: harriet.whiley@flinders.edu.au; Tel.: +61-87-2218-580 Received: 26 August 2020; Accepted: 25 September 2020; Published: 28 September 2020 Abstract: Campylobacter spp. is one of the most widespread infectious diseases of veterinary and public health significance. Globally, the incidence of campylobacteriosis has increased over the last decade in both developing and developed countries. Squamates (lizards, snakes and amphisbaenians) are a potential reservoir and source of transmission of campylobacteriosis to humans. This systematic review examined studies from the last 20 years that have reported squamate-associated human campylobacteriosis. It was found that C. fetus subsp. testudinum and C. fetus subsp. fetus were the most common species responsible for human campylobacteriosis from a squamate host. The common squamate hosts identified included bearded dragons (Pogona vitticeps), green iguana (Iguana iguana), western beaked gecko (Rhynchoedura ornate) and blotched blue-tongued skink (Tiliqua nigrolutea). People with underlying chronic illnesses, the immunocompromised and the elderly were identified as the most vulnerable population.
    [Show full text]
  • Epictia-1.Pdf
    The Leptotyphlopidae, descriptively called threadsnakes or wormsnakes, is one of five families comprising the most ancient but highly specialized clade of snakes, the Scolecophidia, which dates back to the Jurassic Period (ca. 155 mya). Scolecophidians are the least studied and poorest known group of snakes, both biologically and taxonomically. Due to their subterranean habitat, nocturnal lifestyle, small size, and drab coloration, these snake are extremely difficult to find and seldom are observed or collected. Epictia is one of six genera found in the New World, with a distribution extending throughout Latin America. Whereas most Epictia are uniform brown or black, some species are brightly colored. Epictia tenella, the most wide-ranging member of the genus, occurs throughout much of northern South America. Pictured here is an individual from Trinidad that exhibits several distinctive features, including yellow zigzag stripes, relatively large bulging eyes, contact of the supraocular and anterior supralabial shields, and the presence of numerous sensory pits on the anterior head shields. ' © John C. Murphy 215 www.mesoamericanherpetology.com www.eaglemountainpublishing.com ISSN 2373-0951 Version of record:urn:lsid:zoobank.org:pub:A6B8D5BF-2E06-485A-BD7F-712D8D57CDE4 Morphological review and taxonomic status of the Epictia phenops species group of Mesoamerica, with description of six new species and discussion of South American Epictia albifrons, E. goudotii, and E. tenella (Serpentes: Leptotyphlopidae: Epictinae) VAN WALLACH 4 Potter Park, Cambridge, Massachusetts 02138, United States. E–mail: [email protected] ABSTRACT: I examined the “Epictia phenops species group” of Mesoamerica, and recognize 11 species as valid (E. ater, E. bakewelli, E. columbi, E.
    [Show full text]
  • Endemic Animals of India
    ENDEMIC ANIMALS OF INDIA Edited by K. VENKATARAMAN A. CHATTOPADHYAY K.A. SUBRAMANIAN ZOOLOGICAL SURVEY OF INDIA Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata-700 053 Phone: +91 3324006893, +91 3324986820 website: www.zsLgov.in CITATION Venkataraman, K., Chattopadhyay, A. and Subramanian, K.A. (Editors). 2013. Endemic Animals of India (Vertebrates): 1-235+26 Plates. (Published by the Director, Zoological Survey ofIndia, Kolkata) Published: May, 2013 ISBN 978-81-8171-334-6 Printing of Publication supported by NBA © Government ofIndia, 2013 Published at the Publication Division by the Director, Zoological Survey of India, M -Block, New Alipore, Kolkata-700053. Printed at Hooghly Printing Co., Ltd., Kolkata-700 071. ~~ "!I~~~~~ NATIONA BIODIVERSITY AUTHORITY ~.1it. ifl(itCfiW I .3lUfl IDr. (P. fJJa{a~rlt/a Chairman FOREWORD Each passing day makes us feel that we live in a world with diminished ecological diversity and disappearing life forms. We have been extracting energy, materials and organisms from nature and altering landscapes at a rate that cannot be a sustainable one. Our nature is an essential partnership; an 'essential', because each living species has its space and role', and performs an activity vital to the whole; a 'partnership', because the biological species or the living components of nature can only thrive together, because together they create a dynamic equilibrium. Nature is further a dynamic entity that never remains the same- that changes, that adjusts, that evolves; 'equilibrium', that is in spirit, balanced and harmonious. Nature, in fact, promotes evolution, radiation and diversity. The current biodiversity is an inherited vital resource to us, which needs to be carefully conserved for our future generations as it holds the key to the progress in agriculture, aquaculture, clothing, food, medicine and numerous other fields.
    [Show full text]
  • Gondwana Blindsnake Evolutionary Tree Reveals Long History On
    Downloaded from rsbl.royalsocietypublishing.org on July 12, 2010 Blindsnake evolutionary tree reveals long history on Gondwana Nicolas Vidal, Julie Marin, Marina Morini, Steve Donnellan, William R. Branch, Richard Thomas, Miguel Vences, Addison Wynn, Corinne Cruaud and S. Blair Hedges Biol. Lett. 2010 6, 558-561 first published online 31 March 2010 doi: 10.1098/rsbl.2010.0220 Supplementary data "Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2010/03/25/rsbl.2010.0220.DC1.ht ml References This article cites 13 articles, 2 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/6/4/558.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections molecular biology (265 articles) taxonomy and systematics (246 articles) evolution (1811 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on July 12, 2010 Biol. Lett. (2010) 6, 558–561 They feed on small social insects (ants, termites and doi:10.1098/rsbl.2010.0220 their larvae), and do so on a frequent basis (Cundall & Published online 31 March 2010 Greene 2000). They include the smallest snakes Phylogeny and rarely exceed 30 cm in length (Hedges 2008). Most species have greatly reduced eyes and head scalation, a pinkish or brownish, tubular-shaped body Blindsnake evolutionary with smooth scales, and are frequently mistaken for earthworms by non-scientists.
    [Show full text]
  • The Reptile Gut Microbiome: Its Role in Host Evolution and Community Assembly
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2017 The Reptile Gut Microbiome: Its Role In Host Evolution And Community Assembly Timothy Colston Colston University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Colston, Timothy Colston, "The Reptile Gut Microbiome: Its Role In Host Evolution And Community Assembly" (2017). Electronic Theses and Dissertations. 387. https://egrove.olemiss.edu/etd/387 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. THE REPTILE GUT MICROBIOME: ITS ROLE IN HOST EVOLUTION AND COMMUNITY ASSEMBLY A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MISSISSIPPI BY TIMOTHY JOHN COLSTON, MSC. IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY CONFERRED BY THE DEPARTMENT OF BIOLOGY THE UNIVERSITY OF MISSISSIPPI MAY 2017 © Timothy John Colston 2017 ALL RIGHTS RESERVED ABSTRACT I characterize the endogenous (gut) microbiome of Squamate reptiles, with a particular focus on the suborder Serpentes, and investigate the influence of the microbiome on host evolution and community assembly using samples I collected across three continents in the New and Old World. I developed novel methods for sampling the microbiomes of reptiles and summarized the current literature on non-mammalian gut microbiomes. In addition to establishing a standardized method of collecting and characterizing reptile microbiomes I made novel contributions to the future direction of the burgeoning field of host-associated microbiome research.
    [Show full text]
  • Data Gaps and Opportunities for Comparative and Conservation Biology
    Data gaps and opportunities for comparative and conservation biology Type Article Author Conde, Dalia A.; Staerk, Johanna; Colchero, Fernando; da Silva, Rita; Schöley, Jonas; Baden, H. Maria; Jouvet, Lionel; Fa, John E.; Syed, Hassan; Jongejans, Eelke; Meiri, Shai; Gaillard, Jean- Michel; Chamberlain, Scott; Wilcken, Jonathan; Jones, Owen R.; Dahlgren, Johan P.; Steiner, Ulrich K.; Bland, Lucie M.; Gomez-Mestre, Ivan; Lebreton, Jean-Dominique; Vargas, Jaime González; Flesness, Nate; Canudas-Romo, Vladimir; Salguero- Gómez, Roberto; Byers, Onnie; Berg, Thomas Bjørneboe; Scheuerlein, Alexander; Devillard, Sébastien; Schigel, Dmitry S.; Ryder, Oliver A.; Possingham, Hugh P.; Baudisch, Annette; Vaupel, James W. Title Data gaps and opportunities for comparative and conservation biology Journal title Proceedings of the National Academy of Sciences URI http://hdl.handle.net/20.500.12634/37 Rights link https://creativecommons.org/licenses/by-nc-nd/4.0/ Download date 24/09/2021 06:16:48 Proceedings of the National Academy of Science Appendix Supplemental Information Data gaps and opportunities for comparative and conservation biology Authors: Dalia A. Conde, Johanna Staerk, Fernando Colchero, Rita da Silva, Jonas Schöley, H. Maria Baden, Lionel Jouvet, John E. Fa, Hassan Syed, Eelke Jongejans, Shai Meiri, Jean-Michel Gaillard, Scott Chamberlain, Jonathan Wilcken, Owen R. Jones, Johan P. Dahlgren, Ulrich K. Steiner, Lucie M. Bland, Ivan Gomez- Mestre, Jean-Dominique Lebreton, Jaime González Vargas, Nate Flesness, Vladimir Canudas-Romo, Roberto Salguero-Gómez, Onnie Byers, Thomas Bjørneboe Berg, Alexander Scheuerlein, Sébastien Devillard, Dmitry S. Schigel, Oliver A. Ryder, Hugh P. Possingham, Annette Baudisch, and James W. Vaupel Index SI Figures Figure S1. The landscape of demographic knowledge for Reptiles………………………………… 2 Figure S2.
    [Show full text]
  • 1 Genomic Regression of Claw Keratin, Taste Receptor and Light-Associated Genes Inform 2 Biology and Evolutionary Origins of Snakes 3 Christopher A
    bioRxiv preprint doi: https://doi.org/10.1101/127654; this version posted April 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Genomic regression of claw keratin, taste receptor and light-associated genes inform 2 biology and evolutionary origins of snakes 3 Christopher A. Emerling 4 Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA 5 E-mail for correspondence: [email protected] 6 7 Keywords: Serpentes, opsins, color vision, taste receptors, keratins, regressive evolution 8 9 Abstract 10 Regressive evolution of anatomical traits corresponds with the regression of genomic loci 11 underlying such characters. As such, studying patterns of gene loss can be instrumental in 12 addressing questions of gene function, resolving conflicting results from anatomical 13 studies, and understanding the evolutionary history of clades. The origin of snakes 14 coincided with the regression of a number of anatomical traits, including limbs, taste buds 15 and the visual system. By studying the genomes of snakes, I was able to test three 16 hypotheses associated with the regression of these features. The first concerns two 17 keratins that are putatively specific to claws. Both genes that encode these keratins were 18 pseudogenized/deleted in snake genomes, providing additional evidence of claw- 19 specificity. The second hypothesis is whether snakes lack taste buds, an issue complicated 20 by unequivocal, conflicting results in the literature. I found evidence that different snakes 21 have lost one or more taste receptors, but all snakes examined retained at least some 22 capacity for taste.
    [Show full text]