INFLUENCE OF ON PLANT AND SOIL INVERTEBRATE COMMUNITIES OF THE CLEVELAND METROPARKS

ANTON F. SCHERMAIER

Bachelor of Electrical Engineering

Cleveland State University

June, 1989

submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

at the

CLEVELAND STATE UNIVERSITY

May, 2013

This thesis has been approved for the

Department of BIOLOGICAL, GEOLOGICAL, and ENVIRONMENTAL SCIENCES

and the College of Graduate Studies

Thesis Committee Chairperson, B. Michael Walton, Ph.D. Date Department of Biological, Geological, and Environmental Sciences Cleveland State University

Thesis Committee Member, Yung-Tse Hung, Ph.D. Date Department of Civil Engineering Cleveland State University

Thesis Committee Member, Robert A. Krebs, Ph.D. Date Department of Biological, Geological, and Environmental Sciences Cleveland State University

Thesis Committee Member, Julie A. Wolin, Ph.D. Date Department of Biological, Geological, and Environmental Sciences Cleveland State University

ACKNOWLEDGEMENTS

This research was made possible with funding provided through an NSF ULTRA- Ex grant and the CSU Department of Biological, Geological, and Environmental Sciences. I extend my deepest gratitude for the financial assistance provided without which, this journey would have been much more difficult.

Many thanks to the Cleveland Metroparks, in particular, Terry Robison, Connie Hausman, and all PCAP personnel involved in not only characterizing the soil and vegetation of the study plots but also assisting in the collection of worm and litter samples. It is through their efforts that the detail of this study was made possible. Thanks also to Nidia Arguedas for furnishing a sample population of preserved spp. which was instrumental in developing the corresponding allometric equation and for sharing her passion and knowledge of earthworms.

Thanks to graduate and undergraduate students Sarah Cutteridge, Courtney Brennan, Kelly Thompson, Klaire Freeman, Anthony Rodgers, Susan Blair, and Paul Santovin for their help with sample preparation and invertebrate identification.

Thanks to Mike Walton and Julie Wolin for the use of their laboratories, resources, and expertise. My sincere appreciation goes to committee advisors, Bob Krebs, Julie Wolin, and Yung-Tse Hung for their time, feedback, and helpful suggestions in creating a better thesis.

Special thanks to Mike Walton for his guidance, insights, and unquenchable passion for all things ecological.

I send my love and gratitude to Mom & Dad for their unconditional love and moral support in pursuing my aspirations, even those that defy conventional wisdom. Thanks to my partner, Deb, for her encouragement, understanding, and love, and to my friends, for their support and encouragement, particularly Patrick, who planted the first seed to pursue an advanced degree. Finally, my gratitude goes to Jeff Dean for giving me the chance to prove myself.

INFLUENCE OF EARTHWORMS ON PLANT AND SOIL INVERTEBRATE COMMUNITIES OF THE CLEVELAND METROPARKS

ANTON F. SCHERMAIER

ABSTRACT

No native earthworms exist in the Great Lakes region of Ohio. All earthworms found in previously glaciated areas of the United States either migrated from unglaciated areas or were introduced as a result of human activities such as agriculture and sport fishing. Non-native earthworms may facilitate dramatic changes in structure and function of plant and invertebrate communities of forest ecosystems.

This study examined how the presence of non-native earthworms within the

Cleveland Metroparks may correspond with plant and soil invertebrate communities.

Special attention was given to the Asian , Amynthas spp., a recent arrival to northeastern Ohio and a particularly aggressive colonizer.

Earthworms and leaf litter were sampled at a set of well-characterized study plots.

Length-based allometric equations available in the literature were applied to measure earthworm biomass of most species, and here a new equation for Amynthas was derived.

A computer-based method was used to measure length and required less time and effort and produced values of significantly lower variability than the traditional ruler method.

Higher abundances and biomasses of earthworms were associated with degraded plant communities. Although decreased litter mass correlated with greater earthworm activity, invertebrate communities were not degraded; in fact there appeared to be a modest beneficial effect. Earthworm activity changed soil chemistry as demonstrated by selective decreases in soil carbon, nitrogen, and phosphorus. Soil composition also

iv

affected earthworm communities as low pH favored an acid–tolerant species and was associated with moderate earthworm densities. A strong negative interaction between abundances of Amynthas and those of other exotic earthworms was found, yet Amynthas did not exert a distinctive influence upon plant or invertebrate communities.

v

TABLE OF CONTENTS

ABSTRACT ...... iv

LIST OF TABLES ...... ix

LIST OF FIGURES ...... x

CHAPTER

I. GENERAL INTRODUCTION ...... 1

1.1 Historical Context ...... 1

1.2 Earthworms in Northeastern Ohio ...... 3

1.3 Earthworm Ecological Groups ...... 5

1.4 The Arrival of Amynthas ...... 6

1.5 Biomass Estimation and Allometry ...... 7

1.6 Hypotheses ...... 8

1.7 The Structure of this Thesis ...... 10

II. ALLOMETRY OF AMYNTHAS ...... 11

2.1 Methods...... 12

2.1.1 ImageJ Verification ...... 14

2.1.2 Statistics ...... 14

2.2 Results ...... 15

2.3 Discussion ...... 18

III. CLEVELAND METROPARKS COMMUNITY ASSESSMENTS ...... 23

3.1 Methods...... 23

3.1.1 Plant Community and Soil Assessments...... 23

3.1.2 Earthworm Sampling ...... 26

vi

3.1.3 Invertebrate Community Quantification ...... 31

3.1.4 Statistical Analyses ...... 33

3.1.4.1 Earthworm – Plant Interactions ...... 33

3.1.4.2 Earthworm – Invertebrate – Litter Interactions ...... 34

3.1.4.3 Earthworm – Earthworm Interactions ...... 34

3.1.4.4 Earthworm – Soil Interactions ...... 35

3.2 Results ...... 36

3.2.1 Plant Communities ...... 37

3.2.2 Invertebrate Communities ...... 38

3.2.3 Earthworm Communities ...... 39

3.2.4 Soil Chemistry ...... 45

3.2.5 Earthworm – Plant Interactions ...... 46

3.2.6 Earthworm – Invertebrate Interactions ...... 47

3.2.7 Litter – Invertebrate/Earthworm Interactions ...... 48

3.2.8 Earthworm – Earthworm Interactions ...... 49

3.2.9 Earthworm – Soil Interactions ...... 51

IV. DISCUSSION ...... 55

4.1 Hypotheses ...... 55

4.2 and Succession ...... 58

4.3 The Puzzle ...... 59

4.4 Land Use History and Earthworm Influence ...... 60

4.5 The Influence of Amynthas ...... 62

4.6 Sampling Methods and Weather Conditions ...... 63

vii

4.7 Future Work ...... 65

4.8 Final Thoughts ...... 65

BIBLIOGRAPHY ...... 68

APPENDICES

A Earthworm Allometry: Raw Data…………………………………………… 81

B. Earthworm Allometry: Source Equations…………………………………… 85

C. Earthworm Allometry: Ruler Method Subsample Data……………………... 86

D. Metroparks Field Study: Plant Community Data……………………………. 87

E. Metroparks Field Study: Soil Chemistry Data………………………………. 90

F. Metroparks Field Study: Earthworm Raw Data…………………………….. 92

G1. Metroparks Field Study: Plot Profile, by Earthworm Species……………… 123

G2. Metroparks Field Study: Plot Profile, by Earthworm Genus………………. 127

H. Metroparks Field Study: Litter Data………………………………………… 129

I. Earthworm – Plant Community Interactions………………………………… 131

J. Earthworm – Invertebrate Community / Litter Interactions…………………. 132

K. Earthworm – Earthworm Community Interactions………………………….. 135

L. Earthworm Community – Soil Chemistry Interactions……………………… 136

M. Metroparks Field Study: Invertebrate Raw Data……………………………. 138

N. Earthworm Identification Table……………………………………………... 141

viii

LIST OF TABLES

Table Page

I. AFDM Determination Using ImageJ Method ……………………...... 16

II. Subsample Comparison of ImageJ vs. Ruler Methods……………………... 16

III. Subsample Comparison of Actual vs. Predicted AFDM's…………...... 16

IV. Feature Comparison between ImageJ and Ruler Methods…………………. 21

V. Earthworm Ecological Groups……………………………………...... 31

VI. Earthworms of the Cleveland Metroparks…………………………………. 41

ix

LIST OF FIGURES

Figure Page

1. Arc Approximation Comparisons…………………………………………… 13

2. Ordinary Least Squares Regression for Amynthas spp……………………… 17

3. Regression Comparing ImageJ and Ruler Methods…………………………. 18

4. Comparison of Actual and Predicted AFDM‘s for ImageJ and Ruler Methods…………………………………………………. 20

5. PCAP Plot Locations for Earthworm and Litter Samples…………………... 25

6. Typical PCAP Plot Module Layout………………………………………… 26

7. Color Negative Digital Image of Earthworm Specimen…………………….. 28

8. Plant Community Characteristics…………………………………………… 37

9. Invertebrate Community Characteristics…………………………………… 38

10. Relative Earthworm Abundance and Biomass by Plot ID………………….. 40

11. Soil Chemistry Summary…………………………………………………... 45

12. Significant Earthworm-Plant Interactions………………………………….. 46

13. Significant Earthworm-Invertebrate Interactions…………………………… 47

14. Significant Litter-Invertebrate/Earthworm Interactions……………………. 48

15. Correlations between Aporrectodea, , and Octolasion…………... 49

16. Earthworm Abundance by Genus for Plots with and without Amynthas …… 50

17. Earthworm Biomass for Plots with and without Amynthas ………………… 50

18. Significant Earthworm-Soil Interactions……………………………………. 52

19. Soil pH at Plots with Dendrobaena and Those without…………………….. 53

20. Regression Lines for pH vs. Mg for Plots with and without Earthworms…... 53

x

CHAPTER I

GENERAL INTRODUCTION

1.1 Historical Context

Earthworms have not been native to the northern temperate forests of North

America since the end of the Wisconsinan glaciations 12,000 years ago. Their reintroduction began in the 1700‘s with the arrival of European settlers and continues today through human activities such as agriculture, sport fishing, road building, and recreation (Hale et al. 2004; Hendrix 2006; Cameron et al. 2007).

Earthworms have long been recognized as beneficial agents in gardens because they facilitate soil aeration and turn-over and increase availability of soil nutrients to plants (Briones et al. 2011; Eriksen-Hamel & Whalen 2007; Schrader & Seibel 2001;

Bhadauria & Ramakrishnan 1996). However, in native forests of the Great Lakes region, the effects of invasive earthworms are largely detrimental (Hale et al. 2005; Frelich et al.

2006). Non-native earthworms alter foodwebs and degrade plant and invertebrate communities; they also change the structure and chemistry of the litter and soil layers of

1

the forest floor (Frelich et al. 2006; González et al. 2003; Bohlen et al. 2004; Dechaine et al. 2005; Hale et al. 2005; Holdsworth et al. 2008; Costello & Lamberti 2008). Long- term impacts may include successional changes in both forest under- and overstories as well increased nutrient loads in the surface water runoff, thus overwhelming the nitrogen buffering capacity of riparian zones, ultimately altering the nutrient balances in downstream aquatic ecosystems (Costello & Lamberti 2008).

Non-native earthworms compete with other organisms both directly and indirectly. They compete directly for food (Snyder et al. 2008). Depending on their ecological group, earthworms may consume litterfall or soil organic matter (Ernst et al.

2009; Sackett et al. 2013) and negatively influence seedling establishment (Asshoff et al.

2010). The forest floor food web is highly dependent upon this organic matter as both a source of nutrition and environmental stability. Additionally, the litter serves as a nursery for understory plants.

Once organic material is processed through an earthworm, it is mineralized into a highly water soluble form that is easily washed away by normal precipitation. The benefit of nutrient processing in place becomes compromised thereby mobilizing nutrients and increasing the riparian nutrient processing burden. Uncaptured nutrients may then enter the watershed to cause additional damage (Burtelow et al. 1997; Costello

& Lamberti 2008; Howarth 1995).

Within a forest, the majority of all biological activity happens on the forest floor and a healthy forest consists of a thick, protective, multi-year layer of duff which provides protection from excessive drying, heat, and cold. By limiting moisture loss, it maintains a high humidity within its layers.

2

Non-native earthworms, namely epigeic and anecic varieties, also compete indirectly with other organisms through accelerated leaf litter consumption and thus consume the physical environment that other forest floor organisms depend upon. In some cases, excessive litter consumption will leave a forest floor bare, dry, and mineral poor.

1.2 Earthworms in Northeastern Ohio

There are no native earthworms in the Great Lakes region of Ohio, yet due to human activity, exotic earthworms are now widespread in northeastern (N.E.) Ohio. The exotic earthworms of N.E. Ohio, as well as the rest of North America, are so-called

―peregrine‖ species that are able to colonize a broad range of environmental conditions.

Hence, these worms, originally of European and Asian origin, now occur on every continent except Antarctica (Bohlen et al. 2004).

Although these non-native taxa, such as Lumbricus and Aporrectodea are well- established, their effects on local forests have received little study and are poorly understood. Previous studies of the ecological impact of exotic earthworms have primarily focused on the impacts of earthworms within largely undisturbed forests into which earthworms were new arrivals (Hale et al. 2005; Frelich et al. 2006). The focus on recent colonization is understandable from the perspective of the need to suppress the spread of worms to protect sensitive and high-value forest resources. However, exotic earthworms are likely to have been residents of the forests of N.E. Ohio for decades, especially those within or near urban areas. Cities are centers of activities that promote earthworm introductions (e.g., international commerce, lawn care and gardening), and

3

cities like Cleveland, have been the points of entry for earthworms into the Great Lakes region, although actual dates of entry are difficult to discern (Steinberg et al. 2005;

Szlavecz et al. 2006). Therefore, the forest ecology of N.E. Ohio is likely to represent the long-term effects of exotic earthworms. From this perspective, the study of earthworms of N.E. Ohio is of interest, since the ecology of the region‘s forests may provide insight into what is in store for locations at which earthworms have only recently arrived, and may reveal the extent to which forests adjust to the long-term effects of earthworms. In addition, earthworms have been demonstrated to interact with other stressors in urban/suburban forests. Hence, N.E. Ohio provides opportunities for investigating interactions of earthworm invasions with respect to land use history (Szlavecz et al. 2011;

Frelich et al. 2006), understory damage due to excessive deer browse (Cotè

2004;Holdsworth et al. 2007; Nuzzo et al. 2009), invasive plant competition (Aronson &

Handel 2011), and anthropogenic habitat degradation (Matlack 1993). Furthermore, N.E.

Ohio may be an especially important location for investigations of exotic earthworms because it is currently undergoing the invasion of a particularly aggressive Asian exotic earthworm, Amynthas spp., thus providing an opportunity to investigate the invasion dynamics of a new arrival into a region where European exotics are already well- established. Amynthas is also colonizing some of the remaining forests of N.E. Ohio that were devoid of earthworms (B. M. Walton, per. comm.) in the Cuyahoga Valley National

Park.

4

1.3 Earthworm Ecological Groups

Earthworms are generally categorized into ecological groups that reflect feeding preferences and burrowing behaviors. Although there is not universal agreement on all classifications, three major groups are delineated as follows. Epigeic earthworms are surface dwellers; they both live in and feed on litter and do not burrow significantly.

Endogeic earthworms are found in the top layers of the soil horizon and consume the organic matter contained within; they are known to create superficial burrows that run in approximately horizontal directions. Anecic earthworms tend to be larger than other groups; they create permanent vertical burrows that may extend as deeply as two meters, yet return to the surface to feed on litter (Hale 2007; Asshoff et al 2010).

Additional classifications are beginning to come into wider usage to reflect the continuum of behaviors observed in specific taxa. They are epi-endogeic, endo-anecic, and epi-anecic. In each case, earthworms of these subcategories share characteristics of both groups. For example, L. rubellus is classified as an epi-endogeic and is larger than typical epigeics; it is often found near the surface yet still burrows in topsoil horizons and consumes organic matter like other endogeics. L. terrestris is another example of a mixed group; it is considered an epi-anecic, since as a juvenile, it behaves more like an epigeic earthworm, feeding on and dwelling in the litter. Once mature, its behavior reflects that of an anecic species, spending most of its time deep within its burrow, when not foraging at the surface (Asshoff et al. 2010; Felten & Emmerling 2009).

5

1.4 The Arrival of Amynthas

Of great interest is the recent arrival of the Asian earthworm Amynthas; it is a particularly aggressive colonizer with a high metabolic and reproductive rate.

Established populations were first documented in N.E. Ohio forests in 2009 by Nidia

Arguedas, Conservation Planner with the Cleveland Metroparks (unpublished data), though their presence in the landscaped environment was observed since the late 1980s in

Summit County and early 1990‘s in Lake County (Arguedas 2012, email communication,

November 13th). Since Amynthas is a newcomer, its reproductive and feeding strategies may be sufficiently novel to allow it to outcompete native or naturalized organisms as was documented with other non-native species of earthworms by Tiunov et al. (2006).

The effects of Amynthas may be especially significant for forests that have experienced few earthworm invasions and are likely to have ―at risk‖ native specialist organisms as was found in one study in the Great Smoky Mountains National Park where densities of

Amynthas agrestis suppressed the abundance and diversity of native millipedes (Snyder et al. 2008). In a stand of mature forest at the Smithsonian Environmental Research

Center, Amynthas hilgendorfi has been shown to have a stronger effect on forest floor biogeochemistry than other non-native earthworms (Szlavecz et al. 2011).

The earthworms in this study that are identified as Amynthas spp., belong to the

Amynthas hilgendorfi species-complex as established by Blakemore (2003) and are hereafter referred to as ―Amynthas spp.‖ or simply ―Amynthas‖, although the two most likely representative members are Amynthas hilgendorfi and . DNA barcoding positively identified these two species from collection sites within the

Cleveland Metroparks (Arguedas 2010). The taxonomy of Japanese earthworms contains

6

many ambiguities and identification errors that are most likely due to their tendencies toward parthenogenetic polymorphism, where some species names are based upon degraded morphs (Blakemore 2008).

1.5 Biomass Estimation and Allometry

Biomass is a relative indicator of the amount of matter and energy that is being drawn from an environment by an organism (Begon et al. 2006). If the biomass of an invading community is known, its potential impact can be estimated. The fresh weight of an organism, however, is unreliable as a measure, particularly for earthworms, since their water content is highly variable. Ash-free dry mass (AFDM) is therefore, the preferred method of biomass estimation (Hale et al. 2007). AFDM also has the additional advantage of being the approximate equivalent of carbon that is bound within an earthworm population. Unfortunately, AFDM is a laborious and time-consuming process wherein the specimen is ultimately destroyed. Allometry provides a reasonable alternative at a fraction of the time and resources and does not require destruction of the specimen. An allometric equation is one that predicts the measurement of one body characteristic based upon the actual measurement of another. In this case, the length of an earthworm is used to predict its ash-free dry mass. To derive this equation, a representative sample set is required, where the actual AFDM is known. Afterward, a simple centerline measurement of subsequent specimens produces a reasonably good estimate of biomass.

To date, only a few papers have been published that provide allometric equations for biomass estimation of a number of species (Hale et al. 2004; Greiner et al. 2010).

7

Greiner et al. (2010) developed an allometric equation for A. hilgendorfi from a population of earthworms collected in southeastern Michigan. In this thesis, I present an allometric equation for biomass estimation of Amynthas, based upon a collection of specimens from N.E. Ohio forests that spans a wider range of body lengths. This equation also provided a test for the applicability of allometric equations of Amynthas obtained from geographically different populations. In addition, I developed a computer- based method for length measurement that uses digital imagery and image analysis software. This method of length measurement is faster and easier than the traditional ruler method and has the added benefit that a specimen can be re-measured any number of times even after it is no longer physically available. I also repeated the length measurements using the ruler method on a subsample (n=30) of the dataset and present a statistical comparison between the two methods. Both the similarity of means and the variability of measurements were examined to demonstrate that the computer-based method is capable of producing more consistent, higher quality measures of length.

1.6 Hypotheses

During the summer of 2010, the Cleveland Metroparks initiated a multi-year Plant

Community Assessment Program. They conducted an extensive survey of 108 randomly selected study plots within the park system of N.E. Ohio. The survey included parameters such as soil composition, plant habitat quality, and plant community composition. Afterward, 63 of these plots were randomly selected and sampled for both earthworms and leaf litter. This was a unique opportunity to leverage extensive plant community data against corresponding earthworm abundance and diversity.

8

The majority of my work focused on characterizing earthworm abundance and diversity at those 63 study plots, to determine how they correlated with plant and soil invertebrate community composition. Special attention was given to Amynthas to determine if it exerted any measureable effects upon the ecosystems it invaded, and to identify those characteristics corresponding to an invasion.

The central question is: Do earthworms exert a measurable influence on forest ecosystems within the Cleveland Metroparks as indicated by measures of soil chemistry and plant and soil invertebrate community composition? I address this question by proposing these five hypotheses:

1. Higher abundances and/or biomass of non-native earthworms are associated with degraded plant communities.

2. Higher abundances and/or biomass of non-native earthworms are associated with degraded soil invertebrate communities.

3. Higher abundances and/or biomass of Amynthas are associated with degraded plant communities.

4. Higher abundances and/or biomass of Amynthas are associated with degraded soil invertebrate communities.

5. Earthworm activity and soil composition mutually influence one another.

9

1.7 The Structure of this Thesis

This thesis consists of two interconnected themes. The first focuses on deriving an allometric equation for Amynthas to be incorporated into the second theme, that of determining the influence of earthworms on plant and invertebrate communities.

Chapter II, ALLOMETRY OF AMYNTHAS, is self-contained; it consists of methods, results, and discussion. In addition to the derived equation, I also present a new procedure for specimen length determination. After this chapter, no further references are made to allometry or its procedures beyond the equations used for predicting biomass.

Chapter III, CLEVELAND METROPARKS COMMUNITY ASSESSMENTS, focuses the methods and results used to characterize the influence of earthworms within the Cleveland Metroparks. The methods sections present techniques used to collect data and to characterize each community and potential interactions. The results sections follow with community summaries and respective interactions.

Chapter IV, DISCUSSION, concludes with my insights on the results from the previous chapter.

10

CHAPTER II

ALLOMETRY OF AMYNTHAS

In this chapter, I describe new procedures for developing allometric equations for estimating earthworm biomass and illustrate the use of this procedure for estimating

AFDM for the invasive earthworm, Amynthas spp. found in N.E. Ohio. In addition, I present analyses of the accuracy and precision of the new method compared to the traditional method.

There are a number of potential sources that contribute to the error of predicted

AFDM. One such error originates during length measurement. Limitations in eye discrimination and in measurement tools make manual measurements more prone to error as object size decreases. The ImageJ and ruler methods were compared to determine if such limitations exist. A significant correlation would indicate that the precision of a given method was limited by the size of the specimen.

Another possible source of length error may be the degree of curviness (sinuosity) of a specimen. This could be expected since the centerline of a perfectly straight specimen is much easier to determine than one that sharply curved. I quantify specimen- sinuosity and test for a relationship with the magnitude of predicted AFDM error.

11

2.1 Methods

A set of 160 preserved earthworms were used for the allometry study. The earthworms were collected from N.E. Ohio forests managed by Cleveland Metroparks during 2009 and identified as members of the Amynthas hilgendorfi species-complex.

Specimens were set in 10% formalin for a minimum of 24 hours then transferred to 80% isopropanol for long-term storage.

Earthworm specimens were photographed using a Canon EOS Digital Rebel XT camera body and an EF-S18-55mm f3.5-5.6 lens. Images were stored as 12 megapixel, monochrome, high-resolution data files. Files were subsequently transferred to a computer system installed with ImageJ (v1.42q) image analysis software that was downloaded from http://imagej.nih.gov/ij/. Length measurements were made for each specimen using its corresponding digital image. The process was similar to the ruler method except that with ImageJ, the image was typically magnified to 12 times its original size and then measured using a 2 µm resolution virtual ruler by clicking down a series of line segments along the centerline to yield the total length. Just as the total length of 3 line segments used to approximate an arc will be shorter than 12 line segments used to approximate the same arc, a better approximation of centerline length is accomplished using shorter, more numerous segments (Fig. 1). This is especially true when measuring a specimen that has sharp curves along its length.

Each individual was measured three times and the mean taken. Individuals were placed in a drying oven for a minimum of 48 hours at 65 ˚C. Upon removal, dry weights were immediately recorded (± 0.1 mg). Dried individuals were placed in ceramic

12

crucibles and ashed at 500˚C for a minimum of 4 hours then removed and cooled in a desiccator. Subsequent ash weights were recorded. Ash-free dry mass (AFDM) was determined by subtracting ash mass from dry mass for each individual to yield a standardized mass of organic matter per individual.

Figure 1. Arc Approximation Comparisons. The top arc is approximated by 3 line segments. Its reproduction is a crude representation and obviously shorter than the original. The bottom arc is approximated by 12 line segments. Its reproduction is a significant improvement over the 3 segment arc and is also slightly longer since it is a more faithful approximation.

13

2.1.1 ImageJ Verification

I compared the performance of ImageJ-based length measurements to the standard method of length measurement using a ruler. A subset of individuals was selected to be re-measured using the ruler method. Selection of individuals proceeded as follows. The span between the shortest and longest individuals (n=160) was divided into three equal ranges, designated as small, medium, and large. Ten individuals were randomly selected from each of the size ranges (Appendix C) using random numbers generated by random.org. To ascertain whether ImageJ yielded comparable results, the sub-sampled individuals (n=30) were measured with a ruler along the centerline and recorded to the nearest 0.5 mm. Each individual was measured three times and the mean taken.

2.1.2 Statistics

Microsoft Excel 2007, version 12.0.4518.1014, was used to perform all t-tests and regressions. Systat MYSTAT 12 for Windows, version 12.02.00, was used for all

Pearson correlations.

Ordinary least squares regression was performed for overall length vs. AFDM.

Predicted AFDM‘s were calculated for the ―Schermaier‖ equation (presented in section

2.2) using both ImageJ and ruler methods along with the equation published by Greiner et al. (2010):

, R2 = 0.85

Two-tailed t-tests and percent errors were calculated for comparisons between actual and predicted values (Schermaier equation using ImageJ method, Schermaier

14

equation using ruler method, and Greiner equation using ruler method). Percent error was calculated as follows:

A Pearson correlation was performed for both ImageJ and ruler methods for mean lengths and coefficients of variation (C.V.) to determine if the specimen size was related to the variability of its measured length.

The formula for sinuosity index was adapted to earthworm specimens:

A Pearson correlation was performed on sinuosity vs. the percent error for ImageJ

Predicted AFDM to test for a relationship.

2.2 Results

Overall length, dry mass, ash, and AFDM values are summarized in Table I.

Figure 2 represents the allometric equation (subsequently referred to as the Schermaier equation) relating overall length to AFDM of Amynthas spp. from N.E. Ohio.

The ruler method produced a length that was an average of 3.4% less than the

ImageJ method. Predicted AFDM‘s were determined using the Schermaier equation for both ruler and ImageJ length measurements and subsequent percent errors calculated.

The ImageJ method (-0.2% error) was better than the ruler method (7.5% error) at predicting AFDM across the entire sample.

15

Table I: AFDM Determination Using ImageJ Method. Following equations determined using ordinary least squares method.

Mean S.E. Min Max Length (mm) 58.8 2.5 13.3 145.7 Dry mass (mg) 225.8 22.7 1.7 1127.4 Ash mass (mg) 131.5 14.8 0.2 760.5 AFDM (mg) 94.3 8.2 1.0 469.7 N=160

Table II: Subsample Comparison of ImageJ vs. Ruler Methods. P-Values are for two-tailed t-tests between ImageJ and ruler methods for quantities of length and C.V.

ImageJ Method Ruler Method Mean S.E. Min Max Mean S.E. Min Max P Length (mm) 63.4 5.5 20.6 109.1 61.4 5.4 19.3 105.5 0.8 C.V. 0.003 0.0002 0.001 0.006 0.013 0.0019 0 0.035 <0.001 N=30 of 160

Table III: Subsample Comparison of Actual vs. Predicted AFDM's. P-values determined using two- tailed t-tests between actual AFDM and each of the predicted AFDM‘s. The Schermaier and Greiner equations are being compared to establish that they are comparable. The ImageJ and ruler methods are being compared to determine if the two techniques for ascertaining length are equivalent. The intent is to establish that the Schermaier / ImageJ combination is at least as precise and accurate as the alternatives.

AFDM (mg) Mean S.E. Min Max P Actual 108.7 18.7 6.6 320.6 Schermaier / ImageJ Method, Predicted 104.5 17.1 5.3 280.0 0.87 Schermaier / Ruler Method, Predicted 97.2 15.9 4.5 258.5 0.64 Greiner / ImageJ Method, Predicted 128.0 21.3 5.7 349.9 0.50 N=30 of 160

The mean lengths obtained with ImageJ did not differ significantly from lengths measured using a ruler (Table II). However, lengths obtained by ruler were much more

16

variable than those obtained with ImageJ (Table II). The coefficient of variation (C.V.) for ruler measures was 5-fold greater than the C.V. for ImageJ length measures.

For the ruler method, length and C.V. are related (r=-0.61, P=0.001) but not for the ImageJ method (r=-0.17, P=0.36). This reveals that the precision the ImageJ method is not significantly affected by specimen size (Fig. 3).

The curviness of a specimen does not appear to contribute to length error when using the ImageJ method since a correlation between sinuosity and percent error of predicted AFDM produced no significant relationship (r=0.09, P=0.63).

Each predicted AFDM (Schermaier/ImageJ method, Schermaier/ruler method, and Greiner/ImageJ method) was compared to the actual AFDM using a t-test; no significant differences were found (Table III).

0.00

-1.00

-2.00 ln(AFDM) = 2.38*ln(Length) - 12.45 -3.00 R2 = 0.96 -4.00

AFDM (ln g) AFDM -5.00

-6.00

-7.00

-8.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Length (ln mm)

Figure 2. Ordinary Least Squares Regression for Amynthas spp. The trendline represents the allometric relationship between earthworm length and its corresponding biomass.

17

0.040

0.035 ImageJ By Ruler 0.030 Linear (ImageJ) 0.025 Linear (By Ruler)

0.020 C.V.

0.015

0.010

0.005

0.000 20.6 28.7 44.3 60.4 89.7 99.0 Length (mm)

Figure 3. Regression Comparing ImageJ and Ruler Methods. Ordinary least squares regression. The horizontal line of the ImageJ method indicates no relationship between specimen size and variability in the measures of length. The declining line of the ruler method indicates that length variability decreases as specimen size increases.

2.3 Discussion

Figure 2 represents the resultant allometric relationship between overall length and AFDM. The predictive power for this dataset, as represented by R2 (the coefficient of determination) is very good, indicating that nearly 96% of the variation can be explained by the statistical model. This suggests that the equation will be highly applicable to subsequent sample populations of Amynthas spp. that are derived from comparable environments. Using the Schermaier equation to predict AFDM yields a mean error of -4.1%.

Although any individual prediction is susceptible to error, a sufficiently large sample set is likely to produce a very reasonable estimate of AFDM for Amynthas spp.

18

Applying the Greiner equation to the same study population yields a mean error of -

21.7%.

Table III demonstrates that there are no statistically significant differences between the Schermaier and Greiner equations or the ImageJ and ruler methods. This verifies that both the Schermaier and Greiner equations are comparable for geographically separate Amynthas populations. It also confirms that length measurement using ImageJ is a suitable alternative to the ruler method.

Although sinuosity does not appear to contribute to length errors, death and preservation may still be a source of error. For example, the proboscis is sometimes fixed while fully extended in some individuals, whereas, it is contracted in others.

Similarly, various regions along the length of an earthworm might also be non-uniformly relaxed or contracted, thus causing some fraction of error in the allometric relationship.

The ruler method produced consistently shorter and more variable measures of length than did the ImageJ method. One factor that contributed to this was that the measuring tool used by ImageJ was of a higher resolution (2 µm vs. 500 µm for the ruler method); another factor was that the effective specimen size was much larger due to image magnification, thus permitting shorter line segments to be used to measure overall length.

Note that in 23 out of 30 samples, the predicted AFDM‘s were closer to each other in value than they were to the actual AFDM (Fig. 4). This suggests that the two length measurement methods were not only reliable and comparable but that the error was caused by a variation in AFDM that was not accounted for in the actual AFDM determination.

19

350.00

Actual AFDM 300.00 Schermaier Predicted AFDM / ImageJ Method Schermaier Predicted AFDM / Ruler Method 250.00

200.00

AFDM (mg) AFDM 150.00

100.00

50.00

0.00 Ascending Length

Figure 4. Comparison of Actual and Predicted AFDM's for ImageJ and Ruler Methods. Actual AFDM refers to values determined through ash-free dry mass determination. The Schermaier Predicted AFDM‘s are estimated values of AFDM using the Schermaier allometric equation. In one case, lengths determined using the Image-J method were used as inputs to the allometric equation, in the other, ruler-based lengths were used.

20

Table IV: Feature Comparison between ImageJ and Ruler Methods. Maximum resolution is a function of the original magnification of the camera lens. Greater image resolution is possible using a lens with higher magnification. ImageJ Method Ruler Method

Digital camera, stand, lighting, Required Equipment Ruler, specimen probes computer, ImageJ, labels, and ruler

Moderate: requires camera setup, None, though may use Setup photographing, and transfer to dissecting scope computer

Time-consuming and Quick and easy since measuring is laborious; accuracy may done using a pointing device and a suffer due to worker fatigue; Measurement magnified specimen image; specimen subject to drying minimal handling of specimen (only and mechanical damage. when photographing) Longer worker exposure to chemical preservatives

Unlimited: multiple digital copies Only possible if original Re-measurability of specimen may be stored and specimen is still available distributed and intact

Maximum Image 60 : 1 1 : 1 Magnification

**Maximum 2 µm 500 µm Resolution

Length Stability: 0.00262 0.0131 Mean C.V.

Best for small or ad hoc Especially good for large datasets measurements or when Applicability or where high archival integrity is specialized equipment is not desired available

Gut contents are the most likely source of error between actual and predicted values, and may also account for disagreement between the equations, since they were derived from different sample populations. Studies reveal that the contents of an earthworm‘s gut can constitute as much as 20% of its AFDM (Edwards & Bohlen 1996;

21

Lee 1985). Therefore soil composition and feeding state exerts a direct influence upon

AFDM through the quantity of non-organismal carbon contributed by the gut. Although not performed for this study, gut flushing prior to drying has been proposed as a method to minimize this source of variation (Hale et al. 2004).

I propose that the ImageJ method of specimen measurement be an addition to, not a replacement for, the ruler method. There are situations where either method may be more appropriate, Table IV.

22

CHAPTER III

CLEVELAND METROPARKS COMMUNITY ASSESSMENTS

3.1 Methods

The Cleveland Metroparks launched a long-term vegetation monitoring program during the summer of 2010 to develop a baseline dataset of terrestrial natural resources.

The Plant Community Assessment Program (PCAP) was based upon hundreds of randomly selected geographic locations distributed throughout the Cleveland Metroparks holdings at which study quadrats were established for quantification of a standardized suite of plant community and soil measures. During the first year of the PCAP, park technicians surveyed 108 plots distributed among 14 park reservations.

3.1.1 Plant Community and Soil Assessments

Once Cleveland Metroparks personnel completed the plant community assessments for the initial 108 plots, they assisted me in sampling earthworms and litter from a subset of these plots. This sampling was performed between September and

October of 2010, where 63 of the 108 plots were randomly selected and sampled (Fig. 5).

Plant community data provided by the Cleveland Metroparks was used to evaluate the interactions between earthworms and plant community structure and quality. Plant

23

community measures used in this thesis were: percent coverage by sensitive plants, percent coverage by tolerant plants, percent bare ground, and Floristic Quality

Assessment Index (FQAI), an aggregated index of plant habitat quality.

Standard measures of diversity, such as Shannon-Weiner Diversity Index, cannot discriminate between disturbed and healthy communities, whereas FQAI is calibrated to local native plant communities to provide a measure of the quality of a given plant community based upon the taxa identified and the area each covers (Andreas et al. 2004).

It is therefore suitable for quantifying ecological disturbances as well as diversity

(Andreas et al. 2004).

Soil composition was also analyzed as part of the PCAP. Measures that were of particular interest included total carbon, total nitrogen, organic matter, and pH, since they can affect and be affected by earthworm activity (Addison 2009; Sackett et al. 2013;

Eisenhauer et al. 2000; Edwards & Bohlen 1996). The following measures were obtained from the PCAP data to test for interactions with earthworm activity: total carbon (%), total nitrogen (%), organic matter (%), pH, phosphorus Bray-P1 (ppm), phosphorus Bray-

P2 (ppm), potassium (ppm), magnesium (ppm), and calcium (ppm). Soil plot data were grouped by presence or absence of earthworms to identify those characteristics that potentially either deter or facilitate colonization. Such grouping could also capture soil characteristics that changed in the presence of earthworm activity.

24

Figure 5. PCAP Plot Locations for Earthworm and Litter Samples. By study plot ID.

25

3.1.2 Earthworm Sampling

At each plot, the study area was typically organized into a 2 x 5 grid of 0.1 hectare modules (10 m x 10 m) where the centerline was oriented to keep the plots within the same plant community (Fig. 6). Four of the ten modules (02, 03, 08, and 09) were more intensively studied; these were the modules where earthworm and litter sampling was performed. At each plot, litter was only collected from one of the intensive modules; this was typically the lowest numbered one (02). Some plots could not be laid out with the standard 2 x 5 grid due to topographic limitations such as an intervening cliff or river.

In such cases, a smaller grid was used to accommodate the circumstances.

Figure 6. Typical PCAP Plot Module Layout. Wherever study plots were large enough to accommodate a 2 x 5 grid, intensively studied modules were always assigned to modules 02, 03, 08, and 09 for consistency.

Each of the four intensive modules was sampled for earthworms using a ⅓ meter frame constructed from PVC pipe. The location within a module was randomly selected by tossing the square over one‘s shoulder into the perimeter of the module. Collection was performed wherever the square landed. In the event that an obstruction such as a

26

large branch or rock prevented effective sampling, the square was repositioned to the nearest adjacent suitable location.

Earthworms were collected using the mustard extraction method (Hale, 2007). I prepared a solution of 10 grams regular yellow mustard powder (purchased at penzeys.com) per liter of water. Since it was impractical to transport as much as 32 gallons of solution into the field, a concentrated premix was prepared. On the day prior to collection, 453 grams of dry mustard powder were placed into a container and filled with warm water to the volume of one gallon (3.79 liters). The contents were shaken until reasonably mixed then refrigerated until the following day. Once in the field, the concentrate was shaken again prior to use. The quantity of 355 milliliters of concentrate was poured into an empty container and then filled with water to the volume of one gallon (3.79 liters). This dilution yielded a mixture with a mustard concentration of approximately 10 g / L.

The top layer of litter or grass was removed so that only bare ground remained.

Approximately 4 liters of liquid mustard mix was poured slowly over the sample area.

All earthworms that emerged within the area during 10 minutes were collected.

Specimens were fixed in 10% formalin within 24 hours of collection for at least 24 hours and then transferred to ethanol for long-term storage.

During the first several collections, 90% isopropyl alcohol was used to anesthetize and transport the earthworms since it was readily available, but I found that the preserved specimens lost noticeable water content and suffered in quality, so I switched to 95% ethanol for subsequent sample collections. Specimens were fixed in

27

10% formalin within 24 hours of collection for at least 24 hours and then transferred to ethanol for long-term storage.

Earthworm specimens were wet-weighed to 0.1 mg then photographed using a

Canon EOS Digital Rebel XT camera body and an EF-S18-55mm f3.5-5.6 lens. Images were stored as 12 megapixel, color, high-resolution data files. Files were transferred to a computer system installed with ImageJ (v1.42q) image analysis software that was downloaded from http://imagej.nih.gov/ij/. Length measurements were made along the centerline for each specimen using its corresponding digital image. Each individual was measured three times and the mean taken. The images were converted to digital negatives at the time of measurement to sharpen the specimen boundaries and to facilitate speedier measurements (Fig.7).

Figure 7. Color Negative Digital Image of Earthworm Specimen. Adult endogeic species, Octolasion tyrtaeum; length: 43mm; wet weight: 462mg.

28

Each sample was identified to genus or, if sexually mature, to species, using a dissecting microscope and an earthworm identification guide (Hale 2007; Appendix F;

Appendix N). One of the features used to identify earthworm species is the arrangement of setae patterns, tiny bristle-like projections used for locomotion. These landmarks can often be difficult to discern, especially for small individuals. I found that illumination with an ultraviolet light causes the bristles to fluoresce, making identification much easier.

AFDM was estimated for each individual using the Schermaier equation and other previously published equations (Hale et al. 2004; Greiner et al. 2010; Appendix B).

Corresponding biomasses by genus, species, and community as well as plot biodiversity and relative earthworm densities were then determined.

Sample collection occurred between September 20, 2010 and October 15, 2010.

The weather conditions for the first two weeks of collection were uncommonly hot and dry. We (Cleveland Metroparks personnel and I) suspected that such conditions might have been suppressing the sample counts below typical field conditions. Two plots were therefore re-sampled (1025 and 1072) in an attempt to establish more representative levels. For any given plot visit, 4 samples were taken and averaged. To remain consistent with this strategy I chose to average the values from the first and second visits rather than simply replacing the original data. Within the dataset, the plots were identified as 1025M and 1072M, respectively, to indicate that they consisted of merged values.

Of the 922 individuals originally collected, 16 were excluded from the dataset for a number of reasons. The majority of exclusions, numbering 11, were actually

29

earthworm fragments; even if the genus or species could have been identified, the biomass would still have been indeterminate. The reason for partial earthworm samples was most likely due to the zeal of collectors trying to capture earthworms that were intent upon escaping. An additional 3 individuals were not earthworms at all. One individual was a perfect specimen but had been inadequately labeled and could not be placed. The final excluded sample was lost before it could be processed. It was a tiny individual that accidentally shot across the lab from the end of a teasing needle and could not be located.

I performed analyses of both earthworm abundance and biomass using specimens that were grouped either by genus or by ecological group. Although genus grouping is expedient and more mathematically precise, it fails to quantify the effects of earthworms in terms of ecological behavior. The difficulty with using ecological groups is that L. rubellus and L. terrestris, while of the same genus, belong to different groups yet are physically indistinguishable as juveniles. This potentially confounds any analysis based upon ecological groups. In a study by Asshoff et al. (2010), L. terrestris juveniles behaved as epigeic earthworms. For their study, hatchlings (fresh body weight < 0.5g) were treated as epigeics.

Using the simplified classifications of epigeic, endogeic, and anecic, I grouped all

L. rubellus adults as well as all Lumbricus juveniles as epigeics. Only L. terrestris adults were classified as anecic (Table V). Admittedly, a number of the Lumbricus juveniles identified in my dataset were significantly larger than 0.5 g and were therefore engaging in some burrowing activities not indicative of epigeics, yet both epigeic and anecic earthworms consume litter. One of the major differences between them is that anecic earthworms are potent translocators of organic matter and mineral soils within the soil

30

horizon; epigeic earthworms have little direct effect on soil. By using this categorization,

I expected that the influence of epigeic earthworms on litter consumption could be overestimated, whereas that of anecic earthworms could be underestimated.

Additionally, any potential soil-mixing and soil chemistry changes caused by L. terrestris juveniles would be attributed to either epigeic or endogeic categories. In summary, the desired interactions would be captured; however, their attribution to L. terrestris would likely be underestimated.

Table V: Earthworm Ecological Groups. The ―Native Ecological Group‖ refers to how earthworm species are often identified in published papers. ―Grouping for Analysis‖ is how the taxa were organized to facilitate analysis based on ecological influence.

Expanded Ecological Groups Basic Ecological Groups Dendrobaena octaedra Dendrobaena octaedra Epigeic rubidus fetida Epigeic Lumbricus rubellus adults Epi-endogeic Amynthas spp. Lumbricus juveniles Aporrectodea calignosa Amynthas spp. Aporrectodea rosea Aporrectodea calignosa Endogeic Octolasion cyaneum Aporrectodea rosea Octolasion tyrtaeum Endogeic Octolasion cyaneum Endo-anecic Aporrectodea longa Octolasion tyrtaeum Epi-anecic Aporrectodea longa Anecic Lumbricus terrestris adults

3.1.3 Invertebrate Community Quantification

Leaf litter collection was performed just prior to earthworm extraction. All litter found within the ⅓ meter PVC frame was collected down to bare ground and placed in a large Ziploc bag. Litter was collected from only one of the intensive modules at each

31

plot, typically the lowest numbered module (02). Sample bags were labeled on their exteriors or with a label placed inside the bag.

The total wet weight of the sample was recorded. A portion of each sample was sub-sampled, weighed, and placed in a Berlese extractor until the litter was completely dry, but always for a minimum of 36 hours. Specimens were stored in 95% ethanol.

Dried litter was promptly reweighed to determine percent moisture and dry mass of each sample.

Invertebrates were counted and identified using a dissecting microscope and identification guides. Specimens were classified to the most specific taxonomic level possible, typically family or order. Data collected included abundance (m-2), species richness (S), Shannon-Weiner Diversity Index (H'), and evenness (E):

In previous studies, microarthropods, particularly the taxa of Acari and

Collembola, were most heavily influenced by earthworm activity (Eisenhauer, 2010;

Cameron et al. 2013; González et al. 2003) I therefore calculated species richness and diversity indices (Figure 9) where specimens were grouped at the taxonomic level of

Order to pool the significance of potential effects. I also determined diversity using morphospecies without grouping taxa, but values did not differ significantly from those shown in Figure 9.

Finally, I tested abundance (m-2) against both dry litter mass (g/m2) and Evenness using Pearson correlation. Since litter mass may depend upon the intensity of earthworm

32

foraging, only plots (N=49) containing both earthworms and litter were included in the correlations. Plots 1011, 1045, 1063, 1064, and AT02 contained earthworms but no litter, whereas plots 1009, 1014, 1038, 1053, 1074, 1136, 1376, 3484, and 3737 contained litter but no earthworms.

3.1.4 Statistical Analyses

Microsoft Excel 2007, version 12.0.4518.1014, was used to calculate all ordinary least squares regressions and t-tests. Systat MYSTAT 12 for Windows, version 12.02.00, was used for all Pearson correlations.

The data for all correlations, regressions, or t-tests were transformed as follows, unless otherwise specified. All proportions and percentages were arcsine square root transformed to stabilize the variance with respect to the mean; for statistical tests, FQAI was divided by 100 and treated as a percentage. Logarithmic functions such as pH were not transformed. All other quantities such as mass, length and abundance were natural log transformed to establish log-normal distributions.

3.1.4.1 Earthworm – Plant Interactions

Both abundance (m-2) and biomass (AFDM mg/m2) for all earthworm genera

(Aporrectodea, Dendrobaena, Dendrodrilus, Eisenia, Lumbricus, Octolasion, and

Amynthas) were tested against plant community metrics (FQAI, Sensitive Plants,

Tolerant Plants, and Bare Ground) using Pearson correlations. In a similar manner, earthworm biomass by ecological group (Epigeic, Endogeic, and Anecic) was tested against the same plant community metrics.

33

3.1.4.2 Earthworm – Invertebrate – Litter Interactions

Analysis of these interactions includes a number of permutations. First, abundance (m-2) and biomass (AFDM mg/m2) for all previously listed earthworm genera were set against aggregated invertebrate community metrics (Abundance and Evenness) using Pearson correlations. I chose not to include diversity (H') in the analysis since

Evenness provides better insight into the equitability of resource use within the invertebrate community and a degraded community is likely to display more unevenness than one that is intact. Dry litter mass (g/m2) was then compared against earthworm abundance and biomass by genus as well as earthworm biomass by ecological group, as previously listed.

Finally, the top five most numerous invertebrate orders in the dataset (Acari,

Arachnida, Coleoptera, Collembola, Hymenoptera) were tested, by abundance, against both the abundance and biomass of earthworms that were grouped by genus, using

Pearson correlations. In the same way, the above invertebrate orders were also tested against earthworm biomass, sorted by ecological group.

3.1.4.3 Earthworm – Earthworm Interactions

All genera of earthworms, as listed above, were tested for interactions with one another, first by abundance and then by biomass, using Pearson correlations. This testing was repeated with earthworms sorted by ecological group but only for biomass.

Earthworm abundances by genus were compared between plots containing

Amynthas (N=12) and those containing other earthworms (N=42), using a t-test assuming

34

unequal variances. A similar set of comparisons was performed for plots containing

Dendrobaena (N=12) and those containing other earthworms (N=42).

The final analysis for this section examined Abundance vs. Biomass at plots containing Amynthas and those containing other earthworms, using ordinary least squares regressions, where trendlines and R2 values were determined.

3.1.4.4 Earthworm – Soil Interactions

Earthworm abundance and biomass by both genus and ecological group were tested against all soil parameters (total carbon, total nitrogen, organic matter, phosphorus

Bray-P1, phosphorus Bray-P2, potassium, calcium, magnesium, and pH), using Pearson correlations.

Plots were also sorted by those containing earthworms (N=54) and those without

(N=9); all soil parameters were then compared using a t-test assuming unequal variances.

The same testing was also performed for plots containing Amynthas (N=12) and those containing other earthworms (N=42). In an additional grouping, plots containing

Dendrobaena (N=12) were compared with respect to pH, to those containing other earthworms (N=42) and using the same t-test assumptions.

Finally, soil magnesium (ppm) vs. soil pH was examined for plots containing earthworms and those without, using ordinary least squares regressions, where trendlines and their R2 values were determined.

35

3.2 Results

The following sections present data that characterize plant, invertebrate, and earthworm communities as well as dry litter mass and soil composition. Subsequently, these data are analyzed for significant relationships.

36

3.2.1 Plant Communities

Figure 8 illustrates the ranges of the habitat characteristics that were determined at the sample plots. Note that for earthworm – plant community interactions, only those plots (N=54) providing earthworm data were tested.

100

90

80

70

60

50

40

Plant Community Plant Characteristics (%) 30

20

10

0

FQAI Sensitive Tolerant Bare Ground

Figure 8. Plant Community Characteristics. The above selected plant characteristics represent the spread of values across all plots (N=63). The following four plant community characteristics were reported for each plot: FQAI (Floristic Quality Assessment Index), Sensitive Plant Coverage (%), Tolerant Plant Coverage (%), and Bare Ground Coverage (%).

37

3.2.2 Invertebrate Communities

Of the 63 study plots visited, 58 were successfully sampled for leaf litter and subsequently produced invertebrate data. Figure 9 presents the ranges of abundance and diversity calculations across the study plots. All plots that produced usable litter also yielded invertebrate specimens.

2.5 8.0 45% 2,500

7.0 40% 16 2.0 N=58

2,000 35% 14

6.0 )

2 12 -

) 30%

max 5.0 1.5 10 1,500 25%

4.0 8

Evenness 20%

1.0 ofPlots Number 6 1,000

Shannon Diversity Diversity Shannon(H') 3.0 Maximum Diversity Diversity (H Maximum 15% Invertebrate Abundance(m Invertebrate 4

2.0 10% 2

0.5 500 0 1.0 5% 1 3 5 7 9 11 Species Richness

0 0.0 0.0 0%

Figure 9. Invertebrate Community Characteristics. Invertebrate Abundance, Shannon-Weiner Diversity Index, Maximum Diversity, Evenness, and Species Richness are based upon specimens grouped at the taxonomic level of Order. The above measures represent the spread of values across plots (N=58) tested for earthworm-invertebrate interactions. The Species Richness bar graph illustrates the frequency of richness across the tested plots.

38

Five of the plots (1011, 1045, 1063, 1064, and AT02) did not produce invertebrate data. At four plots, the sample site was already bare, so litter was not available for collection. The remaining plot did produce litter; however, the sampling bag was not identifiable due to inadequate labeling measures, so it is not known from which of the five it came.

3.2.3 Earthworm Communities

Earthworms were collected from 55 of the 63 plots sampled; no earthworms were found at plots 1009, 1014, 1038, 1053, 1136, 1376, 3484, and 3737. Although plot 1074 was counted as having yielded earthworms, it produced a single specimen fragment and therefore, no usable data.

Of the 922 individuals collected, 906 were complete, usable earthworm specimens. The average abundance per plot was 38/m2 with a maximum of 164/m2 (Fig.

10). Note the substantial range of variation across the dataset, where 17% of the plots

(N=9) accounted for 62% of the total AFDM, whereas 19% of the plots (N=10) accounted for 57% of the total abundance.

Seven genera of earthworms were collected. Lumbricus was the most numerous and also had the greatest biomass. Aporrectodea and Amynthas were the next most numerous, respectively. Although Aporrectodea was substantially more abundant than

Amynthas, Amynthas had a slightly greater biomass, indicating that Amynthas was generally a larger genus of earthworm (Table VI: a1, a2).

39

20%

18%

16%

14%

12%

10%

8% Contribution of Each Plot Each of Contribution 6%

4%

2%

0%

1040 1034 1055 1063 1006 1033 1047 1048 1071 1004 1026 1030 1070 1031 3596 1019 1028 1045 1012 1013 1051 1054 3420 1018 1017 1060 1002 1005 1021 1388 1022 1008 1039 1003 1024 1035 1068 1029 1050 1064 1015 1010 1044 1011 1041 1058 1016 3668 1067 1083

AT02 AT01

1072M 1025M Plots Sorted by Increasing Abundance

Abundance AFDM

Figure 10. Relative Earthworm Abundance and Biomass by Plot ID. Abundance (individuals/m2) and Biomass (AFDM mg/m2) were determined for each plot. Blue bars represent the percent contribution of earthworm abundance with respect to all plots containing earthworms. Red bars represent the percent contribution of earthworm biomass with respect to all plots containing earthworms. For example, if all red bars were stacked together, it would equal 100% of estimated earthworm biomass over all plots containing earthworms.

40

Table VI: Earthworms of the Cleveland Metroparks.

a1) Specimen Summary by Genus. Values are in terms of the plots where each genus was found. ―Presence in Plots‖ indicates the number of plots where a given genus was found. The corresponding percentages do not equal 100% since occurrences of genera among plots are rarely mutually exclusive; the appearance of one or more different genus at any single plot is a common event. Presence

Specimen In Plots Average Total Biomass

% % %

(mg) (mg) (mg)

(mm)

Count Count

AFDM AFDM AFDM Length Genus Wet Wt. Aporrectodea 346 38.2 31 57.4 145.5 29.3 19.6 6790.7 22.7 Dendrobaena 33 3.6 12 22.2 23.1 14.8 4.2 137.2 0.5 Dendrodrilus 14 1.5 5 9.3 98.7 16.6 5.6 78.7 0.3 Eisenia 1 0.1 1 1.9 273.5 15.4 6.2 6.2 0.0 Lumbricus 380 41.9 38 70.4 239.2 31.0 38.9 14766.1 49.4 Octolasion 50 5.5 24 44.4 170.8 27.4 19.4 969.5 3.2 Amynthas 82 9.1 12 22.2 887.5 62.6 87.2 7148.1 23.9 All Genera 906 100.0 54 262.6 28.2 25.9 29896.5 100.0

a2) Abundance and Biomass (m-2) by Genus. This is a continuation of the above table (a1).

Abundance (m-2) Biomass (AFDM mg/m2)

S.E. S.E.

Min Min

Max Max Mean Genus Mean Aporrectodea 25.9 5.8 2.3 110.3 491.4 176.1 3.0 3969.6 Dendrobaena 7.0 1.9 1.1 22.5 36.9 19.0 1.1 235.5 Dendrodrilus 6.3 2.5 2.3 13.5 35.4 15.4 5.4 92.0 Eisenia 2.3 n/a 2.3 2.3 13.9 n/a 13.9 13.9 Lumbricus 22.0 3.3 2.3 78.8 899.5 206.8 2.9 5943.6 Octolasion 4.5 0.7 2.3 15.8 90.1 22.4 0.8 440.3 Amynthas 15.4 3.7 2.3 42.8 1341.9 480.8 78.9 6215.5 All Genera 38.0 5.7 2.3 164.3 1265.1 244.1 1.1 7606.1

41

Table VI: Earthworms of the Cleveland Metroparks (continued). b1) Specimen Summary of Adults by Species. Values are in terms of the plots where each adult was found. ―Presence in Plots‖ indicates the number of plots where a given species was found. The corresponding percentages do not equal 100% since occurrences of species among plots are rarely mutually exclusive; the appearance of one or more different species at any single plot is a common event. Presence

Individual in Plots Average Total Biomass

% % %

(mg) (mg) (mg)

(mm)

Count Count

AFDM AFDM AFDM Length

Genus Wet Wt. A. calignosa 32 13.8 5 10.9 524.1 59.7 66.5 2127.5 11.9 A. longa 1 0.4 1 2.2 444.8 63.1 71.8 71.8 0.4 A. rosea 1 0.4 1 2.2 133.1 31.8 16.2 16.2 0.1 D. octaedra 33 14.2 11 23.9 23.1 14.8 4.2 137.2 0.8 D. rubidus 14 6.0 5 10.9 46.7 16.6 5.6 78.7 0.4 E. fetida 1 0.4 1 2.2 43.2 15.4 6.2 6.2 0.0 L. rubellus 28 12.1 17 37.0 333.2 39.6 47.2 1321.3 7.4 L. terrestris 19 8.2 8 17.4 2010.0 99.0 324.5 6166.2 34.6 O.cyaneum 2 0.9 2 4.3 140.0 32.5 19.8 39.6 0.2 O. tyrtaeum 19 8.2 12 26.1 321.0 39.6 38.1 723.2 4.1 Amynthas spp. 82 35.3 12 26.1 895.2 62.6 87.2 7148.1 40.1 All Adults 232 100.0 46 446.8 43.2 62.5 17836.0 100.0

b2) Abundance and Biomass (m-2) of Adults by Species. This is a continuation of the above table (b1).

Abundance (m-2) Biomass (AFDM mg/m2)

S.E. S.E.

Min Min

Max Max Mean Genus Mean A. calignosa 13.7 5.5 2.3 31.5 923.2 395.8 171.0 2380.3 A. longa 2.3 0.0 2.3 2.3 161.6 0.0 161.6 161.6 A. rosea 2.3 0.0 2.3 2.3 36.3 0.0 36.3 36.3 D. octaedra 5.0 1.4 1.1 13.5 31.0 17.3 1.1 200.8 D. rubidus 6.3 2.5 2.3 13.5 35.4 15.4 5.4 92.0 E. fetida 2.3 0.0 2.3 2.3 13.9 0.0 13.9 13.9 L. rubellus 3.6 0.7 2.3 13.5 172.1 31.5 16.2 504.2 L. terrestris 5.6 1.6 2.3 15.8 1818.8 525.6 406.6 4941.9 O.cyaneum 2.3 0.0 2.3 2.3 44.5 4.0 40.5 48.5 O. tyrtaeum 3.6 0.6 2.3 9.0 137.3 36.8 42.8 440.3 Amynthas spp. 15.4 3.7 2.3 42.8 1341.9 480.8 78.9 6215.5 All Adults 9.1 1.5 0.0 45.0 884.0 179.0 1.1 6215.5

42

Table VI: Earthworms of the Cleveland Metroparks (continued).

c) Specimen Summary for Adults vs. Juveniles.

Individual Total Biomass

% %

(mg) Count Genus AFDM Adults 223 24.6 17805.8 59.6 Juveniles 683 75.4 12090.6 40.4 All 906 100.0 29896.4 100.0

d1) Specimen Summary by Effective Ecological Group. Values are in terms of the plots where each ecological group was found. ―Presence in Plots‖ indicates the number of plots where a given group was found. The corresponding percentages do not equal 100% since occurrences of different ecological groups among plots are rarely mutually exclusive; the appearance of one or more different group at any single plot is a common event. Note that the ―Epigeic‖ ecological group includes all juvenile Lumbricus specimens. Presence

Individual in Plots Total Biomass

% % %

(mg)

Count Count Genus AFDM Epigeic 491 54.2 50 92.6 15970.1 53.4 Endogeic 396 43.7 37 68.5 7760.2 26.0 Anecic 19 2.1 8 14.8 6166.2 20.6 All 906 100.0 54 29896.5 100.0

d2) Biomass and Abundance (m-2) by Effective Ecological Group. This is a continuation of the above table (d1).

Abundance (m-2) Biomass (AFDM mg/m2)

S.E. S.E.

Min Min

Max Max Mean Genus Mean Epigeic 21.9 2.6 2.3 74.3 727.4 134.8 1.1 6215.5 Endogeic 24.6 5.2 2.3 110.3 470.1 150.3 3.0 3969.6 Anecic 5.6 1.6 2.3 15.8 1818.8 525.6 406.6 4941.9 All 38.0 5.7 2.3 164.3 1265.1 244.1 1.1 7606.1

43

Adults comprised only one quarter of the total number of individuals, yet they accounted for 60% of total biomass (Table VI: c). When only adult, sexually mature individuals were considered, Amynthas was far more abundant than any other genus and had the greatest total biomass, although it was nearly equaled by the biomass of

Lumbricus (Table VI: b2).

At any given study plot yielding earthworms, an average of 2 genera were found, although some plots contained as many as 5. Across all plots, 7 genera representing 11 species were found (Appendix G1; Appendix G2). Twenty-two percent of the plots with earthworms contained between 1 and 19 individuals of Amynthas (Table VI: a1).

44

3.2.4 Soil Chemistry

Soil chemistry data were grouped by plot, according to the presence or absence of earthworms. The spread of values are summarized below (Fig. 11).

35 350 3500 8

30 300 3000 7 6 25 250 2500 5 20 200 2000 4

15 150 1500 pH Soil

3

Calcium (ppm) Calcium Potassium (ppm) Potassium

10 Magnesium(ppm) 100 1000 2

5 50 500 1

0 0 0 0 20 16

16 P2 P2

- 12 P1 P1 (ppm) - 12 Earthworms 8 No Earthworms

8 (ppm)

4

4 BrayPhosphorus, Phosphorus, BrayPhosphorus, 0 0 12 0.50 35 0.45 10 30 0.40 0.35 25 8 0.30 20 6 0.25 0.20 15 4

Total Carbon(%)Total 0.15

Total NitrogenTotal(%) 10 Organic MatterOrganic (%) 0.10 2 5 0.05 0 0.00 0

Figure 11. Soil Chemistry Data. The above figures summarize the observed spread of values for soil parameters that will be tested for earthworm interactions. Green dashes correspond to plots with earthworms; red dashes refer to plots without earthworms.

45

3.2.5 Earthworm – Plant Interactions

Earthworm - Plant analysis included 58 plots. Appendix I contains all correlations, but significant interactions are presented in Figure 12.

Figure 12. Significant Earthworm-Plant Interactions. Interactions between earthworm communities and plant communities were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against 4 descriptive plant community metrics: FQAI (Floristic Quality Assessment Index), Sensitive Plant Coverage (%), Tolerant Plant Coverage (%), and Bare Ground Coverage (%). This figure presents only those relationships that were significant.

As Aporrectodea abundance and biomass increased, FQAI and sensitive plant coverage decreased, whereas tolerant plant coverage increased. Meanwhile, FQAI fell as both Lumbricus and epigeic biomasses increased. Additionally, Octolasion abundance increased with bare ground coverage.

46

3.2.6 Earthworm – Invertebrate Interactions

Earthworm - Invertebrate analysis included 58 plots. Of the total 63, five plots produced no invertebrate data (1011, 1045, 1063, 1064, and AT02) and were excluded from the analysis. Nine plots that yielded invertebrates but no earthworms (1009, 1014,

1038, 1053, 1074, 1136, 1376, 3484, and 3732) were included in the analysis so that a comparison between invertebrate communities based upon the presence or absence of earthworms might be made.

Figure 13. Significant Earthworm-Invertebrate Interactions. Interactions between earthworm communities and invertebrate communities were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against against 2 aggregate measures of the total invertebrate community metrics: Abundance and Evenness. Invertebrate abundance was also examined using the top 5 most abundant Orders: Acari, Arachnida, Coleoptera, Collembola, and Hymenoptera). This figure presents only those relationships that were significant.

Significant interactions are summarized in Figure 13; see Appendix J for all earthworm-invertebrate correlations. As invertebrate evenness increased earthworm biomass increased. Collembola abundance increased with greater biomasses of Amynthas and anecic earthworms. Hymenoptera abundance also increased with abundance of

47

Dendrodrilus. Finally, Coleoptera abundance increased with greater biomasses of

Lumbricus and endogeic earthworms.

3.2.7 Litter – Invertebrate/Earthworm Interactions

Significant interactions are summarized in Figure 14; see Appendix J for all litter- invertebrate/earthworm correlations. As expected, invertebrate abundance increased with dry litter mass and there was a weak relationship between increasing total earthworm biomass and decreasing litter mass (r=-0.17, P=0.19) but it was not strong enough to be significant. Additionally, when invertebrate abundance was tested against either abundance or biomass of earthworms, no relationship was found.

Figure 14. Significant Litter-Invertebrate/Earthworm Interactions. Litter mass and both earthworm and invertebrate communities were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against against Dry Litter Mass. Invertebrate abundance was also tested against dry litter mass, using Pearson correlation. This figure presents only those relationships that were significant.

Finally, dry litter mass produced several modest negative correlations for individual genera through biomass for Amynthas, Octolasion, and Anecics and through abundance for Dendrobaena.

48

3.2.8 Earthworm – Earthworm Interactions

Significant interactions are discussed below; see Appendix K for all earthworm- earthworm correlations. Abundances and biomasses for the genera of Aporrectodea,

Lumbricus, and Octolasion correlated with one another indicating that they tended to appear together (Fig. 15).

Negative correlations were found for abundance and biomass between Amynthas and both Lumbricus (r=-0.47, P<0.001; r=-0.56, P<0.001) and Octolasion (r=-0.37,

P=0.01; r=-0.41, P=0.002); this demonstrated that whenever Amynthas was found,

Lumbricus and Octolasion were likely to be less abundant and therefore, presented a correspondingly lower biomass.

Figure 15. Correlations between Aporrectodea, Lumbricus, and Octolasion. The left-hand figure illustrates the positive association that these 3 genera have with one another with respect to abundance; the right-hand figure illustrates a similar relationship with respect to biomass. The Pearson correlations are shown above the corresponding relationship arrows.

49

25.0

) 2 - 20.0 Lumbricus spp. P<0.001 Aporrectodea spp. 15.0 P=0.055 Octolasion spp. P<0.001 10.0 Dendrobaena Octaedra P=0.002 05.0 Dendrodrilus rubidus Earthworm Abundance(m Earthworm P=0.451 Eisenia fetida 00.0 without Amynthas with Amynthas

Figure 16. Earthworm Abundance by Genus for Plots with and without Amynthas. A p-value was determined for each genus using the abundance at plots with Amynthas against those without, using a two- tailed t-test and assuming unequal variances. Note that Eisenia fetida was insufficiently represented to perform a t-test.

10 9

8 ) 2 7 6 5 4

3 ln(AFDM) (mg/mln(AFDM) 2 1 0 0 1 2 3 4 5 6 ln(Abundance) (m-2)

Plots without Amynthas Plots with Amynthas Linear (Plots without Amynthas) Linear (Plots with Amynthas)

R² = 0.61 R² = 0.78

Figure 17. Earthworm Biomass for Plots with and without Amynthas. This figure is an ordinary least squares regression of earthworm abundance vs. biomass (AFDM). The black trendline is based upon those plots containing earthworms other than Amynthas. The dashed red trendline is based upon plots that contain Amynthas. The trendlines demonstrate that the total biomass at plots containing Amynthas is greater than those where it is absent.

50

Analysis by ecological groups revealed that epigeic and endogeic earthworms tended be found together (r=0.48, P<0.001) whereas anecic and endogeic earthworms were not (r=-0.64, P<0.001) (Appendix K: c).

The abundances of Lumbricus, Octolasion, Dendrobaena, and Aporrectodea were significantly higher where Amynthas was not present than those where it was (Fig. 16) whereas plots containing Amynthas tended to have higher biomasses than those that did not (Fig. 17).

3.2.9 Earthworm – Soil Interactions

Significant interactions are summarized in Figure 18; see Appendix L for all earthworm-soil correlations. Several interactions were found; total carbon and nitrogen decreased with greater endogeic biomass, whereas only total nitrogen decreased with greater epigeic biomass. Plant available phosphorus decreased as the biomasses of

Lumbricus and endogeic earthworms increased.

As Dendrobaena abundance increased, total carbon and organic matter decreased whereas pH, calcium, and magnesium decreased (Fig. 18). Plots were grouped in three different ways. The first grouping was according to whether plots contained

Dendrobaena or other earthworms (Fig. 19). The second grouping was according to whether plots contained Amynthas or other earthworms. In the final grouping, plots were divided by whether earthworms were present.

51

Figure 18. Significant Earthworm-Soil Interactions. Interactions between earthworm communities and soil composition were examined as follows. Earthworms were organized both by genus and ecological group. Earthworm abundance and biomass were tested, using Pearson correlations, against against 9 soil parameters: total carbon, total nitrogen, organic matter, phosphorus-P1, phosphorus-P2, potassium, calcium, magnesium, and pH. This figure presents only those relationships that were significant.

52

8

7

6

5

4 Soil pH Soil 3

2

1

0

Other Earthworms Dendrobaena

Figure 19. Soil pH at Plots with Dendrobaena and Those with Other Earthworms. This figure summarizes the spread of pH values between plots containing Dendrobaena (N=12) and those containing earthworms other than Dendrobaena (N=42).

350

300

250

200

150

100

50 Magnesium Availability MagnesiumAvailability (ppm)

0 0 2 4 6 8 pH

Earthworms No Earthworms R² = 0.73 R² = 0.63

Figure 20. Regression Lines for pH vs. Mg for Plots with and without Earthworms. This figure is an ordinary least squares regression of soil pH vs. Magnesium availability. The dashed black trendline corresponds to plots with earthworms (N=42), whereas the solid black trendline corresponds to plots without earthworms (N=12). Although both trendlines indicate an increasing availability of magnesium with pH, there is some evidence that plots containing earthworms have enhanced Mg availability.

53

The pH at plots containing Dendrobaena were significantly different (P<0.001) from those without (Fig. 19). The only other significant relationship was between plots with earthworms and those without, with respect to magnesium availability (P=0.01).

Plots yielding earthworms (Mgppm=139) had a 64% higher magnesium availability than those without (Mgppm=82). Regression lines for the two groups were determined for magnesium vs. pH to explore whether pH was primarily driving magnesium availability rather than an earthworm related factor.

54

CHAPTER IV

DISCUSSION

4.1 Hypotheses

HYPOTHESIS 1 (higher abundances and/or biomass of earthworms correspond to more degraded plant communities) was supported by the data in the following ways:

Aporrectodea was the dominant earthworm influence on plant communities; as its biomass increased, FQAI and sensitive plant coverage decreased and tolerant plant coverage increased. Considering that Aporrectodea only constituted a quarter of total biomass, its effects were disproportionately large making it a particularly potent agent.

FQAI also declined with Lumbricus biomass. Finally, bare ground coverage increased with greater abundance of Octolasion.

HYPOTHESES 2 & 4 (invertebrate communities are degraded by higher abundances and/or biomass of non-native earthworms or by Amynthas considered alone) were not supported by the data, in fact a number of modest beneficial relationships were found. Litter mass was of interest since many earthworms consume it and invertebrates rely upon it for food and environment. Invertebrate abundance correlated positively with litter mass as found in previous studies (Szlavecz et al. 2011; Cameron et al. 2013).

Greater earthworm abundance corresponded with decreased litter mass (Holdsworth et al.

55

2008; Holdsworth et al. 2012) yet this increased abundance did not affect overall invertebrate abundance. However, greater earthworm abundance appeared to shift the relative abundances of invertebrate taxa, as was represented by greater Evenness.

Additionally, the abundances of Collembola, Hymenoptera, and Coleoptera were enhanced by a number of earthworm groups (Fig. 13). This was contrary to what one might expect since earthworms were consuming the litter that invertebrates apparently relied upon. A previous study by Straube et al. (2009) found a similar effect, where low densities of Octolasion tyrtaeum caused increases in microarthropod taxa diversity and abundance.

Several factors could contribute to these paradoxical circumstances. The first was that the forests of N.E. Ohio are already ecologically disturbed. According to Williams

(1949), they were once old-growth forests, but nearly all of them were cut down when the region was settled at the start of the 1800‘s. As these forests re-grew, earthworms, to some extent, were probably incorporated into the recovering ecosystem. In the new food- web, earthworms and other soil invertebrates were already co-existing; interactions between them would likely be muted in contrast to an undisturbed, previously worm-free forest.

In comparison to other studies, the densities that I found were quite modest, with a mean of 38 individuals per square meter to a maximum of 164. Previously reported densities of 100 to 200 were common (Suárez et al. 2006) while density spikes as high as

2000 to 3000 occurred in extreme cases (Suárez et al. 2006; Dymond et al. 1997).

The Intermediate Disturbance Hypothesis basically states that moderate amounts of upheaval or disruption actually produce beneficial effects because they create new

56

opportunities that might otherwise not be available under equilibrium conditions (Begon et al. 2006). I believe that is what the data was showing; earthworms were disturbing the soil and fragmenting the litter but also stimulating microbial production. This enhanced food resources for those invertebrates that could take advantage of it. If earthworm densities were greatly elevated this benefit would probably vanish.

The lack of influence by Amynthas is another situation. At the time of sampling, it was only found in 22% of the plots and constituted 9% of all individuals collected. It is possible that as a recent arrival, Amynthas was not present in the study plots long enough or in sufficient numbers to exert a significant and lasting influence.

HYPOTHESIS 3 (higher abundances and/or biomass of Amynthas tend to degrade plant communities) was not supported by the data. Amynthas did not appear to have any distinctive influence upon urban/suburban forest ecosystems beyond that of other non- native earthworms. As mentioned above, Amynthas was a recent arrival to N.E. Ohio, and its influence could become more notable with the passage of time.

HYPOTHESIS 5 (earthworm activity and soil composition mutually influence one another) was supported by the data. Carbon, nitrogen, and phosphorus decreased with increasing biomass of selected earthworm groups (Fig. 18). The likely cause of these decreases was accelerated nutrient mineralization initiated by consumption of litter and soil organic matter. Once mineralized, nutrients were easily leached away from upper soil horizons through normal hydrologic processes. This essentially agreed with a study by Hale et al. (2005) of an invasion of previously worm-free northern hardwood forests that revealed consistent decreases in carbon, nitrogen, and organic matter of the O and A soil horizons.

57

Soil tests measure the portion of nutrients that are likely to become plant- available; they do not report total quantities present in the soil (Hornbeck et al. 2011).

Although earthworms can increase the leachate fluxes of cations, such as magnesium through burrowing activity (Robinson et al. 1996), studies have also shown that earthworms may increase soil pH through casting activities (Bolan & Baskaran 1996;

Sackett et al. 2013). Higher average pH, as found at plots containing earthworms, contributed to a higher availability of cations yet the data did not provide clear evidence that pH was the primary mechanism controlling magnesium availability. The regression lines comparing pH/Mg relationships (Fig. 20) at plots with and without earthworms suggested a secondary factor, yet there were insufficient worm-free plots in the dataset to be definitive.

4.2 Octolasion and Succession

A relationship was found between dry litter mass and the abundance of individual genera of earthworms (Fig. 14). Previous studies have demonstrated relationships between litter depletion for epigeic and anecic earthworms such as Amynthas and L. terrestris

(Holdsworth et al. 2008; Holdsworth et al. 2012), yet Octolasion was a bit of a puzzle, since it primarily consumed soil organic matter and not litter.

Earthworm assemblages are often successional (Suárez et al. 2006), where initial invasions consist of epigeics, closely followed by anecic species; this continues until the topsoil has been sufficiently enriched and loosened to facilitate an invasion by endogeics, such as Octolasion. I propose that the higher densities of Octolasion found in litter-

58

depleted areas exerted no direct influence on litter consumption, rather, their presence was incidental as product of earthworm succession.

Octolasion tyrtaeum is a peregrine species that tolerates a wide range of environmental conditions (James & Hendrix 2004). Its association with bare ground was consistent with successional litter depletion, yet Octolasion’s endogeic foraging habit through and upon fine root systems could also cause understory plant decline, and thus increase the appearance of bare ground.

The Aporrectodea-Lumbricus-Octolasion earthworm assemblage was commonly found within the Cleveland Metroparks. This structure was likely to represent a relatively stable, well-established community since Aporrectodea and Lumbricus represented the first two groups of a successional invasion (epigeic and anecic) and

Octolasion represented the final group.

4.3 The Dendrobaena Puzzle

Dendrobaena produced some unexpected results; as its abundance increased, soil carbon, organic matter, and dry litter mass increased whereas pH dropped, along with magnesium and calcium availability. This was contrary to everything one would expect since earthworms consume organic materials and decrease in abundance with falling pH

(Tiunov et al. 2006). Declining calcium and magnesium availability could be explained, since such cations become less available as pH decreases.

A study by Suárez et al. (2006) provides some insight. Dendrobaena is distinguished as being one of the most frost-resistant and acid-tolerant lumbricids in the world. Being tiny, epigeic, and parthenogenetic makes it very well adapted to colonizing

59

worm-free or inhospitable soils. In general, earthworm densities begin to drop off once soil pH falls below 5 (Tiunov et al. 2006). A t-test between plots sorted by Dendrobaena

(Fig. 19) confirmed that soil pH was lower at plots where it was present (P<0.001). The evidence suggested that Dendrobaena enjoyed a partial release from inter-species competition because of its tolerance to acidic soil; the reason it was correlated with higher levels of carbon, organic matter, and leaf litter is because there were just not that many other earthworms present to consume the litter that also had a comparable pH tolerance.

4.4 Land Use History and Earthworm Influence

Pristine, minimally disturbed forests differ from urban/suburban forests in a number of fundamental ways. In a study of previously worm-free boreal forests of

Minnesota, Frelich et al. (2006) found that invasive earthworms caused significant declines in diversity of herbaceous plants and tree seedlings, contributing to ―forest decline syndrome‖ where the successional trajectory of the forest is changed.

Although healthy, well-established ecosystems are inherently resilient, they also contain significant numbers of ecosystem specialists that use resources uniquely and are therefore successful. Invasive species, often being generalists, are able to overexploit resources often driving resources to levels lower than can be tolerated by natives

(Crowder & Snyder 2010).

In contrast to the forests study by Frelich et al. (2006), Snyder et al. (2011) examined the invasion of the non-native earthworm Amynthas agrestis into forests already occupied by indigenous earthworms. Some moderate decreases in the O horizon

60

were observed, but the greater significance was that the invasion front expanded much more slowly and inconsistently than expected. Snyder hypothesizes that a form of biotic resistance in the form of direct competition with a native millipede may be a major factor.

The difference in response between the two forest communities highlights their inherent sensitivities to a similar disturbance. For Minnesotan forests that have no ecological equivalent to the earthworm, an earthworm invasion caused great change, yet in the Smoky Mountains, the effects on forest floor structure and diversity were markedly less.

Northeastern Ohio forests and Smoky Mountain forests are similar in that they already have a resident earthworm population; however, they differ in at least two ways.

The Smoky Mountain forests have been exposed to relatively minor ecological disturbances compared to N.E. Ohio. With few exceptions, the lands of the Cleveland

Metroparks are recovering urban/suburban forests. Additionally, all of the non-native earthworms identified are highly adaptable, generalists whereas the indigenous earthworms of the Smokies have been coevolving within their ecosystem for at least tens of thousands of years.

I found that the Aporrectodea-Lumbricus-Octolasion assemblage appeared to be a common element among the plots; one study found a correlation between these three genera and a reduction in both leaf litter mass and seedling count (Corio et al. 2009).

Even though this community is technically non-native, it probably naturalized to recovering forests and was incorporated into a new level of diversity and interactions that exclude many of the original specialists leading to a biotic homogenization. Such a community would support less diversity and encourage the spread of more tolerant

61

natives (Naaf & Wulf 2010) as well as resident non-natives. Subsequent introductions of the same, or ecologically equivalent species, are more easily assimilated since the conditions for foraging, burrowing, and reproduction have already been established.

This does not imply that introductions of new earthworm species or reintroductions of existing species do not cause disturbances in the food web; it is only that those disturbances are likely to cause less severe perturbations in the relative equilibrium, since the ecosystem has ―learned‖ how earthworms use their environment and can respond accordingly. This acquired toughness, however, is paid for through a lower biodiversity and habitat quality. In contrast, worm-free forests do not benefit from this learning and therefore, are far more vulnerable to dramatic changes in forest floor dynamics, understory composition, or even dominant tree species selection over the long term.

4.5 The Influence of Amynthas

Amynthas abundance displays a strong negative correlation with the abundances of other non-native earthworms, yet fails to produce a distinctive negative interaction with either plant or invertebrate communities. One explanation is that its potential influence is limited, since it must divert some of its energy budget to compete for resources. Another explanation is that Amynthas will eventually express its influence; it is just that it is taking longer to become established since many of the prime habitats, such as those not subject to desiccation or limited food, are already occupied. Due to its high metabolic rate and necessity to complete its life cycle within one year, Amynthas is

62

more vulnerable to resource limitations and habitat fluctuations than established species that may live for multiple seasons.

Figure 17 shows that the biomass at sites containing Amynthas have a greater biomass yet those same sites have reduced abundances of non-Amynthas genera (Fig. 16) indicating that once Amynthas does become established, it draws more carbon from its environment than did previous assemblages; this points to a greater potential for ecological damage by Amynthas once it becomes more deeply established.

Disturbances from a new influence on an ecosystem can be expected to manifest through the relative success of the organisms that most directly compete for the same resources, such as other earthworms or millipedes (Snyder et al. 2011). The current earthworm – earthworm interactions could therefore be precursors to a more significant

Amynthas influence.

4.6 Sampling Methods and Weather Conditions

One of significant challenges with earthworm sampling is the variability of their distributions, which may skew reported abundances and diversities from actual values.

Abundance represents the average number of individuals for a given area, yet earthworms can be very patchy and will congregate around areas that offer the best forage and a stable, hospitable environment.

Physical site characteristics therefore play a fundamental role in extraction effectiveness. Surfaces that are uncommonly dry, compacted, or matted with roots, may resist the penetration of a mustard solution to a degree that it is largely unabsorbed and

63

rendered ineffective. For excessively pitched surfaces, much of the solution may flow outside of the sample area before being fully absorbed.

Earthworm distributions also expand and contract over time, primarily following changes in soil moisture that are usually driven by weather conditions. For this research, earthworm collection extended over a period of four weeks. The first two weeks were very hot and dry, but the final two weeks included a fair amount of rain. One author notes a dramatic reduction in earthworm numbers during very dry conditions (Snyder et al. 2008). It is impossible to estimate by how much the average densities varied between plots sampled during the first half and those sampled during the second, based entirely upon weather conditions. Ideally, though wholly impractical, all sampling would be completed in one day to eliminate the variability due to rainfall.

The same difficulty applies to longitudinal studies, where abundance and diversity can be expected to vary from year to year with respect to rainfall and temperature as well as successional changes based on litter and soil conditions.

The use of the liquid mustard extraction method is a well-established technique for earthworm sampling, and in that respect, densities across different studies are generally applicable, but the lingering question of how comparable it is to other methods remains. One study by Lawrence et al. (2002) compared the mustard extraction method to hand sorting and found that, the two are quite comparable and differ only slightly.

Digging and hand sorting tends to underestimate both the smallest earthworms and those residing below a depth of 25 cm. At present, there appear to be no studies that attempt to ascertain the relationship between earthworm density estimates and their corresponding

64

true densities. All the above considerations illustrate how collected data is ultimately at the mercy of when, where, how often, and how thoroughly sampling is performed.

4.7 Future Work

In future work, a more detailed analysis of invertebrate specimens would be useful so that functional rather than strictly taxonomic divisions could be used for correlations. Inclusion of a relative measure of co-occurring disturbances, such as intensity of deer browse and degree of surrounding urban land use, might be helpful to tease apart overall disturbance into discrete contributing factors. Finally, though very resource intensive, it would be useful to genetically barcode all the specimens, or at least the juveniles, so that they could be identified to species. One study presented a nondestructive technique using excreted coelomic fluid to amplify earthworm DNA for barcoding (Minamiya et al. 2011). This would permit a greater insight into how both juveniles and adults of different species interact with their environment.

4.8 Final Thoughts

My research contributed to the existing body of knowledge regarding the influence of non-native earthworms on forest ecosystems, but was unique since it focused on urban/suburban forests rather than relatively undisturbed woods.

Causation still remains a complex and vexing problem since ecosystems tend to be very complex, chaotic, highly non-linear systems that are strongly influenced by previous conditions. Ecosystems also have many simultaneous disturbances that often

65

co-facilitate one another and may cause runaway conditions through positive feedback mechanisms.

Earthworms, certain invasive plants, and high deer populations often occur together and it is not clear how they facilitate one another. It has been hypothesized that earthworms and exotic plants support one another as co-invaders (Heneghan et al. 2007).

Earthworm-mediated litter breakdown promotes conditions favorable to invasion of exotic plants such as common buckthorn (Rhamnus cathartica) by increasing soil N availability above levels required by native plants. A causative relationship between non- native plants and adjacent soil properties was established in a study by Kourtev et al.

(2003). The soil properties and microbial communities in the rhizosphere of exotic plants developed very differently from those of native plants grown under greenhouse conditions starting with identical soils. Exotic plant soils in that study had a characteristically higher pH and higher availability of nitrates. These elevated nitrates in turn, may favor increased earthworm densities, thus creating a positive feedback loop to sustain a co-invasion.

Although earthworms may engage in seed predation and translocation (Forey et al. 2011) as well seedling herbivory (Eisenhauer et al. 2010) the high densities of the white-tailed deer (Odocoileus virginianus) are arguably a dominant factor in the consumption of woody and herbaceous plants and seedlings (Alverson et al. 1988).

Selective deer browse and avoidance of unpalatable, often invasive plants can promote continued ingress of undesirable plants (Aronson & Handel 2011).

The wide-ranging and wandering behavior of deer through both urban areas and forest may facilitate jump dispersal of earthworm communities as cocoons are

66

transported by deer hoofs during their movements. Deer pellets cannot be underestimated as source of earthworm enrichment (Rearick et al. 2011). In fact,

Lumbricus terrestris activity accelerates deer fecal pellet decomposition, where subsequently released nutrients may then support yet greater earthworm densities

(Karberg & Lilleskov 2009). Meanwhile, high-pH castings resulting from deer foraging, further raise soil pH which causes nutrients to become more bioavailable, but also creates a greater risk of being leached away. Earthworm litter consumption also removes the duff layer that acts as a nursery to seedlings and protects the forest floor food web against extreme dry or cold events.

All of the above factors are likely to decrease plant diversity and alter soil chemistry, yet earthworms are not the sole agents of change but only co-facilitators.

Considering the many ecological disturbances that encroach upon urban/suburban forests, it is rather remarkable that any influences of earthworm activity are detectable.

67

BIBLIOGRAPHY

Addison, J. A., 2009. Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biological Invasions, 11:59-79.

Alred, G. J., C. T. Brusaw, W. E. Oliu. 2006. Handbook of Technical Writing. New York: St. Martin‘s Press. 639 p.

Alverson, W. S., D. M. Waller, S. L. Solheim, 1988. Forests too deer: edge effects in northern Wisconsin. Conservation Biology, 2:348-358.

Andreas, B. K., J. J. Mack, J. S. McCormac. 2004. Floristic Quality Assessment Index (FQAI) for vascular plants and mosses for the State of Ohio. Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Group, Columbus, OH. 219 p.

Araujo, Y., F. J. Luiz, E. Barros, 2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms. Biology and Fertility of Soils, 39:146-152.

Arguedas, N., 2010. Earthworms in the Cleveland Metroparks (2008-2009): Research update. Internal Report. Fairview Park, OH: Cleveland Metroparks.

Aronson, M. F. J., S. N. Handel, 2011. Deer and Invasive Plant Species Suppress Forest Herbaceous Communities and Canopy Tree Regeneration. Natural Areas Journal 31(4):400-407.

Asshoff, R., S. Scheu, N. Eisenhauer, 2010. Different earthworm ecological groups interactively impact seedling establishment. European Journal of Soil Biology, 46:330-334.

Baker, G. H., G. Brown, K. Butt, J. P. Curry, J. Scullion, 2006. Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Published online: 1 September 2006 C211 Springer Science+Business Media B.V.

Baker, G. H. Baker, T.A. Thumlert, L.S. Meisel, P. J. Carter, G.P. Kilpin, 1997. ―Earthworms Downunder‖: A survey of the earthworm fauna of urban and agricultural soils in Australia. Soil Biology & Biochemistry, 29(3/4):589-597.

Barajas-Guzmán, G., J. Alvarez-Sánchez, 2003. The relationships between litter fauna and rates of litter decomposition in a tropical rain forest. Applied Soil Ecology, 24:91-100.

68

Begon, M., C. R. Townsend, J. L. Harper, 2006. Ecology: From Individuals to Ecosystems, 4th edition. Malden: Blackwell Publishing. 738 p.

Belote, R. T., R. H. Jones, 2009. Tree leaf litter composition and nonnative earthworms influence plant invasion in experimental forest floor mesocosms. Biological Invasions, 11:1045-1052.

Bernard, M. J., M. A. Neatrour, T. S. McKay, 2009. Influence of Soil Buffering Capacity on Earthworm Growth, Survival, and Community Composition in the Western Adirondacks and Central New York. Northeastern Naturalist, 16(2):269-284.

Bhadauria, T., P. S. Ramakrishnan, 1996. Role of earthworms in nitrogen cycling during the cropping phase of shifting agriculture (Jhum) in north-east India. Biology and Fertility of Soils, 22:350-354.

Bhat, S., K. Hatfield, J. M. Jacobs, R. Lowrance, R. Williams, 2007. Surface runoff contribution of nitrogen during storm events in a forested watershed. Biogeochemistry, 85:253-262.

Blakemore, R. J., 2003. Japanese earthworms (Annelida: ): a review and checklist of species. Organisms Diversity & Evolution 3, Electronic Supplement, 11:1-43.

Blumenthal, D. M., 2006. Interactions between resource availability and enemy release in plant invasion. Ecology Letters, 9:887-895.

Bohlen, P. J., P. M. Groffman, T. J. Fahey, M. C. Fisk, E. Sua´rez, D. M. Pelletier, R. T. Fahey, 2004. Ecosystem Consequences of Exotic Earthworm Invasion of North Temperate Forests. Ecosystems, 7:1-12.

Bolan, N. S., S. Baskaran, 1996. Characteristics of earthworm casts affecting herbicide sorption and movement. Biology and Fertility of Soils, 22:367-372.

Borders, B. D., J. C. Pushnik, D. M. Wood, 2006. Comparison of Leaf Litter Decomposition Rates in Restored and Mature Riparian Forests on the Sacramento River, California. Restoration Ecology, 14(2):308-315.

Briones, M. J. I., M. E. Barreal, A. C. Harrison, P. P. Gallego, 2011. Earthworms and nitrogen applications to improve soil health in an intensively cultivated kiwifruit orchard. Applied Soil Ecology, 49:158-166.

Brown, G. C., 1995. How do earthworms affect microfloral and faunal community diversity? Plant and Soil, 170:209-231.

Burns, J. H., S. L. Halpern, A. A. Winn, 2007. A test for a cost of opportunism in invasive species in the Commelinaceae. Biological Invasions, 9:213-225.

69

Burtelow, A. E., P. J. Bohlen, P. M. Groffman, 1998. Influence of exotic Earthworm Invasion on Soil Organic Matter, Microbial Biomass and Denitrification Potential in Forest Soils of the North Eastern United States. Applied Soil Ecology, 9:197- 202.

Burton, M. L., L. J. Samuelson, 2008. Influence of urbanization on riparian forest diversity and structure in the Georgia Piedmont. Plant Ecology, 195:99–115.

Callaham Jr., M. A., G. González, C. M. Hale, L. Heneghan, S. L. Lachnicht, X. Zou, 2006. Policy and management responses to earthworm invasions in North America. Biological Invasions, 8:1317-1329.

Callaham Jr., M. A., P. F. Hendrix, R. J. Phillips, J. Cortez, G. Billes, M. B. Bouché, 2003. Occurrence of an exotic earthworm (Amynthas agrestis) in undisturbed soils of the southern Appalachian Mountains, USA. Pedobiologia, 47:466-470.

Cameron, E. K., E. M. Bayne, 2012. Invasion by a non-native ecosystem engineer alters distribution of a native predator. Diversity and Distributions, 18:1190-1198.

Cameron, E. K., E. M. Bayne, M. J. Claperton, 2007. Human-facilitated invasion of exotic earthworms into northern boreal forests. Ecoscience, 14:482-490.

Cameron, E. K., K. M. Knysh, H. C. Proctor, E. M. Bayne, 2013. Influence of two exotic earthworm species with different foraging strategies on abundance and composition of boreal microarthropods. Soil Biology & Biochemistry, 57:334- 340.

Corio, K, A. Wolf, M. Draney, G. Fewless, 2009. Exotic earthworms of great lakes forests: A search for indicator plant species in maple forests. Forest Ecology and Management. 258:1059-1066.

Cortez, J., G. Billes, M. B. Bouché, 2000. Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biology and Fertility of Soils, 30:318-327.

Costello, D. M., G. A. Lamberti, 2008. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems. Oecologia, 158:499-510.

Côtè, S. D., T. P. Rooney, J. Tremblay, C. Dussault, D. M. Waller, 2004. Ecological impacts of deer overabundance. Annual Review of Ecological Systems, 35:113- 147.

Crowder, D. W., W. E. Snyder, 2010. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 12:2857-2876.

70

Dechaine, J., H. Ruan, Y. Sanchez-de Leon, X. Zoua, 2005. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico. Pedobiologia, 49:601-607.

Dymond, P., S. Scheu, D. Parkinson, 1997. Density and distribution of Dendrobaena octaedra () in aspen and pine forests in the Canadian Rocky Mountains (Alberta). Soil Biology & Biochemistry, 29(3/4):265-273.

Edwards, C. A., P. J. Bohlen, 1996. Biology and Ecology of Earthworms. London: Chapman & Hall, pp. 142–145.

Eisenhauer, N., 2010. The action of an ecosystem engineer: Identification of the main mechanisms of earthworm impacts in soil microarthropods. Pedobiologia, 53:343-352.

Eisenhauer, N., O. Butenschoen, S. Radsick, S. Scheu, 2010. Earthworms as seedling predators: Importance of seeds and seedlings for earthworm nutrition. Soil Biology & Biochemistry, 42:1245-1252.

Eisenhauer, N., S. Marhan, S. Scheu, 2008. Assessment of anecic behavior in selected earthworm species: Effects on wheat seed burial, seedling establishment, wheat growth and litter incorporation. Applied Soil Ecology, 38:79-82.

Eisenhauer, N., S. Partsch, D. Parkinson, S. Scheu, 2007. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biology & Biochemistry, 39:1099-1110.

Eisenhauer, N., M. Schuy, O. Butenschoen, S. Scheu, 2009. Direct and indirect effects of endogeic earthworms on plant seeds. Pedobiologia, 52:151-162.

Eriksen-Hamel, N. S., J. K. Whalen, 2007. Impact of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agriculture, Ecosystems and Environment, 120:442-448.

Ernst, G., D. Felten, M. Voland, C. Emmerling, 2009. Impact of ecologically different earthworm species on soil water characteristics. European Journal of Soil Biology, 45:207-213.

Eschtruth, A. K., J. J. Battles, 2008. Acceleration of Exotic Plant Invasion in a Forested Ecosystem by a Generalist Herbivore. Conservation Biology, 23(2):388-399.

Felten, D., C. Emmerling, 2009. Earthworm burrowing behavior in 2D terraria with single- and multispecies assemblages. Biology and Fertility of Soils, 45:789-797.

71

Ferreira, T., W. Rasband, 2012. ImageJ User Guide – IJ 1.46, imagej.nih.gov/ij/docs/guide.

Foggo, A., C. M. P. Ozanne, M. R. Speight, C. Hambler, 2001. Edge effects and tropical forest canopy invertebrates. Plant Ecology. 153:347-359.

Forey, E., S. Barot, T. Decaëns, E. Langlois, K. Laossi, P. Margerie, S. Scheu, N. Eisenhauer, 2011. Importance of earthworm-seed interactions for the composition and structure of plant communities: A review. Acta Oecologica, 37:594-603.

Frelich, L. E., C. Hale, S. Scheu, A. Holdsworth, L. Heneghan, P. J. Bohlen, P. B. Reich, 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 8:1235-1245.

Frelich, L. E., P. B. Reich, 2010. Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America? Frontiers in Ecology and the Environment, 8(7):371-378.

González, G., T. R. Seastedt, Z. Donato, 2003. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine (Pinus contorta) forests in Colorado, USA. Pedobiologia, 47:863-869.

Gordon, R. B., 1969. The natural vegetation of Ohio in pioneer days. Columbus: Ohio State University. 113 p.

Gotelli, N. J., A. M. Ellison, 2004. A Primer of Ecological Statistics. Sunderland: Sinauer Associates, Inc. 479 p.

Greiner, H. G., D. M. Costello, S. D. Tiegs, 2010. Allometric estimation of earthworm ash-free dry mass from diameters and lengths of select megascolecid and lumbricid species. Pedobiologia, Vol. 53 No. 4 pp. 247-252.

Griffith, B., M. Türke, W. W. Weisser, N. Eisenhauer, 2013. Herbivore behavior in the anecic earthworm species Lumbricus terrestris L.? European Journal of Soil Biology, 55:62-65.

Haimi, J., M. Einbork, 1992. Effects of endogeic earthworms on soil processes and plant growth in coniferous forest soil. Biology and Fertility of Soils, 13:6-10.

Haimi, J., V. Huhta, 1990. Effects of earthworms on decomposition processes in raw humus forest soil: A microcosm study. Biology and Fertility of Soils, 10:178-183.

Hale, C. M. 2007. Earthworms of the Great Lakes. Duluth: Kollath+Stensaas Publishing. 36 p.

72

Hale, C. M., L. E. Frelich, P. B. Reich, J. Pastor, 2005. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA. Ecosystems, 8:911-927.

Hale, C. M., P. B. Reich, L. E. Frelich, 2004. Allometric Equations for Estimation of Ash-free Dry Mass from Length Measurements for Selected European Earthworm Species (Lumbricidae) in the Western Great Lakes Region. The American Midland Naturalist, 151:179-185.

Hale, C. M., 2008. Evidence for human-mediated dispersal of exotic earthworms: support for exploring strategies to limit further spread. Molecular Ecology, 17:1165-1169.

Hausman, C. E., T. L. Robison, 2010. Plant Community Assessment Program (PCAP) Preliminary Report. Cleveland Metroparks Technical Report 2010/NR-05. Division of Natural Resources, Cleveland Metroparks, Fairview Park, Ohio.

Hendrix, P. F., 2006. Biological invasions belowground—earthworms as invasive species. Biological Invasions, 8:1201–1204.

Hendrix, P. F., G. H. Baker, M. A. Callaham Jr., G. A. Damoff, C. Fragoso, G. González, S. W. James, S. L. Lachnicht, T. Winsome, X. Zou, 2006. Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Published online: 1 September 2006. C211 Springer Science+Business Media B.V.

Heneghan, L., J. Steffen, K. Fagen, 2007. Interactions of an introduced shrub and introduced earthworms in an Illinois urban woodland: Impact on leaf litter decomposition. Pedobiologia, 50:543-551.

Holdsworth, A. R., 2008. Litter decomposition in earthworm-invaded northern hardwood forests: Role of invasion degree and litter chemistry. Ecoscience, 15(4):536-544.

Holdsworth, A. R., L. E, Frelich, P. B. Reich, 2007. Effects of Earthworm Invasion on Plant Species Richness in Northern Hardwood Forests. Conservation Biology, 21(4):997-1008.

Holdsworth, A. R., L. E. Frelich, P. B. Reich, 2012. Leaf Litter Disappearance in Earthworm-Invaded Northern Hardwood Forests: Role of Tree Species and the Chemistry and Diversity of Litter. Ecosystems, 15:913-926.

Hopfensperger, K. N., G. M. Leighton, 2011. Influence of Invasive Earthworms on Above and Belowground Vegetation in a Northern Hardwood Forest. The American Midland Naturalist, 166:53-62.

Hornbeck, D. A., D. M. Sullivan, J. S. Owen, J. M. Hart, 2011. Soil Test Interpretation Guide (EC1478). Oregon State University Extension Service. ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/22023/ec1478.pdf.

73

Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, Z. Zhao-Liang, 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35:75-139.

Ilieva-Makulec, K., G. Makulec, 2007. Does the activity of the earthworm Aporrectodea calignosa modify the plant diversity effect on soil nematodes? European Journal of Soil Biology, 43:S157-S164.

James, S.W., P. F. Hendrix, 2004. Invasion of exotic earthworms into North America and other regions. In: Edwards, C.A. (Ed.), Earthworm Ecology. , 2nd ed., Boca Raton: CRC Press, pp. 75–88.

James, S. W., 2004. An illustrated key to the earthworms of the Samoan Archipelago (Oligochaeta: , , and ). Micronesica, 37(1):1-13.

Karberg, N. J., E. A. Lilleskov, 2009. White-tailed deer (Odocoileus virginianus) fecal pellet decomposition is accelerated by the invasive earthworm Lumbricus terrestris. Biological Invasions, 11:761-767.

Keane, R. M., M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17(4):164-170.

Kelling, K. A., E. E. Schulte, 2004. A2523 Understanding Plant Nutrients: Soil and Applied Calcium. University of Wisconsin-Extension, www.soils.wisc.edu/extension/pubs/A2523.pdf.

Kelling, K. A., E. E. Schulte, 2004. A2524 Understanding Plant Nutrients: Soil and Applied Magnesium. University of Wisconsin-Extension, www.soils.wisc.edu/extension/pubs/A2524.pdf.

Klok, C., 2007. Effects of earthworm density on growth, development, and reproduction in Lumbricus rubellus (Hoffm.) and possible consequences for the intrinsic rate of population increase. Soil Biology & Biochemistry, 39:2401-2407.

Kourtev, P. S., J. G. Ehrenfeld, M. Häggblom, 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology & Biochemistry, 35: 895-905.

Krivtsov, V., A. Garside, A. Brendler, K. Liddell, B. S. Griffiths, H. J. Staines, 2007. A study of population numbers and ecological interactions of soil and forest floor microfauna. Animal Ecology, 57(4):467-484.

74

Kwong-Yin, C., J. A. Mead, 2003. Soil acidity limits colonisation by Aporrectodea trapezoides, an exotic earthworm. Pedobiologia, 47:225-229.

Lawrence, A. P., M. Bowers, 2002. A test of the ‗hot‘ mustard extraction method of sampling earthworms. Soil Biology & Biochemistry, 34:549-552.

Le Bayon, R., R. Milleret, 2009. Effects of Earthworms on Phosphorus Dynamics- A Review. Dynamic Soil, Dynamic Plant, 3(Special Issue 2):21-27.

Lecerf, A., M. Dobson, C. K. Dang, E. Chauvet, 2005. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia, 146:432-442.

Li, X., M. C. Fisk, T. J. Fahey, P. J. Bohlen, 2002. Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biology & Biochemistry, 34:1929-1937.

Maerz, J. C., V. A. Nuzzo, B. Blossey, 2009. Declines in Woodland Salamander Abundance Associated with Non-Native Earthworm and Plant Invasions. Conservation Biology, 23(4):975-981.

Manor, R., O. Cohen, D. Saltz, 2008. Community homogenization and the invasiveness of commensal species in Mediterranean afforested landscapes. Biological Invasions, 10:507-515.

Matlack, G. R., 1993. Sociological Edge Effects: Spatial Distribution of Human Impacts in Suburban Forest Fragments. Environmental Management, 17(6):829-835.

Maraun, M., J. Salamon, K. Schneider, M. Schaefer, S. Scheu, 2003. Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biology & Biochemistry, 35:1387-1394.

McLean, M. A., S. Migge-Kleian, D. Parkinson, 2006. Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biological Invasions, 8:1257-1273.

McLean, M.A., D. Parkinson, 2000. Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biology & Biochemistry, 32:351-360.

Merrill, A.G., T.L. Benning, 2006. Ecosystem type differences in nitrogen process rates and controls in the riparian zone of a montane landscape. Forest Ecology and Management, 222:145-161.

75

Migge-Kleian, S., M. A. McLean, J. C. Maerz, L. Heneghan, 2006. The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biological Invasions, 8:1275-1285.

Milcu, A., J. Schumacher, S. Scheu, 2006. Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity. Functional Ecology, 20:261- 268.

Minamiya, Y., K. Ohga, H. Hayakawa, K. Ito, T. Fukuda, 2011. Coelomic fluid: a noninvasive source of DNA in earthworms. Molecular Ecology Resources, 11:645-649.

Monroy, F., M. Aira, J. Domínguez, 2011. Epigeic earthworms increase soil arthropod populations during first steps of decomposition of organic matter. Pedobiologia, 54:93-99.

Mudrák, O., K. Uteseny, J. Frouz, 2012. Earthworms drive succession of both plant and Collembola communities in post-mining sites. Applied Soil Ecology, 62:170-177.

Naaf, T., M. Wulf, 2010. Habitat specialists and generalist drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biological Conservation, 143:848-855.

Nuzzo, V A, J C. Maerz, B. Blossey, 2009. Earthworm Invasion As the Driving Force Behind Plant Invasion and Community Change in Northeastern North American Forests. Conservation Biology, 23(4):966-974.

Penrose, A. M., S. B. Katz. 2004. Writing in the Sciences: Exploring Conventions of Scientific Discourse. 2nd ed. United States: Longman. 448 p.

Pižl, V., G. Josens, 1995. Earthworm communities along a gradient of urbanization. Environmental Pollution, 90(1):7-14.

Poitrowska, K., J. Connolly, J. Finn, A. Black, T. Bolger, 2013. Evenness and plant species identity affect earthworm diversity and community structure in grassland soils. Soil Biology & Biochemistry, 57:713-719.

Porco, D., T. Decaens, L. Deharveng, S. W. James, D. Skarzynski, C. Erseus, K. R. Butt, B. Richard, P. D. N. Hebert, 2012. Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America. Biological Invasions, DOI:10.1007/s10530-012- 0338-2.

Presley, M. L., T. C. McElroy, W. J. Diehl, 1996. Soil Moisture and Temperature Interact to Affect Growth, Survivorship, Fecundity, and fitness in the Earthworm Eisenia fetida. Comparative Biochemistry and Physiology, 114A(4):319-326.

76

Quackenbush, P. M., R. A. Butler, N. C. Emery, M. A. Jenkins, E. J. Kladiviko, K. D. Gibson, 2012. Lumbricus terrestris Prefers to Consume Garlic Mustard (Alliaria petiolata) Seeds. Invasive Plant Management, 5:148-154.

Rasband, W.S., 1997-2012. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/.

Rearick, D., L. Kintz, K. L. Burke, T. S. Ransom, 2011. Effects of white-tailed deer on the native earthworm, Eisenoides carolinensis, in the southern Appalachian Mountains, USA. Pedobiologia, 54S:S173-S180.

Richardson, D. R., B. A. Snyder, P. F. Hendrix, 2009. Soil Moisture and Temperature: Tolerances and Optima for a Non-native Earthworm Species, Amynthas agrestis (Oligochaeta: : Megascolecidae). Southeastern Naturalist, 8(2):325- 334.

Roberts, M. L., R. E. Bilby, 2009. Urbanization alters litterfall rates and nutrient inputs to small Puget Lowland streams. Journal of the North American Benthological Society, 28(4):941-954.

Robinson, C. H., P. Ineson, T. G. Piearce, J. Parrington, 1996. Effects of earthworms on cation and phosphate mobilisation in limed peat soils under Picea sitchensis. Forest Ecology and Management, 86:253-258.

Sackett, T. E., S. M. Smith, N. Basiliko, 2013. Indirect and direct effects of exotic earthworms on soil nutrient and carbon pools in North American temperate forests. Soil Biology & Biochemistry, 57:459-467.

Schädler, M., R. Brandl, 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology & Biochemistry, 37:329-337.

Scharenbroch, B., 2009. A microcosm study on Lumbricus terrestris and physical, chemical, and biological properties of designed urban soil. ISA Conference & Trade Show, Providence, RI. (PDF)

Scheu, S., 1987. The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia, 72:197-201.

Scheu, S., 2003. Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia, 47:846-856.

Schon, N. L., A. D. MacKay, R. A. Gray, M. A. Minor, 2011. Earthworms in New Zealand sheep- and dairy-grazed pastures with focus on anecic Aporrectodea longa. Pedobiologia, 54S:S131-S137.

77

Schrader, S., C. Seibel, 2001. Impact of cultivation management in an agroecosystem on hot spot effects of earthworm middens. European Journal of Soil Biology, 37:309- 313.

Seidl, D. E., P. Klepsis, 2011. Human Dimensions of Earthworm Invasion in the Adirondack State Park. Human Ecology, 39:641-655.

Shuster, W. D., L. P. McDonald, D. A. McCartney, R. W. Parmelee, N. S. Studer, B. R. Stinner, 2002. Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem. Biology and Fertility of Soils, 35:320-327.

Snyder, B. A., M. A. Callaham Jr., P. F. Hendrix, 2011. Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biological Invasions, 13:349-358.

Snyder, B. A., M. A. Callaham Jr., C. N. Lowe, P. F. Hendrix, 2013. Earthworm invasion in North America: Food resource competition affects native millipede survival and invasive reproduction. Soil Biology & Biochemistry, 57:212-216.

Staaf, H., 1987. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia, 72:58-64.

Steinberg, D. A., R. V. Pouyat, R. W. Parmelee, P. M. Groffman, 1997. Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient. Soil Biology & Biochemistry, 29(3/4):427-430.

Stirling, G., B. Wilsey, 2001. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. The American Naturalist, 158(3):286-299.

Straube, D., E. A. Johnson, D. Parkinson, S. Scheu, N. Eisenhauer, 2009. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos, 118:885-896.

Suárez, E. R., T. J. Fahey, P. M. Groffman, J. B. Yavitt, P. J. Bohlen, 2006. Spatial and temporal dynamics of exotic earthworm communities along invasion fronts in a temperate hardwood forest in South-Central New York (USA). Biological Invasions, 8:553-564.

Subler, S., C. M. Baranski, C. A. Edwards, 1997. Earthworm additions increased short- term nitrogen availability and leaching in two grain-crop Agroecosystems. Soil Biology & Biochemistry, 29(3/4):413-421.

78

Suthar, S., 2011. Earthworm density, casting activities and its impact on canopy soil nutrient profile under different aboveground vegetations. Environmentalist, 31:227-236.

Syers, J. K., J. A. Springett, 1984. Earthworms and soil fertility. Plant and Soil, 76:93- 104.

Szlavecz, K., M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, C. Csuzdi, 2011. Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biological Invasions 13:1165-1182.

Szlavecz, K., S. A. Placella, R. V. Pouyat, P. M. Groffman, C. Csuzdi, I. Yesilonis, 2006. Invasive earthworm species and nitrogen cycling in remnant forest patches. Applied Soil Ecology, 32:54-62.

Tabacchi, E., L. Lambs, H. Guilloy, A. Planty-Tabacchi, E. Muller, H. Décamps, 2000. Impacts of riparian vegetation on hydrological processes. Hydrological processes, 14:2959-2976.

Talavera, J. A., 2011. New earthworm records for Macronesia with observations on the species, ecological characteristics and colonization history. Pedobiologia, 54:301- 308.

Tiunov, A. V., C. M. Hale, A. R. Holdsworth, T. S. Vsevolodova-Perel, 2006. Invasion patterns of Lumbricidae into the previously earthworm-free areas of northeastern Europe and the western Great Lakes region of North America. Earthworm Ecology. Boca Raton: CRC Press.

Tiunov, A. V., S. Scheu, 2004. Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization. Oecologia, 138:83-90.

Wan, J. H. C., M. H. Wong, 2004. Effects of earthworm activity and P solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science, 167:209-213.

Whalen, J. K., R. W. Parmelee, D. A. McCartney, J. L. Vanarsdale, 1999. Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools. Soil Biology & Biochemistry, 31:487-492.

Willems, J. J. G. M., J. C. Y. Marinissen, J. Blair, 1996. Effects of earthworms on nitrogen mineralization. Biology and Fertility of Soils, 23:57-63.

Williams, A. B., 1949. The native forests of Cuyahoga County, Ohio. Cleveland: Cleveland Museum of Natural History. 90 p.

79

Zicsi, A., K. Szlavecz, C. Csuzdi, 2011. Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia, 54S:S145-S152.

80

APPENDIX A

Earthworm Allometry: Raw Data

Distance (mm) Weight (mg)

Length

Image ID (IMG_nnnn.JPG) WormID Mean SD Perim Wet Dry Ash AFDM 001 1056 51.4 0.11 114.3 274 41.3 8.2 33.1 002 1055 44.2 0.25 99.8 267 72.2 36.7 35.5 003 1054 35.8 0.19 78.2 150 34.0 15.7 18.3 004 1053 38.5 0.07 87.8 154 27.0 3.0 24.0 005 1052 36.6 0.03 82.5 86 14.8 2.9 11.9 006 1051 45.4 0.23 101.7 266 51.2 17.3 33.9 007 1050 51.5 0.17 116.7 236 52.7 22.2 30.5 008 1049 44.9 0.25 101.7 235 52.6 25.5 27.1 009 1048 50.8 0.19 112.5 225 46.0 16.0 30.0 010 1047 48.7 0.09 109.9 262 54.7 23.9 30.8 011 1046 47.7 0.16 106.9 218 33.7 7.9 25.8 012 1045 43.5 0.07 99.1 262 69.7 37.2 32.5 013 1044 44.3 0.11 99.8 240 52.4 21.1 31.3 014 1043 36.4 0.07 83.9 299 73.2 36.2 37.0 015 1042 55.1 0.24 122.0 438 105.2 39.2 66.0 016 1041 53.2 0.24 116.9 491 105.8 32.2 73.6 017 1040 45.4 0.10 99.6 239 50.1 19.6 30.5 018 1039 59.6 0.05 130.0 482 118.9 49.9 69.0 019 1038 63.5 0.36 139.3 510 114.4 34.3 80.1 020 1037 57.6 0.12 129.9 336 58.6 14.4 44.2 021 1036 58.3 0.21 131.7 518 93.0 23.1 69.9 022 1035 52.4 0.25 117.3 458 98.8 40.3 58.5 023 1034 40.7 0.14 91.6 224 44.1 16.4 27.7 024 1033 55.0 0.09 123.7 489 81.8 16.7 65.1 025 1032 60.4 0.24 135.1 539 99.5 20.2 79.3 026 1031 54.4 0.08 128.4 853 183.0 85.4 97.6 027 1030 59.9 0.19 136.5 482 78.6 13.1 65.5 028 1029 51.0 0.07 116.3 512 122.5 63.4 59.1 029 1028 54.0 0.14 121.0 363 95.0 51.0 44.0 030 1027 59.0 0.24 133.9 397 61.1 14.5 46.6 031 1026 57.0 0.09 131.0 313 71.8 37.0 34.8 032 1025 38.1 0.07 94.2 351 86.5 44.0 42.5 033 1024 28.7 0.16 66.1 96 17.0 3.5 13.5 034 1023 33.6 0.16 76.0 98 20.4 4.7 15.7 035 1022 31.9 0.10 73.4 121 26.6 6.0 20.6 036 1021 25.7 0.07 58.2 60 12.0 2.6 9.4 037 1020 34.5 0.05 77.0 123 37.8 22.7 15.1 038 1019 25.6 0.05 57.4 76 16.6 5.4 11.2 039 1018 27.2 0.04 61.1 50 10.5 3.4 7.1 040 1017 30.8 0.09 73.2 108 29.7 10.0 19.7 041 1016 31.1 0.05 72.2 86 19.2 8.6 10.6 042 1015 27.3 0.10 61.7 65 13.1 2.3 10.8 043 1014 24.7 0.02 55.4 58 11.4 1.6 9.8 044 1013 28.7 0.04 62.7 55 8.1 0.7 7.4

81 Earthworm Allometry: Raw Data

Distance (mm) Weight (mg)

Length

Image ID (IMG_nnnn.JPG) WormID Mean SD Perim Wet Dry Ash AFDM 045 1012 30.4 0.03 69.1 74 16.8 8.8 8.0 046 1011 35.2 0.13 79.4 92 19.5 7.5 12.0 047 1010 32.2 0.10 70.4 108 24.6 8.9 15.7 048 1009 28.0 0.13 64.7 63 11.8 2.5 9.3 049 1008 26.4 0.07 60.6 59 12.1 3.9 8.2 050 1007 26.8 0.02 60.6 47 7.9 2.3 5.6 051 1006 23.2 0.06 49.8 48 8.4 0.3 8.1 052 1005 26.7 0.12 59.5 55 11.9 3.5 8.4 053 1004 25.7 0.07 57.9 62 12.1 2.3 9.8 054 1003 32.8 0.10 73.6 60 10.2 2.1 8.1 055 1002 22.7 0.07 52.4 53 13.3 3.1 10.2 056 1001 25.2 0.05 56.7 68 13.5 3.4 10.1 057 1000 37.5 0.08 85.1 156 35.2 13.7 21.5 058 0999 35.3 0.09 80.2 133 36.7 21.2 15.5 059 0998 23.9 0.09 55.0 56 14.0 1.6 12.4 060 0997 39.1 0.05 91.9 179 48.7 26.6 22.1 061 0996 26.1 0.12 61.0 74 13.4 1.8 11.6 062 0995 49.4 0.10 114.0 224 53.9 26.4 27.5 063 0994 25.0 0.02 57.3 54 12.0 4.5 7.5 064 0993 21.1 0.08 49.8 45 11.4 4.3 7.1 065 0992 23.1 0.07 51.8 53 10.8 2.0 8.8 066 0991 24.9 0.05 55.8 55 11.2 3.1 8.1 067 0990 18.3 0.08 40.8 26 4.5 0.4 4.1 068 0989 23.4 0.03 53.3 48 9.9 1.7 8.2 069 0988 23.7 0.07 52.0 49 11.5 3.7 7.8 070 0987 20.6 0.08 45.3 42 10.7 4.1 6.6 071 0986 17.9 0.03 40.6 28 7.6 2.5 5.1 072 0985 23.9 0.09 54.1 53 11.3 3.3 8.0 073 0984 21.9 0.10 49.1 39 8.7 2.5 6.2 074 0983 19.0 0.03 43.7 36 9.0 3.0 6.0 075 0982 16.8 0.03 39.6 27 5.7 1.2 4.5 076 0981 13.3 0.04 31.3 8 1.7 0.7 1.0 077 0980 13.4 0.04 30.5 9 2.0 0.9 1.1 078 0979 20.4 0.08 44.7 19 3.5 1.2 2.3 079 0978 13.8 0.02 30.2 11 2.6 0.7 1.9 080 0977 15.0 0.02 33.4 16 4.7 1.8 2.9 081 0976 13.6 0.05 30.3 9 2.1 0.6 1.5 082 0975 16.2 0.02 35.8 19 3.8 0.2 3.6 083 0974 89.7 0.05 203.2 1095 234.4 106.9 127.5 084 0973 72.3 0.12 168.3 1285 426.0 285.6 140.4 085 0972 66.3 0.06 147.5 809 240.8 156.5 84.3 086 0971 84.4 0.21 191.5 1253 443.9 306.8 137.1 087 0970 85.7 0.30 206.8 1089 312.8 195.4 117.4 088 0969 71.7 0.02 164.3 745 157.3 72.9 84.4 089 0968 94.8 0.45 221.8 1628 533.0 354.3 178.7 090 0967 54.2 0.15 126.8 635 135.7 52.7 83.0 091 0966 64.1 0.30 155.7 1468 407.8 218.5 189.3

82 Earthworm Allometry: Raw Data

Distance (mm) Weight (mg)

Length

Image ID (IMG_nnnn.JPG) WormID Mean SD Perim Wet Dry Ash AFDM 092 0965 63.8 0.32 150.5 835 245.5 136.2 109.3 093 0964 59.0 0.10 140.2 652 209.7 129.9 79.8 094 0963 69.3 0.24 154.4 784 207.1 115.2 91.9 095 0962 85.0 0.23 194.2 1689 483.3 245.5 237.8 096 0961 63.1 0.05 148.7 572 135.6 48.8 86.8 097 0960 85.4 0.18 202.0 1313 368.4 225.9 142.5 098 0959 60.4 0.06 133.4 590 135.6 50.1 85.5 099 0958 48.5 0.07 109.8 320 65.3 24.9 40.4 100 0957 57.1 0.10 128.5 561 154.9 80.9 74.0 101 0956 59.3 0.05 134.2 747 198.5 104.4 94.1 102 0955 78.1 0.05 180.6 907 197.9 101.4 96.5 103 0954 62.0 0.02 144.0 620 198.5 122.7 75.8 104 0953 65.6 0.03 156.8 565 131.6 65.3 66.3 105 0952 65.7 0.27 153.4 596 104.2 26.9 77.3 106 0951 62.1 0.05 147.2 544 102.0 27.7 74.3 107 0950 64.4 0.10 155.3 781 248.0 161.9 86.1 108 0949 54.6 0.06 130.0 491 113.9 48.3 65.6 109 0948 66.0 0.12 149.1 837 187.5 77.2 110.3 110 0947 83.6 0.13 197.0 1279 196.5 48.1 148.4 111 0946 72.5 0.04 176.3 630 143.0 65.7 77.3 112 0945 61.3 0.11 149.2 665 184.8 106.4 78.4 113 0944 64.7 0.21 152.0 698 180.8 90.8 90.0 114 0943 66.0 0.08 160.2 710 180.0 90.8 89.2 115 0942 62.3 0.30 147.0 578 109.7 36.1 73.6 116 0941 62.8 0.34 151.6 711 185.8 94.4 91.4 117 0940 98.7 0.47 239.4 1296 264.9 125.0 139.9 118 0939 69.0 0.25 162.0 502 134.1 77.2 56.9 119 0938 60.6 0.26 141.9 591 154.1 69.6 84.5 120 0937 57.1 0.19 132.0 511 102.9 37.0 65.9 121 0936 62.4 0.12 142.3 576 101.1 29.3 71.8 122 0935 90.3 0.41 216.3 2061 718.5 434.9 283.6 123 0934 57.5 0.12 136.0 557 103.6 38.8 64.8 124 0933 55.5 0.28 130.2 611 166.1 86.0 80.1 125 0932 66.8 0.29 151.9 1454 458.6 285.3 173.3 126 0931 95.9 0.12 226.4 1521 552.2 403.2 149.0 127 0930 60.2 0.23 137.8 677 233.4 156.0 77.4 128 0927 122.0 0.20 294.6 3093 1005.1 622.8 382.3 129 0926 96.7 0.38 227.1 2425 789.0 495.3 293.7 130 0925 108.6 0.05 256.7 2088 761.0 557.4 203.6 131 0924 109.1 0.27 250.6 2590 993.1 699.7 293.4 132 0923 124.3 0.16 310.0 3130 970.3 620.9 349.4 133 0922 99.0 0.31 234.9 1858 595.6 395.1 200.5 134 0920 145.7 0.05 353.0 3797 1127.4 657.7 469.7 135 0919 107.1 0.42 248.5 2502 1018.9 760.5 258.4 136 0918 94.0 0.13 221.8 1654 438.7 247.9 190.8 137 0917 91.4 0.32 211.7 1588 575.7 421.2 154.5 138 0916 81.8 0.33 194.6 1354 387.7 226.0 161.7

83 Earthworm Allometry: Raw Data

Distance (mm) Weight (mg)

Length

Image ID (IMG_nnnn.JPG) WormID Mean SD Perim Wet Dry Ash AFDM 139 0915 103.4 0.08 267.8 2505 569.9 301.5 268.4 140 0914 99.0 0.27 251.5 2567 584.1 298.9 285.2 141 0913 102.0 0.10 252.1 2614 749.4 445.0 304.4 142 0912 77.5 0.35 185.4 1342 369.0 204.3 164.7 143 0911 81.8 0.27 194.2 1306 289.2 143.9 145.3 144 0910 105.1 0.17 250.3 1865 547.5 346.6 200.9 145 0909 133.5 0.28 328.0 3057 953.3 631.5 321.8 146 0908 104.3 0.12 252.4 2902 836.9 516.3 320.6 147 0907 73.6 0.30 178.2 1046 272.8 154.8 118.0 148 0906 82.6 0.17 201.8 1364 331.2 170.7 160.5 149 0905 111.4 0.39 257.5 2270 816.2 523.1 293.1 150 0904 137.4 0.22 353.7 3486 970.7 572.3 398.4 151 0903 74.7 0.24 192.7 1092 326.6 207.5 119.1 152 0902 92.9 0.45 216.4 1341 330.7 179.5 151.2 153 0901 76.1 0.23 185.3 1327 406.7 258.1 148.6 154 0900 119.5 0.60 281.1 2944 965.5 639.7 325.8 155 0899 117.0 0.10 285.6 2652 949.7 644.3 305.4 156 0898 90.0 0.34 218.1 1367 426.7 279.2 147.5 157 0897 86.9 0.24 200.1 1281 415.3 271.1 144.2 158 0896 111.4 0.69 267.9 3488 912.8 523.0 389.8 159 0895 143.8 0.02 343.6 3528 968.0 588.3 379.7 160 0894 123.8 0.39 325.4 3001 842.0 473.0 369.0

Min 13.3 0.02 30.2 8 1.7 0.2 1.0 Avg 58.8 0.15 137.7 799 225.8 131.5 94.3 Median 57.1 0.11 130.1 506 103.3 37.1 66.0 Max 145.7 0.69 353.7 3797 1127.4 760.5 469.7

84 Earthworm Allometry: Source Equations 23 22 20 19 18 17 16 15 13 11 10 09 06 05 04 03 01 24

ln(AFDM) = m m ln(AFDM) = Equation ID

x x x x x x x x x Exact fit x x x x x x x x x Closest fit 2.3820 2.4700 2.3820 2.6117 2.6117 2.6117 2.3225 2.3225 2.3225 2.1200 2.1200 1.7500 2.6365 2.1734 2.1734 2.1734 2.1734 2.0300 Slope (m) x ln(Length) + b ln(Length) + -12.4500 -12.6400 -12.4500 -13.0190 -13.0190 -13.0190 -11.8423 -11.8423 -11.8423 -10.8800 -10.8800 -10.1900 -12.8740 -11.6417 -11.6417 -11.6417 -11.6417 -11.0100

Intercept (b) 0.959 0.850 0.959 0.970 0.970 0.970 0.960 0.960 0.960 0.890 0.890 0.670 0.840 0.940 0.940 0.940 0.940 0.740 R 2

Megascolecdiae Lumbricidae Family APPENDIX B Lumbricus Eisenia Eisenia Dendrodrilus Dendrobaena Aporrectodea Aporrectodea Aporrectodea Aporrectodea Genus Amynthas Amynthas Amynthas Octolasion Octolasion Octolasion Lumbricus Lumbricus 85

Genus spp fetida spp rubidus octaedra rosea longa calignosa spp spp agrestis hilgendorfi/ hilgendorfi spp tyrtaeum cyaneum spp terrestris rubellus Species Hale, Reich, Frelich Greiner #13 Greiner Hale, Reich, Frelich #3 #3 #3 Hale, Reich, Frelich Greiner Schermaier Greiner #24 Hale, Reich, Frelich #20 #20 #15 #15 Source EarthwormAllometry: Ruler Method Subsample Data M M M M M M M M M M medium S S S S S S S S S S L L L L L L L L L L small large Group Length Ranges (mm) Group 030 029 028 027 026 025 024 023 022 021 020 019 018 017 016 015 014 013 012 011 010 009 008 007 006 005 004 003 002 001 Sorted ID Average 0924 0910 0908 0915 0922 0926 0931 0902 0935 0974 0906 0911 0939 0948 0959 1036 1037 1042 0949 1044 1043 1011 1020 1017 1024 1008 1004 0988 0989 0987

89.7 44.2 13.3 Image (IMG_nnnn.JPG) 109.1 105.1 104.3 103.4 63.4 99.0 96.7 95.9 92.9 90.3 89.7 82.6 81.8 69.0 66.0 60.4 58.3 57.6 55.1 54.6 44.3 36.4 35.2 34.5 30.8 28.7 26.4 25.7 23.7 23.4 20.6 to to to ImageJ Method (mm) Length 145.7 105.5 102.0 102.0 102.5 61.7 97.5 94.5 94.5 89.5 87.5 90.0 79.5 79.5 66.5 64.5 59.0 57.5 56.0 53.0 53.5 42.0 34.5 34.0 33.0 30.0 26.5 25.0 25.5 23.0 23.5 19.0 86.9 43.5 Ruler Method (mm) -0.3% -0.4% 3.0% 3.3% 2.9% 2.2% 0.9% 1.5% 2.3% 1.5% 3.7% 3.1% 3.8% 2.8% 3.6% 2.3% 2.3% 1.4% 2.8% 3.8% 2.0% 5.2% 5.2% 3.4% 4.3% 2.6% 7.7% 5.3% 0.8% 3.0% 7.8% Group Size Deviation APPENDIXC 30 74 56 ** ln(AFDM) = 2.382*ln(Length) -12.45 108.74 293.40 200.90 320.60 268.40 200.50 293.70 149.00 151.20 283.60 127.50 160.50 145.30 110.30 66.00 65.60 31.30 37.00 12.00 15.10 19.70 13.50 56.90 85.50 69.90 44.20 8.20 9.80 7.80 8.20 6.60 Actual AFDM** 104.54 279.98 256.15 251.53 246.39 222.15 210.05 205.93 190.92 178.44 175.62 144.30 141.00 55.06 53.83 32.72 20.49 18.92 18.04 13.76 11.63 94.01 84.56 68.46 62.93 61.14 9.53 8.94 7.37 7.15 5.28

86 ImageJ Predicted 258.48 238.52 238.52 241.31 214.21 198.84 198.84 174.69 165.54 177.03 131.74 131.74 98.62 50.15 51.28 28.81 18.04 17.42 16.22 12.93 86.10 80.06 64.74 60.89 57.18 9.62 8.37 8.78 6.87 7.23 4.36 Hand Predicted -57.7% -19.4% -16.3% -27.5% -10.8% -38.2% -26.3% -37.7% -65.2% -38.3% 16.6% 17.9% 44.6% 30.1% 13.8% 12.8% 20.0% 21.5% 28.5% 37.1% 10.1% 23.3% 19.9% 10.0% -0.2% -4.5% 8.7% 5.5% 4.6% 8.2% 3.0% ImageJ Method Error -45.2% -18.7% -33.5% -15.5% -38.8% -51.3% -29.4% 24.0% 21.8% 51.3% 34.4% 28.7% 10.4% 12.0% 11.9% 34.0% 11.9% 25.6% 10.1% 32.3% 41.6% 17.9% 27.4% 24.3% 12.9% -7.4% -2.1% -6.8% 6.7% 7.9% 9.3% Ruler Method Absolute Error 22.6% 16.6% 17.9% 44.6% 57.7% 19.4% 30.1% 13.8% 16.3% 12.8% 20.0% 27.5% 21.5% 10.8% 28.5% 38.2% 26.3% 37.1% 37.7% 10.1% 65.2% 23.3% 19.9% 10.0% 38.3% 4.5% 8.7% 5.5% 4.6% 8.2% 3.0% ImageJ Method 23.3% 24.0% 21.8% 51.3% 45.2% 34.4% 28.7% 10.4% 12.0% 11.9% 34.0% 11.9% 18.7% 25.6% 10.1% 32.3% 33.5% 15.5% 41.6% 38.8% 17.9% 51.3% 27.4% 24.3% 12.9% 29.4% 7.9% 7.4% 2.1% 6.8% 9.3% Ruler Method Metroparks Field Study: Plant Community Data

Site bryophyte hydrophyte sensitive tolerant small subcanopy canopy IV adventives bare Cnt Latitude Longitude FQAI ID (%) (%) (%) (%) tree (%) IV (%) (%) (%) ground (%)

001 1002 41.206452 -81.724179 18.5749 0.0007 0.0000 0.1875 0.2231 0.0983 0.0571 0.1484 2.953E-03 2.00E-02 002 1003 41.347586 -81.836767 25.9307 0.0009 0.0001 0.6376 0.0430 0.0432 0.0291 0.1642 3.717E-05 1.00E-04 003 1004 41.381564 -81.556337 20.1782 0.0016 0.3086 0.0904 0.4112 0.0909 0.2022 0.1394 2.171E-01 1.50E-02 004 1005 41.256463 -81.687648 31.3808 0.0031 0.0195 0.2253 0.0577 0.0830 0.0729 0.1761 1.630E-03 7.50E-02 005 1006 41.408758 -81.959078 24.4263 0.0022 0.0694 0.3520 0.4904 0.0920 0.0829 0.1356 2.165E-05 0.00E+00 006 1008 41.369101 -81.692580 17.4078 0.0115 0.0062 0.2062 0.4002 0.1172 0.0308 0.2088 7.664E-05 3.03E-01 007 1009 41.221348 -81.708681 23.0517 0.0021 0.0146 0.2093 0.2254 0.0638 0.0614 0.1664 1.492E-01 5.00E-03 008 1010 41.403332 -81.898016 22.7330 0.0008 0.0834 0.0664 0.2575 0.3438 0.0674 0.1859 4.131E-02 1.00E-04 009 1011 41.373140 -81.505242 10.7825 0.0000 0.0712 0.4181 0.4393 0.1200 0.0000 0.2055 1.596E-01 0.00E+00 010 1012 41.565368 -81.422232 28.0000 0.0014 0.3399 0.0869 0.0511 0.0886 0.0933 0.1596 1.086E-04 0.00E+00 APPENDIX D 011 1013 41.300936 -81.690296 22.0625 0.0000 0.0016 0.3238 0.1057 0.2174 0.0314 0.1590 6.836E-03 5.05E-03 87 012 1014 41.345979 -81.833202 15.7534 0.0012 0.0162 0.0000 0.3612 0.0769 0.0343 0.0715 7.232E-02 1.50E-02 013 1015 41.381597 -81.559910 10.3280 0.0000 0.0013 0.0050 0.9794 0.4070 0.0000 0.1721 1.437E-03 0.00E+00 014 1016 41.435316 -81.413602 16.1889 0.0010 0.0150 0.0205 0.9140 0.0784 0.0000 0.0522 4.300E-01 0.00E+00 015 1017 41.570337 -81.432606 21.9107 0.0014 0.0243 0.3794 0.1139 0.1758 0.0297 0.1934 6.502E-02 0.00E+00 016 1018 41.212143 -81.702571 26.9444 0.0006 0.0182 0.2051 0.1003 0.3289 0.0000 0.1909 2.932E-02 1.50E-02 017 1019 41.292114 -81.801251 19.8248 0.0001 0.0000 0.6392 0.5575 0.2727 0.0403 0.1633 5.490E-03 1.30E-01 018 1021 41.220495 -81.732038 17.9399 0.0029 0.2220 0.0171 0.2187 0.1769 0.1484 0.1960 1.369E-01 1.50E-02 019 1022 41.468175 -81.831905 16.9031 0.0000 0.0000 0.2094 0.1511 0.1136 0.0426 0.1534 1.102E-03 1.00E-04 020 1024 41.413740 -81.753365 21.3172 0.0000 0.0015 0.3436 0.2078 0.0462 0.0639 0.1687 7.528E-03 1.38E-02 021 1025 41.310507 -81.601642 30.8305 0.0000 0.0035 0.1587 0.1104 0.0927 0.0859 0.1349 4.560E-03 0.00E+00 022 1026 41.403074 -81.889362 16.0000 0.0000 0.0000 0.1114 0.4103 0.1300 0.0304 0.1660 3.994E-01 0.00E+00 023 1028 41.555195 -81.428632 23.1925 0.0001 0.0319 0.1501 0.5003 0.1535 0.0798 0.1614 1.915E-02 9.50E-02 024 1029 41.283721 -81.566183 6.4550 0.0000 0.0000 0.0000 0.3324 0.1200 0.0000 0.3148 9.612E-01 0.00E+00 025 1030 41.450114 -81.833389 13.3128 0.0000 0.0000 0.1209 0.0136 0.3590 0.0000 0.1654 2.267E-03 2.75E-01 026 1031 41.373743 -81.569409 32.6059 0.0000 0.0040 0.2876 0.0476 0.1194 0.0372 0.1163 2.375E-03 2.83E-02 027 1033 41.580313 -81.419725 30.6679 0.0000 0.0742 0.6698 0.0001 0.0328 0.0589 0.1974 2.674E-05 1.00E-04 028 1034 41.210612 -81.693375 30.8075 0.0000 0.0160 0.1378 0.0815 0.4255 0.0452 0.1009 2.126E-02 1.00E-04 APPENDIX D

Metroparks Field Study: Plant Community Data

Site bryophyte hydrophyte sensitive tolerant small subcanopy canopy IV adventives bare Cnt Latitude Longitude FQAI ID (%) (%) (%) (%) tree (%) IV (%) (%) (%) ground (%)

029 1035 41.330414 -81.828890 23.7143 0.0009 0.0099 0.3498 0.3196 0.1942 0.0795 0.1566 3.659E-03 2.55E-03 030 1038 41.452999 -81.821247 20.1305 0.0000 0.0041 0.7113 0.1137 0.1765 0.0616 0.1848 0.000E+00 1.10E-01 031 1039 41.303063 -81.781649 22.7719 0.0005 0.0485 0.0666 0.2271 0.0553 0.0804 0.1319 1.482E-01 0.00E+00 032 1040 41.572521 -81.437336 16.0859 0.0130 0.0827 0.0049 0.6149 0.2941 0.0000 0.1979 8.178E-03 1.08E-01 033 1041 41.306299 -81.604534 27.9203 0.0083 0.0372 0.3401 0.0877 0.0351 0.0670 0.1361 1.802E-02 3.10E-02 034 1044 41.561525 -81.412848 12.7920 0.0000 0.0023 0.2274 0.1154 0.1929 0.0302 0.1697 5.926E-02 6.70E-03 035 1045 41.298469 -81.585528 26.7026 0.0023 0.0035 0.4806 0.1853 0.2000 0.0709 0.1719 5.316E-03 5.00E-03 036 1047 41.373166 -81.551583 31.8041 0.0013 0.0026 0.5507 0.0480 0.1060 0.0894 0.1801 1.326E-03 5.00E-03 037 1048 41.413311 -81.413345 21.6025 0.0017 0.1500 0.0882 0.6960 0.1216 0.0920 0.1896 3.233E-02 0.00E+00 038 1050 41.419779 -81.944948 21.7435 0.0000 0.0058 0.2736 0.0334 0.1115 0.0374 0.1431 0.000E+00 1.42E-01 APPENDIX D 039 1051 41.305680 -81.804343 17.1957 0.0000 0.0052 0.6701 0.0000 0.0960 0.0315 0.1773 0.000E+00 0.00E+00 88 040 1053 41.215855 -81.704497 30.2532 0.0008 0.0754 0.0907 0.0309 0.2308 0.0577 0.1632 1.325E-02 1.00E-04 041 1054 41.419301 -81.858643 19.6958 0.0013 0.0268 0.0170 0.0144 0.2197 0.0303 0.1933 1.165E-02 1.00E-04 042 1055 41.410823 -81.473119 12.3393 0.0000 0.0000 0.0522 0.7990 0.3694 0.0000 0.1974 5.125E-01 1.00E-04 043 1058 41.424994 -81.855146 19.6708 0.0000 0.0433 0.0499 0.0649 0.2202 0.0984 0.2194 2.439E-03 1.88E-01 044 1060 41.423479 -81.425297 27.6428 0.0017 0.2177 0.0722 0.1136 0.0655 0.1271 0.1540 5.731E-04 5.00E-03 045 1063 41.378448 -81.543503 4.4000 0.0000 0.0000 0.0000 0.1600 0.0000 0.0000 0.0000 1.325E-01 0.00E+00 046 1064 41.414376 -81.427328 22.7091 0.0020 0.0277 0.3144 0.1615 0.0643 0.0534 0.1730 1.318E-05 2.00E-02 047 1067 41.344676 -81.847214 17.0982 0.0000 0.3121 0.1035 0.5216 0.0385 0.1331 0.1495 1.686E-03 5.75E-02 048 1068 41.386987 -81.540837 32.1516 0.0062 0.0110 0.6178 0.0757 0.3043 0.0423 0.1358 6.294E-03 0.00E+00 049 1070 41.410397 -81.968463 25.2110 0.0073 0.1046 0.2047 0.3045 0.0762 0.0837 0.1303 0.000E+00 1.00E-04 050 1071 41.312445 -81.794015 18.0000 0.0023 0.0146 0.1952 0.0974 0.1492 0.0315 0.1428 4.662E-02 0.00E+00 051 1072 41.391773 -81.690991 13.5978 0.0020 0.0428 0.0001 0.8023 0.2977 0.0000 0.4392 2.308E-02 0.00E+00 052 1074 41.398419 -81.879049 11.7838 0.0000 0.1898 0.0380 0.2279 0.1125 0.0000 0.1537 2.531E-02 6.25E-01 053 1083 41.299497 -81.805737 16.2776 0.0034 0.0017 0.1759 0.3587 0.1213 0.0000 0.1530 5.921E-03 4.00E-01 054 1136 41.384695 -81.692377 17.2993 0.0041 0.0000 0.3762 0.4397 0.2372 0.0299 0.1808 2.045E-05 5.00E-03 055 1376 41.380962 -81.696831 20.4124 0.0000 0.0000 0.6921 0.2471 0.0920 0.0574 0.1448 3.504E-05 0.00E+00 056 1388 41.380083 -81.702194 15.5637 0.0000 0.0029 0.3002 0.3775 0.2339 0.0743 0.1487 1.528E-02 3.78E-03 Metroparks Field Study: Plant Community Data

Site bryophyte hydrophyte sensitive tolerant small subcanopy canopy IV adventives bare Cnt Latitude Longitude FQAI ID (%) (%) (%) (%) tree (%) IV (%) (%) (%) ground (%)

057 3420 41.378120 -81.696407 12.9316 0.0030 0.0129 0.1125 0.1526 0.1190 0.0000 0.1976 2.702E-02 4.50E-02 058 3484 41.390583 -81.689232 20.2943 0.0000 0.0001 0.3141 0.5859 0.2564 0.0692 0.1325 5.105E-05 0.00E+00 059 3596 41.384453 -81.697726 20.3961 0.0000 0.0000 0.4483 0.3600 0.2194 0.0300 0.1303 1.123E-03 9.50E-02 060 3668 41.379483 -81.694029 21.3791 0.0000 0.0102 0.2805 0.2832 0.1083 0.1284 0.1496 2.640E-03 1.00E-02 061 3732 41.371981 -81.568829 19.3276 0.0000 0.0000 0.7205 0.2539 0.1481 0.0547 0.1447 0.000E+00 1.05E-01 062 AT01 41.417490 -81.869020 18.4327 0.0000 0.0000 0.7750 0.0191 0.3654 0.0000 0.1898 5.073E-05 0.00E+00 063 AT02 41.416380 -81.870900 19.7500 0.0000 0.0000 0.7222 0.0020 0.0950 0.0000 0.1865 0.000E+00 3.83E-03 **AT01 & AT02 are also identified as VIBI007 & VIBI008, respectively. APPENDIX D 89 Metroparks Field Study: Soil Chemistry Data

Phosphorus Total CEC Base Saturation Site Total N C/N OM P1 P2 Bic K Mg Ca (meq/ (%) Cnt ID C (%) (%) Ratio % rate ppm rate ppm rate ppm rate ppm rate ppm rate ppm rate pH Bindx 100) K Mg Ca H 001 1002 2.35 0.15 15.7 3.8 H 6 VL 9 L 96 M 149 VH 950 M 5.6 6.7 8.1 3.0 15.3 58.6 23.1 002 1003 3.02 0.18 17.2 4.9 VH 4 VL 5 VL 69 L 74 M 392 L 4.6 6.6 6.0 2.9 10.3 32.7 54.1 003 1004 3.47 0.18 19.4 4.4 H 9 L 13 L 77 L 130 M 1250 M 5.7 6.7 9.5 2.1 11.4 65.8 20.7 004 1005 3.76 0.22 17.2 5.3 VH 5 VL 9 L 75 L 208 H 2003 H 6.2 6.8 13.5 1.4 12.8 74.2 11.6 005 1006 5.75 0.29 20.1 8.2 VH 8 L 9 L 82 M 63 L 284 VL 4.4 6.6 5.7 3.7 9.2 24.9 62.2 006 1008 3.82 0.22 17.4 5.0 VH 2 VL 3 VL 81 M 100 H 411 L 4.7 6.6 6.3 3.3 13.2 32.6 50.9 007 1009 2.38 0.16 15.3 3.3 M 7 VL 31 M 8 L 93 L 248 VH 1724 H 7.1 10.9 2.2 19.0 78.8 008 1010 3.66 0.22 16.7 4.4 H 4 VL 14 L 81 L 94 L 682 L 4.5 6.4 10.5 2.0 7.5 32.5 58.0 009 1011 3.61 0.21 17.2 5.3 VH 6 VL 18 L 104 M 117 H 864 M 5.3 6.7 8.1 3.3 12.0 53.3 31.4 010 1012 5.84 0.34 17.2 7.0 VH 4 VL 5 VL 103 M 94 M 454 VL 4.4 6.5 8.7 3.0 9.0 26.1 61.9

011 1013 3.32 0.17 19.3 5.3 VH 5 VL 7 VL 86 M 126 H 784 L 5.1 6.6 8.4 2.6 12.5 46.7 38.2 APPENDIX E 012 1014 2.77 0.18 15.1 3.6 H 6 VL 15 L 100 M 92 M 723 L 4.7 6.5 9.3 2.8 8.2 38.9 50.1

90 013 1015 2.22 0.13 17.6 3.2 M 3 VL 5 VL 65 L 82 M 443 L 4.5 6.5 7.3 2.3 9.4 30.3 58.0 014 1016 3.22 0.15 21.9 4.6 VH 3 VL 13 L 104 M 188 VH 1085 M 5.9 6.8 8.8 3.0 17.8 61.6 17.6 015 1017 4.63 0.19 24.5 6.8 VH 3 VL 6 VL 55 L 171 VH 734 L 5.3 6.7 7.6 1.9 18.8 48.3 31.0 016 1018 5.78 0.30 19.5 7.4 VH 8 L 23 M 91 L 168 M 2491 VH 7.0 14.1 1.7 9.9 88.4 017 1019 5.27 0.30 17.4 8.2 VH 3 VL 7 VL 161 H 238 VH 1206 M 5.3 6.6 12.2 3.4 16.3 49.4 30.9 018 1021 2.67 0.17 15.4 4.6 VH 5 VL 13 L 69 L 235 VH 1645 H 6.1 6.7 12.1 1.5 16.2 68.0 14.3 019 1022 3.96 0.21 18.7 5.9 VH 5 VL 8 L 106 M 215 VH 1369 M 5.6 6.7 11.6 2.3 15.4 59.0 23.3 020 1024 4.06 0.21 19.8 6.5 VH 9 L 19 L 109 M 188 H 1804 H 6.3 6.8 12.2 2.3 12.8 73.9 11.0 021 1025 3.29 0.18 18.3 5.1 VH 2 VL 4 VL 77 L 125 H 735 L 5.0 6.6 8.3 2.4 12.6 44.3 40.7 022 1026 2.71 0.13 21.5 5.2 VH 4 VL 6 VL 61 L 92 M 470 L 4.7 6.6 6.6 2.4 11.6 35.6 50.4 023 1028 3.69 0.19 19.3 6.0 VH 3 VL 4 VL 93 M 132 H 936 M 5.3 6.7 8.7 2.7 12.6 53.8 30.9 024 1029 2.44 0.14 17.8 3.3 M 2 VL 29 M 86 L 180 VH 1519 H 7.3 9.3 2.4 16.1 81.5 025 1030 5.58 0.35 15.9 8.6 VH 8 L 17 L 164 M 285 VH 2755 H 6.6 6.8 17.7 2.4 13.4 77.8 6.4 026 1031 5.34 0.31 17.0 7.2 VH 4 VL 16 L 118 L 281 VH 2809 H 6.5 6.8 18.1 1.7 12.9 77.6 7.8 027 1033 3.60 0.24 14.9 5.7 VH 6 VL 7 VL 101 M 80 M 486 L 4.6 6.6 7.3 3.5 9.1 33.3 54.1 028 1034 2.78 0.16 16.9 3.3 M 3 VL 18 L 6 L 113 M 235 VH 1890 H 7.3 11.7 2.5 16.7 80.8 029 1035 3.28 0.15 21.4 4.7 VH 1 VL 2 VL 62 L 100 M 1013 M 5.4 6.7 8.5 1.9 9.8 59.6 28.7 030 1038 10.01 0.45 22.2 9.7 VH 3 VL 5 VL 95 L 47 VL 319 VL 3.8 6.2 11.0 2.2 3.6 14.5 79.7 031 1039 3.99 0.28 14.2 5.6 VH 5 VL 20 M 113 M 307 VH 1981 H 6.2 6.7 14.5 2.0 17.6 68.3 12.1 032 1040 3.85 0.24 16.1 5.1 VH 3 VL 5 VL 86 L 129 H 666 L 4.8 6.6 8.7 2.5 12.4 38.3 46.8 033 1041 4.65 0.27 17.4 6.1 VH 3 VL 11 L 87 L 208 VH 1878 H 6.1 6.7 13.1 1.7 13.2 71.7 13.4 Metroparks Field Study: Soil Chemistry Data

Phosphorus Total CEC Base Saturation Site Total N C/N OM P1 P2 Bic K Mg Ca (meq/ (%) Cnt ID C (%) (%) Ratio % rate ppm rate ppm rate ppm rate ppm rate ppm rate ppm rate pH Bindx 100) K Mg Ca H 034 1044 2.73 0.14 19.9 3.6 H 4 VL 5 VL 57 L 106 M 799 L 4.9 6.6 8.9 1.6 9.9 44.9 43.6 035 1045 2.86 0.18 16.1 3.9 H 6 VL 8 L 71 L 119 H 1060 M 5.8 6.8 8.0 2.3 12.4 66.2 19.1 036 1047 3.89 0.21 18.3 5.6 VH 5 VL 6 VL 65 L 167 H 1389 H 6.2 6.8 9.7 1.7 14.3 71.6 12.4 037 1048 4.90 0.26 19.1 5.8 VH 4 VL 7 VL 76 L 84 L 568 L 4.5 6.5 8.9 2.2 7.9 31.9 58.0 038 1050 3.36 0.14 23.5 5.4 VH 4 VL 6 VL 59 L 44 VL 281 VL 4.1 6.5 7.4 2.0 5.0 19.0 74.0 039 1051 3.78 0.23 16.3 6.1 VH 2 VL 3 VL 99 M 104 M 455 VL 4.5 6.5 8.1 3.1 10.7 28.1 58.1 040 1053 2.05 0.10 20.3 2.4 L 2 VL 11 L 50 VL 67 L 1957 VH 7.2 10.5 1.2 5.3 93.5 041 1054 5.86 0.39 15.1 7.5 VH 5 VL 10 L 141 M 222 VH 2026 H 6.4 6.8 13.5 2.7 13.7 75.0 8.6 042 1055 4.94 0.20 24.9 7.4 VH 4 VL 5 VL 57 L 78 M 569 L 4.9 6.6 6.5 2.2 10.0 43.8 44.0 043 1058 4.13 0.23 17.7 6.0 VH 8 L 29 M 81 L 218 VH 1884 VH 6.8 11.4 1.8 15.9 82.3

044 1060 6.32 0.35 18.3 8.0 VH 4 VL 5 VL 96 M 97 L 710 L 4.6 6.5 10.0 2.5 8.1 35.5 53.9 APPENDIX E 045 1063 4.19 0.23 18.5 5.1 VH 12 L 15 L 72 L 152 VH 941 M 5.6 6.7 8.1 2.3 15.6 58.1 24.0

91 046 1064 4.54 0.27 17.0 6.4 VH 5 VL 6 VL 49 VL 49 VL 373 VL 3.7 6.1 13.3 0.9 3.1 14.0 82.0 047 1067 3.30 0.20 16.2 4.6 VH 2 VL 4 VL 83 M 82 M 417 L 4.7 6.6 6.0 3.5 11.4 34.8 50.3 048 1068 3.29 0.20 16.6 4.8 VH 4 VL 5 VL 65 L 171 VH 1378 M 5.8 6.7 10.5 1.6 13.6 65.6 19.2 049 1070 6.53 0.37 17.7 5.9 VH 8 L 10 L 62 VL 101 L 522 VL 4.0 6.0 15.3 1.0 5.5 17.1 76.4 050 1071 4.57 0.31 14.8 5.4 VH 3 VL 16 L 113 M 197 H 1921 H 5.8 6.7 14.2 2.0 11.6 67.6 18.8 051 1072 4.74 0.25 19.0 6.3 VH 5 VL 9 L 73 M 58 L 306 VL 4.3 6.5 6.5 2.9 7.4 23.5 66.2 052 1074 3.51 0.19 18.1 3.5 M 7 VL 9 L 63 L 63 L 428 VL 4.4 6.5 7.4 2.2 7.1 28.9 61.8 053 1083 2.95 0.17 17.7 4.1 H 2 VL 4 VL 64 M 42 L 255 VL 4.5 6.7 4.3 3.8 8.1 29.7 58.4 054 1136 5.67 0.22 26.4 8.6 VH 4 VL 5 VL 69 L 53 L 215 VL 4.0 6.5 7.2 2.5 6.1 14.9 76.5 055 1376 5.94 0.20 29.7 7.7 VH 3 VL 11 L 95 M 66 L 282 VL 4.2 6.5 7.3 3.3 7.5 19.3 69.9 056 1388 4.87 0.26 19.0 8.7 VH 9 L 19 L 157 VH 83 M 363 VL 4.6 6.6 6.3 6.4 11.0 28.8 53.8 057 3420 5.01 0.28 18.0 5.2 VH 5 VL 14 L 135 M 262 VH 2989 VH 7.4 17.5 2.0 12.5 85.5 058 3484 8.80 0.31 28.8 10.4 VH 4 VL 6 VL 58 L 42 L 210 VL 4.1 6.5 5.9 2.5 5.9 17.8 73.8 059 3596 7.69 0.29 27.0 9.6 VH 3 VL 6 VL 79 L 52 L 254 VL 4.1 6.5 7.4 2.7 5.9 17.2 74.2 060 3668 3.72 0.20 18.5 5.4 VH 2 VL 7 VL 120 M 105 M 678 L 4.8 6.6 8.7 3.5 10.1 39.0 47.4 061 3732 6.29 0.27 23.3 8.4 VH 4 VL 6 VL 97 M 57 L 301 VL 4.2 6.5 7.4 3.4 6.4 20.3 69.9 062 AT01 10.93 0.46 23.8 15.8 VH 5 VL 13 L 58 L 49 L 198 VL 4.0 6.5 6.5 2.3 6.3 15.2 76.2 063 AT02 4.24 0.25 17.2 5.7 VH 6 VL 12 L 106 M 80 L 412 VL 4.2 6.3 10.0 2.7 6.7 20.6 70.0 ** Soil was also tested for sodium; no measurable quantities were detected. Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 001 21-Sep-2010 1034 1 02 B 0002 x Aporrectodea spp 14.397 14.279 14.461 14.379 300 22.4 5243 002 21-Sep-2010 1034 1 03 B 0003 x Aporrectodea spp 16.193 16.226 16.297 16.239 300 20.3 5244 003 21-Sep-2010 1034 1 04 B 0004 x Aporrectodea spp 16.380 16.420 16.404 16.401 300 20.4 5245 004 21-Sep-2010 1034 1 05 B 0005 x Aporrectodea spp 13.563 13.576 13.593 13.577 300 18.7 5246 005 21-Sep-2010 1034 1 06 B 0006 x Aporrectodea spp 20.264 20.345 20.384 20.331 300 43.8 5247 006 21-Sep-2010 1034 1 07 B 0007 x Aporrectodea spp 18.561 18.726 18.618 18.635 300 35.8 5248 007 21-Sep-2010 1034 1 08 B 0008 x Aporrectodea spp 21.133 21.210 21.214 21.186 200 42.4 5249 008 21-Sep-2010 1034 1 09 B 0009 x Aporrectodea spp 19.675 19.683 19.709 19.689 200 44.9 5250 009 21-Sep-2010 1034 1 10 B 0010 x Aporrectodea spp 17.686 17.688 17.674 17.683 300 29.3 5251 010 21-Sep-2010 1034 1 11 B 0011 x Aporrectodea spp 22.525 22.569 22.327 22.474 200 60.6 5258 011 21-Sep-2010 1034 1 12 B 0012 x Aporrectodea spp 23.308 23.322 23.357 23.329 300 59.8 5259

012 21-Sep-2010 1034 1 13 B 0013 Octolasion tyrtaeum 42.769 42.695 42.842 42.769 100 292.8 5260 APPENDIX F 92 013 21-Sep-2010 1034 1 14 B 0014 x Lumbricus spp 46.685 46.684 46.914 46.761 200 300.1 5261 014 21-Sep-2010 1034 1 15 B 0015 x Lumbricus spp 62.252 62.191 62.375 62.273 150 478.3 5262 015 21-Sep-2010 1034 1 16 B 0016 x Octolasion spp 11.589 11.581 11.667 11.612 400 11.5 5263 016 21-Sep-2010 1034 1 17 B 0017 x Lumbricus spp 19.275 19.401 19.370 19.349 400 35.6 5264 017 21-Sep-2010 1034 1 18 B 0018 x Aporrectodea spp 9.272 9.300 9.296 9.289 400 3.2 5265 018 21-Sep-2010 1034 1 19 B 0019 x Aporrectodea spp 10.771 10.904 10.816 10.830 400 6.6 5266 019 21-Sep-2010 1034 1 20 B 0020 x Aporrectodea spp 10.031 10.079 10.117 10.076 400 5.7 5267 020 13-Oct-2010 1068 1 02 B 0022 x Aporrectodea spp 10.797 10.686 10.737 10.740 400 2.7 5268 021 13-Oct-2010 1068 1 03 B 0023 x Aporrectodea spp 4.922 4.843 4.886 4.884 600 0.2 5269 022 13-Oct-2010 1068 1 04 B 0024 x Aporrectodea spp 5.552 5.604 5.530 5.562 400 0.5 5270 023 13-Oct-2010 1068 1 05 B 0025 x Aporrectodea spp 4.869 4.970 4.924 4.921 600 0.1 5271 024 13-Oct-2010 1068 3 01 B 0026 x Aporrectodea spp 8.295 8.381 8.319 8.332 600 0.5 5316 025 13-Oct-2010 1068 3 02 B 0027 x Lumbricus spp 11.327 11.255 11.343 11.308 600 1.8 5317 026 13-Oct-2010 1068 4 01 B 0028 x Aporrectodea spp 11.881 12.019 12.016 11.972 600 2.8 5318 027 13-Oct-2010 1068 4 02 B 0029 x Aporrectodea spp 9.580 9.470 9.609 9.553 600 3.4 5321

**Image Magnification (Img Mag) is the magnification of the image at the time of centerline measurement, where 100% is full size. The captured image however, is 6 times actual size, therefore a magnification of 200% would be equal to 12 times (2.00 x 6) actual size. APPENDIX F

Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 028 13-Oct-2010 1068 4 03 B 0030 x Aporrectodea spp 6.472 6.506 6.467 6.482 600 2.1 5322 029 13-Oct-2010 1068 4 04 B 0031 x Aporrectodea spp 4.684 4.790 4.766 4.747 400 1.1 5323 030 20-Sep-2010 1039 3 01 B 0033 x Aporrectodea spp 9.762 9.773 9.722 9.752 400 2.5 5272 031 20-Sep-2010 1039 3 02 B 0034 x Aporrectodea spp 19.772 19.756 19.779 19.769 400 44.4 5273 032 20-Sep-2010 1039 3 03 B 0035 x Aporrectodea spp 26.863 27.023 27.167 27.018 200 84.6 5274 033 20-Sep-2010 1039 3 04 B 0036 Amynthas spp 41.570 41.453 41.526 41.516 100 337.0 5275 034 20-Sep-2010 1039 9 01 B 0037 Amynthas spp 35.916 35.974 35.811 35.900 150 180.0 5276 035 22-Sep-2010 1040 2 01 B 0038 x Lumbricus spp 10.597 10.676 10.604 10.626 400 4.8 5277 036 22-Sep-2010 1040 2 02 B 0039 x Aporrectodea spp 10.594 10.668 10.733 10.665 400 4.9 5278 037 22-Sep-2010 1040 2 03 B 0040 x Aporrectodea spp 20.361 20.517 20.516 20.465 300 26.3 5279 038 22-Sep-2010 1040 2 04 B 0041 x Octolasion spp 15.650 15.606 15.579 15.612 300 18.9 5280

039 22-Sep-2010 1040 2 05 B 0042 x Aporrectodea spp 31.664 31.895 31.969 31.843 200 111.5 5281 APPENDIX F 93 040 22-Sep-2010 1040 2 06 B 0043 Dendrobaena octaedra 20.219 20.157 20.224 20.200 300 46.4 5282 041 22-Sep-2010 1040 2 07 B 0044 x Lumbricus spp 37.631 37.792 37.602 37.675 150 21.6 5283 042 22-Sep-2010 1040 2 08 B 0045 x Lumbricus spp 44.065 44.336 44.173 44.191 150 302.9 5284 043 22-Sep-2010 1040 8 01 B 0046 Octolasion cyaneum 31.352 31.476 31.393 31.407 150 162.3 5285 044 22-Sep-2010 1040 9 15 B 0047 x Aporrectodea spp 32.413 32.694 32.676 32.594 300 108.8 5286 045 22-Sep-2010 1040 9 14 B 0048 x Octolasion spp 25.683 25.847 25.777 25.769 200 147.3 5287 046 22-Sep-2010 1040 9 13 B 0049 x Aporrectodea spp 39.926 39.612 39.837 39.792 200 203.4 5288 047 22-Sep-2010 1040 9 12 B 0050 x Aporrectodea spp 27.857 27.883 27.910 27.883 200 95.6 5289 048 22-Sep-2010 1040 9 11 B 0051 x Aporrectodea spp 24.541 24.365 24.586 24.497 300 78.4 5290 049 22-Sep-2010 1040 9 10 B 0052 x Aporrectodea spp 23.004 23.208 22.995 23.069 300 45.8 5291 050 22-Sep-2010 1040 9 09 B 0053 x Aporrectodea spp 24.984 24.879 24.893 24.919 300 53.7 5292 051 22-Sep-2010 1040 9 08 B 0054 x Octolasion spp 14.643 14.650 14.629 14.641 400 24.6 5293 052 22-Sep-2010 1040 9 07 B 0055 x Lumbricus spp 16.284 16.310 16.342 16.312 400 22.9 5294 053 22-Sep-2010 1040 9 06 B 0056 x Octolasion spp 11.821 11.796 11.812 11.810 600 8.5 5295 054 22-Sep-2010 1040 9 05 B 0057 x Octolasion spp 10.591 10.369 10.503 10.488 400 10.4 5296 055 22-Sep-2010 1040 9 04 B 0058 x Aporrectodea spp 11.446 11.343 11.420 11.403 400 8.2 5297 056 22-Sep-2010 1040 9 03 B 0059 x Octolasion spp 11.847 11.866 11.839 11.851 400 9.1 5298 057 22-Sep-2010 1040 9 02 B 0060 x Aporrectodea spp 12.561 12.538 12.643 12.581 300 8.4 5299 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 058 22-Sep-2010 1040 9 01 B 0061 x Aporrectodea spp 10.711 10.627 10.646 10.661 400 5.8 5300 059 23-Sep-2010 1041 2 01 B 0062 Dendrodrilus rubidus 9.523 9.523 9.580 9.542 400 8.3 5301 060 23-Sep-2010 1041 2 02 B 0063 Dendrodrilus rubidus 11.956 11.902 11.899 11.919 400 9.5 5302 061 23-Sep-2010 1041 2 03 B 0064 Dendrodrilus rubidus 9.208 9.276 9.216 9.233 400 5.9 5303 062 23-Sep-2010 1041 2 04 B 0065 Eisenia fetida 15.404 15.396 15.364 15.388 300 43.2 5304 063 23-Sep-2010 1041 2 05 B 0066 Dendrodrilus rubidus 15.707 15.663 15.663 15.678 300 47.6 5305 064 23-Sep-2010 1041 2 06 B 0067 Dendrodrilus rubidus 17.249 17.337 17.272 17.286 300 41.9 5306 065 23-Sep-2010 1041 3 02 B 0069 x Octolasion spp 6.919 6.888 6.904 6.904 600 0.8 5307 066 23-Sep-2010 1041 3 03 B 0070 x Lumbricus spp 5.859 5.747 5.822 5.809 600 1.4 5308 067 23-Sep-2010 1041 3 04 B 0071 x Lumbricus spp 4.551 4.576 4.562 4.563 600 0.1 5309 068 23-Sep-2010 1041 3 05 B 0072 Dendrodrilus rubidus 5.997 6.051 6.036 6.028 800 1.5 5310

069 23-Sep-2010 1041 3 06 B 0073 x Lumbricus spp 6.557 6.530 6.515 6.534 600 1.6 5311 APPENDIX F 94 070 23-Sep-2010 1041 3 07 B 0074 x Lumbricus spp 7.728 7.697 7.648 7.691 600 3.1 5312 071 23-Sep-2010 1041 3 08 B 0075 x Lumbricus spp 8.932 9.126 9.098 9.052 600 5.3 5313 072 23-Sep-2010 1041 3 09 B 0076 x Aporrectodea spp 8.260 8.205 8.206 8.224 600 5.2 5314 073 23-Sep-2010 1041 3 10 B 0077 x Lumbricus spp 9.040 8.982 9.019 9.014 600 6.7 5315 074 23-Sep-2010 1041 3 11 B 0078 x Lumbricus spp 9.569 9.675 9.549 9.598 600 5.7 5325 075 23-Sep-2010 1041 3 12 B 0079 x Lumbricus spp 10.068 10.061 10.079 10.069 600 5.7 5326 076 23-Sep-2010 1041 3 13 B 0080 x Lumbricus spp 11.959 12.110 11.917 11.995 400 13.7 5327 077 23-Sep-2010 1041 3 14 B 0081 x Lumbricus spp 11.986 11.825 11.927 11.913 400 14.2 5328 078 23-Sep-2010 1041 3 15 B 0082 x Lumbricus spp 13.655 13.560 13.563 13.593 400 17.7 5329 079 23-Sep-2010 1041 3 16 B 0083 x Lumbricus spp 22.459 22.359 22.426 22.415 400 21.5 5330 080 23-Sep-2010 1041 3 17 B 0084 x Lumbricus spp 12.619 12.600 12.642 12.620 400 27.2 5331 081 23-Sep-2010 1041 3 18 B 0085 x Lumbricus spp 15.461 15.344 15.339 15.381 300 23.1 5332 082 23-Sep-2010 1041 3 19 B 0086 x Lumbricus spp 13.274 13.295 13.332 13.300 400 17.3 5333 083 23-Sep-2010 1041 3 20 B 0087 x Lumbricus spp 14.740 14.691 14.562 14.664 400 20.9 5334 084 23-Sep-2010 1041 3 21 B 0088 x Lumbricus spp 14.983 15.158 15.010 15.050 400 18.1 5335 085 23-Sep-2010 1041 3 22 B 0089 Lumbricus rubellus 17.841 17.944 17.895 17.893 300 43.9 5336 086 23-Sep-2010 1041 3 23 B 0090 x Lumbricus spp 20.993 20.776 20.944 20.904 300 32.2 5337 087 23-Sep-2010 1041 3 24 B 0091 x Lumbricus spp 34.521 34.379 34.739 34.546 300 150.1 5338 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 088 23-Sep-2010 1041 3 25 B 0092 x Lumbricus spp 25.342 25.490 25.389 25.407 300 68.1 5339 089 23-Sep-2010 1041 3 26 B 0093 x Lumbricus spp 25.543 25.549 25.419 25.504 300 74.3 5340 090 23-Sep-2010 1041 3 27 B 0094 Lumbricus rubellus 22.623 22.529 22.614 22.589 300 76.7 5341 091 23-Sep-2010 1041 3 28 B 0095 x Lumbricus spp 24.557 24.605 24.714 24.625 300 69.2 5342 092 23-Sep-2010 1041 3 29 B 0096 x Lumbricus spp 30.999 31.091 31.102 31.064 300 122.7 5343 093 23-Sep-2010 1041 3 30 B 0097 x Lumbricus spp 41.853 41.803 41.732 41.796 300 276.0 5344 094 23-Sep-2010 1041 8 01 B 0098 x Aporrectodea spp 16.007 15.931 15.991 15.976 400 11.9 5345 095 30-Sep-2010 1044 3 01 B 0099 x Aporrectodea spp 7.620 7.661 7.536 7.606 600 0.8 5346 096 30-Sep-2010 1044 8 01 B 0100 x Aporrectodea spp 19.465 19.434 19.520 19.473 400 34.8 5347 097 30-Sep-2010 1044 8 02 B 0101 x Aporrectodea spp 33.931 33.610 33.974 33.838 300 142.1 5348 098 30-Sep-2010 1044 8 03 B 0102 Amynthas spp 43.724 43.514 43.555 43.598 200 271.9 5349

099 30-Sep-2010 1044 9 01 B 0104 x Aporrectodea spp 11.276 11.344 11.290 11.303 600 1.3 5350 APPENDIX F 95 100 30-Sep-2010 1044 9 02 B 0105 x Aporrectodea spp 9.318 9.271 9.304 9.298 600 0.7 5351 101 23-Sep-2010 1047 8 01 B 0107 Octolasion cyaneum 33.696 33.562 33.643 33.634 200 117.7 5352 102 13-Oct-2010 1048 3 01 B 0110 Dendrobaena octaedra 7.362 7.483 7.335 7.393 800 1.4 5354 103 07-Oct-2010 1050 2 01 B 0111 Dendrobaena octaedra 8.261 8.253 8.222 8.245 800 4.0 5355 104 07-Oct-2010 1050 2 02 B 0112 Dendrobaena octaedra 10.498 10.460 10.549 10.502 600 5.1 5356 105 07-Oct-2010 1050 2 03 B 0113 Dendrobaena octaedra 11.194 11.243 11.152 11.196 600 6.3 5369 106 07-Oct-2010 1050 2 04 B 0114 Dendrobaena octaedra 6.933 6.890 6.966 6.930 800 2.6 5370 107 07-Oct-2010 1050 2 05 B 0115 Dendrobaena octaedra 9.852 10.018 9.947 9.939 600 5.1 5371 108 07-Oct-2010 1050 2 06 B 0116 Dendrobaena octaedra 9.560 9.552 9.557 9.556 400 5.4 5373 109 07-Oct-2010 1050 2 07 B 0117 x Octolasion spp 11.184 11.219 11.194 11.199 300 8.3 5374 110 07-Oct-2010 1050 2 08 B 0118 x Lumbricus spp 22.693 22.911 22.883 22.829 200 35.9 5375 111 07-Oct-2010 1050 8 01 B 0119 x Lumbricus spp 14.822 14.914 14.872 14.869 200 17.8 5376 112 07-Oct-2010 1050 8 02 B 0121 x Lumbricus spp 23.360 23.343 23.437 23.380 150 48.1 5377 113 07-Oct-2010 1050 8 03 B 0122 x Lumbricus spp 20.480 20.415 20.383 20.426 300 40.9 5378 114 07-Oct-2010 1050 8 04 B 0123 x Aporrectodea spp 18.082 18.108 18.119 18.103 200 18.0 5379 115 07-Oct-2010 1050 8 05 B 0124 x Lumbricus spp 24.513 24.460 24.202 24.392 200 60.5 5380 116 07-Oct-2010 1050 9 01 B 0125 x Aporrectodea spp 16.945 16.933 16.931 16.936 300 17.6 5381 117 07-Oct-2010 1050 9 02 B 0126 Lumbricus rubellus 33.435 33.612 33.326 33.458 150 289.9 5382 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 118 07-Oct-2010 1051 3 01 B 0127 Lumbricus rubellus 50.385 50.436 51.179 50.667 150 491.0 5383 119 07-Oct-2010 1051 9 01 B 0128 x Lumbricus spp 13.601 13.555 13.747 13.634 400 13.9 5384 120 07-Oct-2010 1051 9 02 B 0129 Dendrobaena octaedra 21.643 21.531 21.533 21.569 300 67.7 5385 121 07-Oct-2010 1051 9 03 B 0130 x Lumbricus spp 32.715 32.577 32.308 32.533 200 149.7 5386 122 07-Oct-2010 1054 2 01 B 0131 Amynthas spp 34.195 34.128 34.317 34.213 150 199.1 5387 123 07-Oct-2010 1054 3 01 B 0132 Amynthas spp 40.548 40.703 40.444 40.565 100 361.0 5388 124 07-Oct-2010 1054 3 02 B 0133 Amynthas spp 41.404 41.575 41.402 41.460 100 406.5 5389 125 15-Oct-2010 1055 1 01 B 0134 x Lumbricus spp 26.614 26.807 26.732 26.718 300 59.5 5390 126 15-Oct-2010 1055 1 02 B 0135 x Aporrectodea spp 24.971 25.055 24.931 24.986 200 90.6 5391 127 15-Oct-2010 1055 1 03 B 0136 x Aporrectodea spp 35.242 35.172 35.217 35.210 200 79.5 5392 128 15-Oct-2010 1055 1 04 B 0137 x Aporrectodea spp 39.288 39.523 39.601 39.471 200 198.0 5393

129 15-Oct-2010 1055 1 05 B 0138 x Aporrectodea spp 36.644 37.222 36.626 36.831 200 196.0 5394 APPENDIX F 96 130 15-Oct-2010 1055 1 06 B 0139 x Aporrectodea spp 36.762 36.560 36.428 36.583 200 194.1 5395 131 15-Oct-2010 1055 1 07 B 0140 x Lumbricus spp 48.237 48.686 48.716 48.546 150 359.0 5396 132 15-Oct-2010 1055 2 01 B 0141 x Aporrectodea spp 16.137 16.212 16.196 16.182 300 12.9 5397 133 15-Oct-2010 1055 2 02 B 0142 x Lumbricus spp 24.707 24.753 24.821 24.760 200 111.1 5398 134 15-Oct-2010 1055 2 03 B 0143 Lumbricus rubellus 37.580 37.647 37.267 37.498 200 183.6 5399 135 15-Oct-2010 1055 2 04 B 0144 x Aporrectodea spp 41.845 41.732 42.190 41.922 200 321.5 5400 136 15-Oct-2010 1055 2 05 B 0145 x Aporrectodea spp 59.065 58.880 59.286 59.077 200 431.9 5401 137 15-Oct-2010 1055 2 06 B 0146 x Lumbricus spp 61.454 61.791 61.650 61.632 100 532.0 5402 138 15-Oct-2010 1055 3 01 B 0147 x Aporrectodea spp 19.968 20.061 20.152 20.060 200 50.9 5403 139 15-Oct-2010 1055 3 02 B 0148 x Aporrectodea spp 25.050 25.242 25.242 25.178 200 66.3 5404 140 15-Oct-2010 1055 3 03 B 0149 x Lumbricus spp 24.227 24.261 24.354 24.281 200 71.7 5405 141 15-Oct-2010 1055 3 04 B 0150 x Aporrectodea spp 32.893 33.116 33.250 33.086 150 161.7 5406 142 15-Oct-2010 1055 3 05 B 0151 x Aporrectodea spp 29.442 29.346 29.282 29.357 150 188.1 5407 143 15-Oct-2010 1055 3 06 B 0152 x Aporrectodea spp 35.958 35.947 35.940 35.948 150 200.9 5408 144 15-Oct-2010 1055 3 07 B 0153 x Aporrectodea spp 39.201 39.224 38.997 39.141 150 242.6 5409 145 15-Oct-2010 1055 3 08 B 0154 x Aporrectodea spp 32.490 32.622 32.503 32.538 150 164.3 5410 146 15-Oct-2010 1055 4 01 B 0155 x Aporrectodea spp 12.408 12.431 12.426 12.422 400 8.6 5411 147 15-Oct-2010 1055 4 02 B 0156 x Aporrectodea spp 17.462 17.337 17.304 17.368 300 20.3 5412 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 148 15-Oct-2010 1055 4 03 B 0157 x Aporrectodea spp 21.750 21.873 22.011 21.878 300 30.7 5413 149 15-Oct-2010 1055 4 04 B 0158 x Lumbricus spp 23.474 23.461 23.439 23.458 150 47.1 5414 150 15-Oct-2010 1055 4 05 B 0159 x Aporrectodea spp 21.946 21.873 21.764 21.861 200 53.4 5415 151 15-Oct-2010 1055 4 06 B 0160 x Aporrectodea spp 31.965 32.143 31.818 31.975 150 128.2 5416 152 15-Oct-2010 1055 4 07 B 0161 x Aporrectodea spp 29.004 28.911 29.007 28.974 200 124.8 5417 153 15-Oct-2010 1055 4 08 B 0162 x Aporrectodea spp 36.707 36.681 37.055 36.814 200 169.0 5418 154 15-Oct-2010 1055 4 09 B 0163 x Aporrectodea spp 37.582 37.759 37.770 37.704 200 174.5 5419 155 15-Oct-2010 1055 4 10 B 0164 x Aporrectodea spp 43.120 43.381 43.270 43.257 200 226.8 5420 156 15-Oct-2010 1055 4 11 B 0165 x Aporrectodea spp 37.540 37.687 37.621 37.616 200 202.3 5421 157 15-Oct-2010 1055 4 12 B 0166 x Aporrectodea spp 33.301 33.215 33.017 33.178 150 194.3 5422 158 15-Oct-2010 1055 4 13 B 0167 x Aporrectodea spp 52.217 52.496 52.647 52.453 150 286.8 5423

159 05-Oct-2010 1058 9 01 B 0168 x Octolasion spp 14.199 14.233 14.235 14.222 300 28.0 5424 APPENDIX F 97 160 05-Oct-2010 1058 9 02 B 0169 x Lumbricus spp 29.213 29.345 29.247 29.268 200 136.7 5425 161 05-Oct-2010 1058 9 03 B 0170 x Aporrectodea spp 21.675 21.695 21.677 21.682 200 108.0 5426 162 05-Oct-2010 1058 9 04 B 0171 x Lumbricus spp 35.354 35.427 35.264 35.348 200 159.7 5427 163 05-Oct-2010 1058 9 05 B 0172 x Lumbricus spp 27.255 27.307 27.407 27.323 200 108.1 5428 164 05-Oct-2010 1058 9 06 B 0173 x Lumbricus spp 23.204 23.283 23.216 23.234 200 92.9 5429 165 05-Oct-2010 1058 9 07 B 0174 x Aporrectodea spp 24.698 25.002 24.938 24.879 200 121.1 5430 166 05-Oct-2010 1058 9 08 B 0175 x Lumbricus spp 34.700 34.506 34.598 34.601 200 189.5 5431 167 05-Oct-2010 1058 9 09 B 0176 x Lumbricus spp 36.799 36.617 36.829 36.748 200 201.4 5432 168 05-Oct-2010 1058 9 10 B 0177 x Lumbricus spp 37.112 36.755 37.284 37.050 200 267.6 5433 169 15-Oct-2010 1067 8 01 B 0178 x Aporrectodea spp 16.636 16.527 16.438 16.534 300 13.4 5434 170 15-Oct-2010 1067 8 02 B 0179 x Lumbricus spp 14.615 14.596 14.652 14.621 400 15.8 5435 171 15-Oct-2010 1067 8 03 B 0180 x Aporrectodea spp 15.112 15.081 15.014 15.069 400 12.3 5436 172 15-Oct-2010 1067 8 04 B 0181 x Aporrectodea spp 13.779 13.771 13.735 13.762 300 10.8 5437 173 15-Oct-2010 1067 8 05 B 0182 x Lumbricus spp 15.291 15.366 15.325 15.327 400 19.3 5438 174 15-Oct-2010 1067 8 06 B 0183 x Lumbricus spp 12.284 12.329 12.311 12.308 400 24.2 5439 175 15-Oct-2010 1067 8 07 B 0184 x Lumbricus spp 10.374 10.259 10.418 10.350 400 6.8 5440 176 15-Oct-2010 1067 8 08 B 0185 x Lumbricus spp 14.450 14.303 14.377 14.377 400 15.0 5441 177 15-Oct-2010 1067 8 09 B 0186 x Lumbricus spp 11.845 11.829 11.794 11.823 400 8.2 5442 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 178 15-Oct-2010 1067 8 10 B 0187 x Aporrectodea spp 10.848 10.779 10.737 10.788 600 4.9 5443 179 15-Oct-2010 1067 8 12 B 0189 x Lumbricus spp 20.962 20.913 20.926 20.934 300 44.8 5445 180 15-Oct-2010 1067 8 13 B 0190 x Lumbricus spp 22.820 22.909 22.925 22.885 300 55.0 5446 181 15-Oct-2010 1067 8 14 B 0191 x Lumbricus spp 23.010 23.070 23.017 23.032 300 48.8 5447 182 14-Oct-2010 1083 2 01 B 0192 x Aporrectodea spp 14.872 14.905 14.929 14.902 400 12.8 5448 183 14-Oct-2010 1083 2 02 B 0193 x Aporrectodea spp 25.156 25.172 25.231 25.186 200 45.0 5449 184 14-Oct-2010 1083 2 03 B 0194 x Aporrectodea spp 34.268 34.601 34.336 34.402 300 75.0 5450 185 14-Oct-2010 1083 2 04 B 0195 x Aporrectodea spp 38.224 38.075 38.128 38.142 300 114.0 5451 186 14-Oct-2010 1083 2 05 B 0196 x Aporrectodea spp 37.975 37.870 37.737 37.861 300 100.0 5452 187 14-Oct-2010 1083 2 06 B 0197 x Lumbricus spp 29.345 29.373 29.311 29.343 200 101.7 5453 188 14-Oct-2010 1083 2 07 B 0198 x Lumbricus spp 28.870 28.987 28.847 28.901 150 175.3 5454

189 14-Oct-2010 1083 2 08 B 0199 x Lumbricus spp 32.415 32.592 32.596 32.534 200 106.1 5455 APPENDIX F 98 190 14-Oct-2010 1083 2 09 B 0200 x Lumbricus spp 33.737 33.687 33.681 33.702 200 144.0 5456 191 14-Oct-2010 1083 2 10 B 0201 x Lumbricus spp 39.768 39.709 39.701 39.726 200 176.3 5457 192 14-Oct-2010 1083 3 01 B 0202 x Aporrectodea spp 19.064 18.979 19.146 19.063 300 33.6 5458 193 14-Oct-2010 1083 3 02 B 0203 x Aporrectodea spp 24.659 24.575 24.670 24.635 300 39.1 5459 194 14-Oct-2010 1083 3 03 B 0204 x Lumbricus spp 27.715 27.762 27.796 27.758 200 43.3 5460 195 14-Oct-2010 1083 3 04 B 0205 x Aporrectodea spp 34.849 34.817 34.783 34.816 300 107.3 5461 196 14-Oct-2010 1083 3 05 B 0206 x Aporrectodea spp 40.936 40.939 40.902 40.926 200 155.0 5462 197 14-Oct-2010 1083 3 06 B 0207 x Aporrectodea spp 40.485 40.240 40.285 40.337 200 137.5 5463 198 14-Oct-2010 1083 3 07 B 0208 x Aporrectodea spp 39.339 39.587 39.358 39.428 200 141.5 5464 199 14-Oct-2010 1083 3 08 B 0209 x Aporrectodea spp 46.275 46.515 46.815 46.535 200 217.5 5465 200 14-Oct-2010 1083 3 09 B 0210 x Aporrectodea spp 49.170 49.438 49.270 49.293 200 194.4 5466 201 14-Oct-2010 1083 3 10 B 0211 x Aporrectodea spp 50.718 50.887 50.940 50.848 200 212.2 5467 202 14-Oct-2010 1083 3 11 B 0212 x Aporrectodea spp 48.033 48.091 48.417 48.180 200 242.7 5468 203 14-Oct-2010 1083 3 12 B 0213 x Aporrectodea spp 52.502 52.753 52.880 52.712 200 246.5 5469 204 14-Oct-2010 1083 3 13 B 0214 x Aporrectodea spp 52.433 52.714 52.405 52.517 200 285.0 5470 205 14-Oct-2010 1083 3 14 B 0215 x Lumbricus spp 38.300 38.227 38.106 38.211 150 282.3 5471 206 14-Oct-2010 1083 9 01 B 0216 x Lumbricus spp 10.160 10.195 10.180 10.178 400 5.5 5472 207 14-Oct-2010 1083 9 02 B 0217 x Lumbricus spp 10.507 10.591 10.531 10.543 400 7.2 5473 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 208 14-Oct-2010 1083 9 03 B 0218 x Lumbricus spp 9.789 9.755 9.804 9.783 400 5.7 5474 209 14-Oct-2010 1083 9 04 B 0219 x Lumbricus spp 11.414 11.394 11.375 11.394 400 10.9 5475 210 14-Oct-2010 1083 9 05 B 0220 x Lumbricus spp 16.043 16.228 16.134 16.135 300 25.1 5476 211 14-Oct-2010 1083 9 06 B 0221 x Aporrectodea spp 24.477 24.369 24.246 24.364 300 52.6 5477 212 14-Oct-2010 1083 9 07 B 0222 x Aporrectodea spp 16.811 16.735 16.776 16.774 300 23.3 5478 213 14-Oct-2010 1083 9 08 B 0223 x Aporrectodea spp 20.469 20.562 20.554 20.528 300 30.9 5479 214 14-Oct-2010 1083 9 09 B 0224 x Lumbricus spp 20.775 20.597 20.741 20.704 300 42.9 5480 215 07-Oct-2010 1388 5 01 B 0225 x Aporrectodea spp 8.842 8.844 8.845 8.844 600 1.6 5481 216 07-Oct-2010 1388 5 02 B 0226 x Aporrectodea spp 13.709 13.577 13.681 13.656 200 1.6 5482 217 07-Oct-2010 1388 5 03 B 0227 x Lumbricus spp 10.123 10.074 10.087 10.095 400 6.1 5483 218 07-Oct-2010 1388 5 04 B 0228 x Lumbricus spp 10.726 10.735 10.697 10.719 400 7.4 5484

219 07-Oct-2010 1388 5 05 B 0229 x Lumbricus spp 13.172 13.224 13.248 13.215 400 11.1 5485 APPENDIX F 99 220 07-Oct-2010 3668 9 02 B 0231 x Aporrectodea spp 13.485 13.465 13.443 13.464 300 38.0 5486 221 07-Oct-2010 3668 9 01 B 0230 x Aporrectodea spp 20.330 20.380 20.450 20.387 300 35.9 5487 222 07-Oct-2010 3668 9 03 B 0232 x Aporrectodea spp 18.367 18.366 18.315 18.349 300 34.7 5488 223 07-Oct-2010 3668 9 04 B 0233 x Aporrectodea spp 33.807 33.728 33.762 33.766 200 106.6 5489 224 07-Oct-2010 3668 9 05 B 0234 x Aporrectodea spp 36.919 36.931 36.700 36.850 200 144.2 5490 225 07-Oct-2010 3420 4 02 B 0237 x Aporrectodea spp 9.444 9.457 9.583 9.495 400 1.6 5492 226 07-Oct-2010 3420 4 03 B 0238 x Aporrectodea spp 6.669 6.652 6.623 6.648 400 0.7 5493 227 07-Oct-2010 3420 4 04 B 0239 x Aporrectodea spp 9.579 9.570 9.595 9.581 400 1.0 5494 228 07-Oct-2010 3420 4 05 B 0240 x Aporrectodea spp 7.980 7.961 8.091 8.011 400 0.7 5495 229 07-Oct-2010 3420 4 06 B 0241 x Aporrectodea spp 3.371 3.414 3.375 3.387 400 0.4 5496 230 07-Oct-2010 3596 2 01 B 0242 x Aporrectodea spp 17.241 17.034 17.084 17.120 300 21.8 5497 231 07-Oct-2010 3596 9 01 B 0243 x Aporrectodea spp 16.872 16.924 16.869 16.888 300 15.7 5498 232 07-Oct-2010 3596 9 02 B 0244 x Aporrectodea spp 29.883 29.793 29.699 29.792 200 63.8 5499 233 07-Oct-2010 3668 2 01 B 0245 x Aporrectodea spp 15.432 15.468 15.402 15.434 400 17.7 5500 234 07-Oct-2010 3668 2 02 B 0246 x Aporrectodea spp 25.209 25.102 25.219 25.177 200 67.4 5501 235 07-Oct-2010 3668 2 03 B 0247 x Aporrectodea spp 23.452 23.357 23.354 23.388 200 93.0 5502 236 07-Oct-2010 3668 2 04 B 0248 x Aporrectodea spp 26.384 26.470 26.381 26.412 200 130.3 5503 237 07-Oct-2010 3668 2 05 B 0249 x Lumbricus spp 29.353 29.498 29.414 29.422 200 114.0 5504 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 238 07-Oct-2010 3668 2 06 B 0250 x Aporrectodea spp 39.106 39.127 39.003 39.079 200 179.3 5505 239 07-Oct-2010 3668 2 07 B 0251 x Aporrectodea spp 33.390 33.335 33.485 33.403 200 113.5 5506 240 07-Oct-2010 3668 2 08 B 0252 x Aporrectodea spp 34.238 34.121 34.362 34.240 200 168.7 5507 241 07-Oct-2010 3668 3 01 B 0253 x Lumbricus spp 10.860 10.896 10.891 10.882 400 7.2 5508 242 07-Oct-2010 3668 3 02 B 0254 x Lumbricus spp 10.994 10.988 10.983 10.988 400 7.5 5509 243 07-Oct-2010 3668 3 03 B 0255 x Lumbricus spp 11.093 10.990 11.055 11.046 400 5.8 5510 244 07-Oct-2010 3668 3 04 B 0256 x Lumbricus spp 11.741 11.693 11.879 11.771 400 10.2 5511 245 07-Oct-2010 3668 3 05 B 0257 x Lumbricus spp 19.736 19.681 19.773 19.730 300 65.0 5512 246 07-Oct-2010 3668 3 06 B 0258 x Lumbricus spp 22.169 22.237 22.189 22.198 300 56.1 5513 247 07-Oct-2010 3668 3 07 B 0259 x Lumbricus spp 21.858 21.811 21.846 21.838 300 47.2 5514 248 07-Oct-2010 3668 3 08 B 0260 x Lumbricus spp 26.432 26.495 26.459 26.462 300 86.6 5515 APPENDIX F 100 249 07-Oct-2010 3668 3 09 B 0261 x Lumbricus spp 26.664 26.480 26.558 26.567 300 129.6 5516 250 07-Oct-2010 3668 3 10 B 0262 x Lumbricus spp 27.806 27.673 27.684 27.721 300 108.0 5517 251 07-Oct-2010 3668 3 11 B 0263 x Aporrectodea spp 34.104 33.851 33.712 33.889 200 158.3 5518 252 07-Oct-2010 3668 3 12 B 0264 x Aporrectodea spp 34.019 34.100 34.066 34.062 200 125.0 5519 253 07-Oct-2010 3668 3 13 B 0265 x Aporrectodea spp 35.544 35.535 35.528 35.536 200 177.8 5520 254 07-Oct-2010 3668 3 14 B 0266 x Aporrectodea spp 39.359 39.595 39.404 39.453 200 201.0 5521 255 07-Oct-2010 3668 3 15 B 0267 x Lumbricus spp 34.544 34.422 34.420 34.462 200 238.8 5522 256 07-Oct-2010 3668 3 16 B 0268 Octolasion tyrtaeum 36.822 36.646 36.711 36.726 150 293.0 5523 257 24-Sep-2010 AT02 2 01 B 0269 x Dendrobaena octaedra 17.094 17.058 17.170 17.107 400 22.9 5524 258 24-Sep-2010 AT02 2 02 B 0270 x Dendrobaena octaedra 14.096 14.085 14.104 14.095 400 13.5 5525 259 24-Sep-2010 AT02 2 03 B 0271 Dendrobaena octaedra 22.403 22.421 22.328 22.384 400 47.7 5526 260 24-Sep-2010 AT02 2 04 B 0272 x Lumbricus spp 34.373 34.694 34.452 34.506 200 168.7 5527 261 24-Sep-2010 AT02 2 05 B 0273 x Lumbricus spp 37.755 37.695 37.604 37.685 200 227.5 5528 262 24-Sep-2010 AT01 2 01 B 0274 Dendrobaena octaedra 33.038 33.139 32.849 33.009 200 124.3 5529 263 24-Sep-2010 AT01 8 01 B 0275 x Dendrobaena octaedra 13.514 13.549 13.614 13.559 400 11.5 5530 264 24-Sep-2010 AT01 8 02 B 0276 x Dendrobaena octaedra 18.037 17.973 18.058 18.023 400 22.2 5531 265 24-Sep-2010 AT01 8 03 B 0277 Dendrobaena octaedra 21.424 21.383 21.369 21.392 400 31.3 5532 266 24-Sep-2010 AT01 8 04 B 0278 Dendrobaena octaedra 23.448 23.382 23.523 23.451 300 60.7 5533 267 24-Sep-2010 AT01 8 05 B 0279 x Lumbricus spp 38.599 38.502 38.588 38.563 200 212.6 5534 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 268 07-Oct-2010 3668 8 01 B 0280 x Aporrectodea spp 35.927 35.902 35.907 35.912 300 135.6 5535 269 07-Oct-2010 3668 8 02 B 0281 x Lumbricus spp 11.124 11.101 11.102 11.109 400 4.5 5536 270 07-Oct-2010 3668 8 03 B 0282 x Aporrectodea spp 18.357 18.411 18.456 18.408 400 24.2 5537 271 07-Oct-2010 3668 8 04 B 0283 x Aporrectodea spp 22.627 22.641 22.604 22.624 300 30.4 5538 272 07-Oct-2010 3668 8 05 B 0284 x Aporrectodea spp 21.558 21.616 21.569 21.581 400 36.3 5539 273 07-Oct-2010 3668 8 06 B 0285 x Aporrectodea spp 27.884 27.936 27.971 27.930 300 79.8 5540 274 07-Oct-2010 3668 8 07 B 0286 x Aporrectodea spp 32.753 32.842 32.802 32.799 200 135.1 5541 275 07-Oct-2010 3668 8 08 B 0287 x Aporrectodea spp 37.974 37.920 38.264 38.053 200 143.8 5542 276 07-Oct-2010 3668 8 09 B 0288 x Aporrectodea spp 36.685 36.629 36.716 36.677 200 144.4 5543 277 07-Oct-2010 3668 8 10 B 0289 Octolasion tyrtaeum 35.852 35.668 35.944 35.821 150 266.9 5544 278 07-Oct-2010 3668 8 11 B 0290 x Aporrectodea spp 37.715 37.709 37.839 37.754 200 186.3 5545 APPENDIX F 101 279 07-Oct-2010 3668 8 12 B 0291 x Aporrectodea spp 38.934 38.880 39.036 38.950 150 190.9 5546 280 07-Oct-2010 3668 8 13 B 0292 x Aporrectodea spp 39.835 39.785 39.908 39.843 200 182.6 5547 281 07-Oct-2010 3668 8 14 B 0293 x Aporrectodea spp 32.913 33.051 33.073 33.012 200 110.5 5548 282 07-Oct-2010 3668 8 15 B 0294 x Aporrectodea spp 30.624 30.522 30.455 30.534 200 112.5 5549 283 07-Oct-2010 3668 8 16 B 0295 x Aporrectodea spp 38.315 38.457 38.373 38.382 200 140.0 5550 284 07-Oct-2010 3668 8 17 B 0296 x Aporrectodea spp 39.106 39.186 39.130 39.141 200 179.9 5551 285 07-Oct-2010 3668 8 18 B 0297 x Aporrectodea spp 35.655 35.488 35.748 35.630 200 134.6 5552 286 07-Oct-2010 3668 8 19 B 0298 x Aporrectodea spp 36.906 36.999 37.257 37.054 200 148.0 5553 287 07-Oct-2010 3668 8 20 B 0299 x Aporrectodea spp 41.431 41.591 41.603 41.542 200 173.5 5554 288 07-Oct-2010 3668 8 21 B 0300 x Aporrectodea spp 44.173 44.606 44.384 44.388 200 189.8 5555 289 07-Oct-2010 3668 8 22 B 0301 x Aporrectodea spp 41.155 41.194 41.193 41.181 200 163.6 5556 290 07-Oct-2010 3668 8 23 B 0302 x Aporrectodea spp 45.478 45.459 45.502 45.480 200 192.4 5557 291 07-Oct-2010 3668 8 24 B 0303 x Aporrectodea spp 40.993 40.942 41.024 40.986 200 146.0 5558 292 07-Oct-2010 3668 8 25 B 0304 x Aporrectodea spp 38.693 38.600 38.684 38.659 200 141.0 5559 293 20-Sep-2010 1002 3 01 B 1001 x Lumbricus spp 33.188 33.113 33.116 33.139 200 96.0 5665 294 20-Sep-2010 1002 3 02 B 1002 x Lumbricus spp 22.140 22.107 22.094 22.114 300 59.6 5666 295 20-Sep-2010 1002 3 03 B 1003 Lumbricus rubellus 36.661 36.667 36.686 36.671 200 208.0 5667 296 20-Sep-2010 1002 8 01 B 1004 x Lumbricus spp 20.465 20.414 20.464 20.448 200 55.9 5668 297 20-Sep-2010 1002 8 02 B 1005 x Lumbricus spp 32.956 32.936 32.919 32.937 200 113.2 5669 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 298 20-Sep-2010 1002 8 03 B 1006 x Lumbricus spp 31.484 31.480 31.493 31.486 200 178.2 5670 299 20-Sep-2010 1003 3 01 B 1007 x Lumbricus spp 25.007 25.035 25.099 25.047 300 53.2 5671 300 20-Sep-2010 1003 3 02 B 1008 x Lumbricus spp 29.682 29.645 29.633 29.653 200 111.3 5672 301 20-Sep-2010 1003 3 03 B 1009 Octolasion tyrtaeum 37.684 37.798 37.854 37.779 200 194.9 5673 302 20-Sep-2010 1003 8 01 B 1010 x Lumbricus spp 24.929 24.919 24.914 24.921 300 68.5 5674 303 20-Sep-2010 1003 8 02 B 1011 x Lumbricus spp 34.473 34.426 34.558 34.486 200 244.5 5675 304 20-Sep-2010 1003 9 01 B 1012 x Lumbricus spp 33.624 33.515 33.662 33.600 150 210.1 5676 305 20-Sep-2010 1003 9 02 B 1013 x Lumbricus spp 31.942 32.093 31.968 32.001 300 100.2 5677 306 20-Sep-2010 1003 9 03 B 1014 x Lumbricus spp 38.141 38.050 38.074 38.088 200 177.4 5678 307 20-Sep-2010 1003 9 04 B 1015 x Lumbricus spp 39.871 39.976 39.944 39.930 200 195.5 5679 308 20-Sep-2010 1003 9 05 B 1016 x Octolasion spp 42.979 43.057 43.022 43.019 150 249.6 5680 APPENDIX F 102 309 20-Sep-2010 1003 9 06 B 1017 x Lumbricus spp 40.444 40.537 40.624 40.535 200 241.9 5681 310 20-Sep-2010 1003 9 07 B 1018 x Lumbricus spp 58.156 58.256 58.439 58.284 150 594.0 5682 311 23-Sep-2010 1004 3 01 B 1024 Amynthas spp 40.404 40.398 40.466 40.423 200 257.3 5683 312 20-Sep-2010 1005 8 01 B 1025 x Aporrectodea spp 14.157 14.193 14.118 14.156 600 10.0 5684 313 20-Sep-2010 1005 8 02 B 1026 x Lumbricus spp 14.518 14.513 14.547 14.526 400 13.9 5685 314 20-Sep-2010 1005 2 01 B 1027 x Lumbricus spp 15.741 15.744 15.697 15.727 400 16.0 5686 315 20-Sep-2010 1005 2 02 B 1028 x Octolasion spp 21.180 21.173 21.192 21.182 300 65.4 5687 316 20-Sep-2010 1005 2 03 B 1029 x Aporrectodea spp 19.672 19.693 19.711 19.692 300 40.4 5688 317 20-Sep-2010 1005 2 04 B 1030 x Lumbricus spp 28.330 28.329 28.328 28.329 300 111.0 5689 318 20-Sep-2010 1005 2 05 B 1031 x Lumbricus spp 36.264 36.294 36.282 36.280 200 214.1 5690 319 20-Sep-2010 1005 9 01 B 1032 x Aporrectodea spp 8.193 8.132 8.194 8.173 600 4.1 5691 320 20-Sep-2010 1005 9 02 B 1033 x Lumbricus spp 20.900 20.803 20.892 20.865 300 69.1 5692 321 20-Sep-2010 1005 9 03 B 1034 x Lumbricus spp 31.259 31.182 31.235 31.225 200 118.9 5693 322 21-Sep-2010 1008 2 01 B 1035 x Aporrectodea spp 10.174 10.151 10.114 10.146 600 3.8 5694 323 21-Sep-2010 1008 2 03 B 1037 x Aporrectodea spp 12.257 12.301 12.291 12.283 600 11.6 5696 324 21-Sep-2010 1008 2 04 B 1038 x Octolasion spp 22.756 22.717 22.746 22.740 300 58.0 5697 325 21-Sep-2010 1008 2 05 B 1039 x Lumbricus spp 29.175 29.294 29.304 29.258 200 142.4 5698 326 21-Sep-2010 1008 3 01 B 1040 x Lumbricus spp 8.612 8.638 8.647 8.632 800 4.0 5699 327 21-Sep-2010 1008 3 02 B 1041 Dendrodrilus rubidus 27.731 27.626 27.714 27.690 200 144.6 5700 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 328 21-Sep-2010 1008 9 01 B 1042 x Lumbricus spp 30.366 30.471 30.424 30.420 300 148.0 5701 329 21-Sep-2010 1008 9 02 B 1043 x Lumbricus spp 32.446 32.504 32.396 32.449 300 127.9 5702 330 21-Sep-2010 1008 9 03 B 1044 x Lumbricus spp 29.635 29.721 29.606 29.654 200 119.6 5703 331 21-Sep-2010 1008 9 04 B 1045 x Lumbricus spp 24.469 24.489 24.461 24.473 200 92.6 5704 332 21-Sep-2010 1008 9 05 B 1046 x Lumbricus spp 39.317 39.452 39.305 39.358 150 200.1 5705 333 21-Sep-2010 1008 9 06 B 1047 x Lumbricus spp 42.472 42.587 42.381 42.480 150 283.2 5706 334 20-Sep-2010 1010 2 01 B 1050 Dendrodrilus rubidus 10.736 10.752 10.787 10.758 600 9.5 5707 335 20-Sep-2010 1010 3 01 B 1051 x Lumbricus spp 13.132 13.092 13.095 13.106 400 7.9 5708 336 20-Sep-2010 1010 3 02 B 1052 Amynthas spp 29.027 28.984 29.017 29.009 200 83.8 5709 337 20-Sep-2010 1010 3 03 B 1053 Amynthas spp 40.260 40.336 40.265 40.287 150 163.9 5710 338 20-Sep-2010 1010 3 04 B 1054 Amynthas spp 45.406 45.303 45.367 45.359 100 249.4 5711 APPENDIX F 103 339 20-Sep-2010 1010 3 05 B 1055 Amynthas spp 39.388 39.258 39.243 39.296 150 197.3 5712 340 20-Sep-2010 1010 3 06 B 1056 Amynthas spp 53.013 52.990 52.969 52.991 100 358.9 5713 341 20-Sep-2010 1010 3 07 B 1057 Amynthas spp 52.983 52.857 52.867 52.902 100 358.1 5714 342 20-Sep-2010 1010 8 01 B 1058 Amynthas spp 41.143 41.153 41.139 41.145 150 159.4 5715 343 20-Sep-2010 1010 8 02 B 1059 Amynthas spp 40.632 40.733 40.607 40.657 150 233.0 5716 344 20-Sep-2010 1010 9 01 B 1060 Amynthas spp 40.032 39.955 39.979 39.989 150 208.1 5717 345 20-Sep-2010 1010 9 02 B 1061 Amynthas spp 39.702 39.681 39.882 39.755 100 212.3 5718 346 20-Sep-2010 1010 9 03 B 1062 Amynthas spp 46.593 46.545 46.522 46.553 100 266.0 5719 347 20-Sep-2010 1011 1 01 B 1063 x Aporrectodea spp 11.653 11.634 11.696 11.661 600 7.6 5720 348 20-Sep-2010 1011 1 02 B 1064 x Lumbricus spp 14.747 14.773 14.768 14.763 600 12.6 5721 349 20-Sep-2010 1011 1 03 B 1065 x Lumbricus spp 10.790 10.814 10.847 10.817 400 7.8 5722 350 20-Sep-2010 1011 1 04 B 1066 x Lumbricus spp 13.462 13.394 13.488 13.448 400 15.6 5723 351 20-Sep-2010 1011 1 05 B 1067 x Lumbricus spp 14.239 14.210 14.245 14.231 400 13.5 5724 352 20-Sep-2010 1011 1 06 B 1068 x Lumbricus spp 15.111 15.114 15.057 15.094 400 12.4 5725 353 20-Sep-2010 1011 1 07 B 1069 x Lumbricus spp 15.926 15.923 15.962 15.937 400 16.1 5727 354 20-Sep-2010 1011 1 08 B 1070 x Octolasion spp 23.200 23.299 23.243 23.247 300 64.5 5728 355 20-Sep-2010 1011 1 09 B 1071 x Lumbricus spp 22.355 22.350 22.330 22.345 300 49.7 5729 356 20-Sep-2010 1011 1 10 B 1072 x Lumbricus spp 31.504 31.482 31.569 31.518 200 118.0 5730 357 20-Sep-2010 1011 1 11 B 1073 x Lumbricus spp 30.704 30.681 30.729 30.705 150 182.6 5731 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 358 20-Sep-2010 1011 1 12 B 1074 x Lumbricus spp 35.098 35.084 35.062 35.081 200 174.0 5732 359 20-Sep-2010 1011 1 13 B 1075 x Lumbricus spp 36.744 36.761 36.688 36.731 200 222.3 5733 360 20-Sep-2010 1011 2 01 B 1076 x Lumbricus spp 11.343 11.273 11.302 11.306 400 10.5 5734 361 20-Sep-2010 1011 2 02 B 1077 x Lumbricus spp 10.507 10.476 10.473 10.485 400 7.4 5735 362 20-Sep-2010 1011 2 03 B 1078 x Aporrectodea spp 11.373 11.360 11.360 11.364 400 9.1 5736 363 20-Sep-2010 1011 2 04 B 1079 x Aporrectodea spp 15.363 15.263 15.373 15.333 400 19.8 5737 364 20-Sep-2010 1011 2 05 B 1080 x Aporrectodea spp 25.842 25.908 25.876 25.875 200 66.8 5738 365 20-Sep-2010 1011 2 06 B 1081 x Aporrectodea spp 29.229 29.261 29.222 29.237 200 85.2 5739 366 20-Sep-2010 1011 2 07 B 1082 Octolasion tyrtaeum 36.043 36.208 35.981 36.077 200 246.2 5740 367 20-Sep-2010 1011 5 01 B 1083 x Lumbricus spp 10.161 10.080 10.125 10.122 400 6.1 5741 368 20-Sep-2010 1011 5 02 B 1084 x Lumbricus spp 10.130 10.121 10.118 10.123 400 5.7 5742 APPENDIX F 104 369 20-Sep-2010 1011 5 03 B 1085 x Lumbricus spp 12.036 11.954 11.972 11.987 400 8.8 5743 370 20-Sep-2010 1011 5 04 B 1086 x Lumbricus spp 12.047 12.051 12.077 12.058 400 10.1 5744 371 20-Sep-2010 1011 5 05 B 1087 x Lumbricus spp 12.766 12.701 12.758 12.742 400 10.4 5745 372 20-Sep-2010 1011 5 06 B 1088 x Lumbricus spp 16.115 16.079 16.089 16.094 400 19.8 5746 373 20-Sep-2010 1011 5 07 B 1089 x Lumbricus spp 18.610 18.572 18.675 18.619 300 30.0 5748 374 20-Sep-2010 1011 5 08 B 1090 x Lumbricus spp 17.341 17.272 17.343 17.319 300 30.1 5749 375 20-Sep-2010 1011 6 01 B 1091 x Lumbricus spp 10.227 10.244 10.225 10.232 600 7.1 5750 376 20-Sep-2010 1011 6 02 B 1092 x Lumbricus spp 12.719 12.791 12.782 12.764 400 8.5 5751 377 20-Sep-2010 1011 6 03 B 1093 x Lumbricus spp 11.751 11.647 11.701 11.700 600 8.7 5752 378 20-Sep-2010 1011 6 04 B 1094 x Lumbricus spp 13.268 13.218 13.238 13.241 400 12.6 5753 379 20-Sep-2010 1011 6 05 B 1095 x Aporrectodea spp 15.887 15.975 15.939 15.934 400 12.7 5754 380 23-Sep-2010 1012 3 01 B 1096 Dendrobaena octaedra 18.645 18.520 18.533 18.566 300 42.3 5755 381 23-Sep-2010 1012 8 01 B 1097 x Dendrobaena octaedra 13.900 13.919 13.879 13.899 400 16.3 5756 382 23-Sep-2010 1012 8 02 B 1098 x Dendrobaena octaedra 13.567 13.510 13.560 13.546 400 22.0 5757 383 23-Sep-2010 1012 8 03 B 1099 x Dendrobaena octaedra 15.769 15.704 15.726 15.733 400 20.2 5758 384 23-Sep-2010 1012 8 04 B 1100 x Dendrobaena octaedra 17.290 17.264 17.260 17.271 400 27.2 5759 385 21-Sep-2010 1013 1 01 B 1101 x Lumbricus spp 27.764 27.626 27.686 27.692 200 89.6 5760 386 21-Sep-2010 1013 2 01 B 1102 x Lumbricus spp 38.835 38.716 38.757 38.769 200 172.1 5761 387 21-Sep-2010 1013 4 01 B 1103 Dendrobaena octaedra 5.835 5.844 5.887 5.855 800 2.0 5762 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 388 21-Sep-2010 1013 4 02 B 1104 Dendrobaena octaedra 17.540 17.525 17.589 17.551 300 24.5 5764 389 23-Sep-2010 1015 3 01 B 1106 x Lumbricus spp 13.090 13.040 13.053 13.061 400 10.5 5765 390 23-Sep-2010 1015 3 02 B 1107 x Aporrectodea spp 25.668 25.782 25.766 25.739 300 60.0 5766 391 23-Sep-2010 1015 3 03 B 1108 x Lumbricus spp 23.420 23.440 23.474 23.445 300 75.9 5767 392 23-Sep-2010 1015 3 04 B 1109 x Lumbricus spp 32.550 32.410 32.426 32.462 200 115.4 5768 393 23-Sep-2010 1015 3 05 B 1110 x Lumbricus spp 34.889 34.940 34.765 34.865 200 181.4 5769 394 23-Sep-2010 1015 3 06 B 1111 x Lumbricus spp 28.247 28.341 28.235 28.274 200 159.0 5770 395 23-Sep-2010 1015 3 07 B 1112 x Lumbricus spp 42.222 42.222 42.175 42.206 200 229.0 5771 396 23-Sep-2010 1015 3 08 B 1113 x Lumbricus spp 42.263 42.453 42.429 42.382 150 284.1 5772 397 23-Sep-2010 1015 8 01 B 1114 x Lumbricus spp 35.632 35.525 35.562 35.573 200 224.4 5773 398 23-Sep-2010 1015 9 01 B 1115 x Lumbricus spp 14.118 14.072 14.120 14.103 400 40.5 5774 APPENDIX F 105 399 23-Sep-2010 1015 9 02 B 1116 x Octolasion spp 16.240 16.280 16.264 16.261 400 42.2 5775 400 23-Sep-2010 1015 9 03 B 1117 x Lumbricus spp 20.476 20.499 20.461 20.479 300 70.5 5776 401 23-Sep-2010 1015 9 04 B 1118 x Aporrectodea spp 24.068 24.173 24.272 24.171 300 88.4 5777 402 23-Sep-2010 1015 9 05 B 1119 x Octolasion spp 24.954 24.930 24.996 24.960 300 92.5 5778 403 23-Sep-2010 1015 9 06 B 1120 x Octolasion spp 29.229 29.260 29.309 29.266 300 100.5 5779 404 23-Sep-2010 1015 9 07 B 1121 x Lumbricus spp 32.741 32.833 32.795 32.790 150 194.1 5780 405 23-Sep-2010 1015 9 08 B 1122 x Lumbricus spp 44.787 44.816 44.769 44.791 200 239.0 5781 406 30-Sep-2010 1016 2 01 B 1123 x Lumbricus spp 13.761 13.759 13.842 13.787 400 17.6 5782 407 30-Sep-2010 1016 2 02 B 1124 x Lumbricus spp 17.422 17.422 17.391 17.412 400 38.8 5783 408 30-Sep-2010 1016 2 03 B 1125 x Lumbricus spp 15.574 15.581 15.624 15.593 400 31.6 5784 409 30-Sep-2010 1016 2 04 B 1126 x Lumbricus spp 15.718 15.644 15.723 15.695 400 16.1 5785 410 30-Sep-2010 1016 2 05 B 1127 x Lumbricus spp 17.094 17.107 17.107 17.103 300 32.3 5786 411 30-Sep-2010 1016 2 06 B 1128 x Aporrectodea spp 18.930 18.994 18.951 18.958 300 44.3 5787 412 30-Sep-2010 1016 2 07 B 1129 x Lumbricus spp 20.352 20.406 20.381 20.380 300 49.7 5788 413 30-Sep-2010 1016 2 08 B 1130 x Aporrectodea spp 23.482 23.372 23.450 23.435 300 49.8 5789 414 30-Sep-2010 1016 2 09 B 1131 x Lumbricus spp 25.323 25.321 25.336 25.327 200 82.0 5790 415 30-Sep-2010 1016 2 10 B 1132 x Lumbricus spp 23.723 23.764 23.775 23.754 200 85.7 5791 416 30-Sep-2010 1016 2 11 B 1133 x Lumbricus spp 24.215 24.248 24.235 24.233 300 48.7 5792 417 30-Sep-2010 1016 2 13 B 1135 x Lumbricus spp 35.351 35.342 35.387 35.360 150 85.4 5794 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 418 30-Sep-2010 1016 2 14 B 1136 x Aporrectodea spp 32.100 32.014 32.041 32.052 200 186.6 5795 419 30-Sep-2010 1016 2 15 B 1137 Octolasion tyrtaeum 35.986 36.123 36.014 36.041 150 299.7 5796 420 30-Sep-2010 1016 2 16 B 1138 x Lumbricus spp 34.519 34.493 34.439 34.484 200 159.8 5797 421 30-Sep-2010 1016 2 17 B 1139 x Lumbricus spp 42.657 42.791 42.665 42.704 200 306.2 5798 422 30-Sep-2010 1016 3 01 B 1140 x Dendrobaena octaedra 11.546 11.577 11.608 11.577 400 7.7 5799 423 30-Sep-2010 1016 3 02 B 1141 x Aporrectodea spp 17.513 17.482 17.465 17.487 400 30.8 5800 424 30-Sep-2010 1016 3 03 B 1142 x Lumbricus spp 14.187 14.136 14.207 14.177 600 10.3 5801 425 30-Sep-2010 1016 3 04 B 1143 x Aporrectodea spp 13.071 13.058 13.028 13.052 400 18.8 5802 426 30-Sep-2010 1016 3 05 B 1144 x Aporrectodea spp 28.190 28.323 28.157 28.223 300 128.8 5803 427 30-Sep-2010 1016 3 06 B 1145 x Lumbricus spp 37.054 37.213 37.004 37.090 200 145.0 5804 428 30-Sep-2010 1016 3 07 B 1146 x Lumbricus spp 42.154 42.245 42.258 42.219 150 292.0 5805 APPENDIX F 106 429 30-Sep-2010 1016 9 01 B 1147 x Lumbricus spp 30.966 30.945 31.028 30.980 300 120.4 5806 430 30-Sep-2010 1016 9 02 B 1148 x Lumbricus spp 27.896 28.061 27.929 27.962 300 80.4 5807 431 30-Sep-2010 1016 9 03 B 1149 x Lumbricus spp 22.906 22.968 22.952 22.942 300 55.1 5808 432 30-Sep-2010 1016 9 04 B 1150 x Aporrectodea spp 33.353 33.450 33.405 33.403 200 177.2 5809 433 30-Sep-2010 1016 9 05 B 1151 x Lumbricus spp 41.148 41.178 41.208 41.178 200 298.5 5810 434 30-Sep-2010 1016 9 06 B 1152 x Lumbricus spp 52.772 52.826 52.816 52.805 200 515.1 5811 435 30-Sep-2010 1016 8 01 B 1153 x Aporrectodea spp 11.771 11.781 11.791 11.781 400 11.1 5812 436 30-Sep-2010 1016 8 02 B 1154 x Aporrectodea spp 18.530 18.500 18.504 18.511 400 57.2 5813 437 30-Sep-2010 1016 8 03 B 1155 x Lumbricus spp 13.419 13.442 13.336 13.399 400 29.3 5814 438 30-Sep-2010 1016 8 04 B 1156 x Aporrectodea spp 18.811 18.764 18.832 18.802 400 36.1 5815 439 30-Sep-2010 1016 8 05 B 1157 x Aporrectodea spp 25.701 25.482 25.585 25.589 300 74.2 5816 440 30-Sep-2010 1016 8 06 B 1158 x Lumbricus spp 27.119 27.128 27.148 27.132 300 66.9 5817 441 30-Sep-2010 1016 8 07 B 1159 x Aporrectodea spp 21.710 21.745 21.842 21.766 300 63.7 5818 442 30-Sep-2010 1016 8 08 B 1160 x Aporrectodea spp 26.947 27.019 27.000 26.989 300 92.8 5819 443 30-Sep-2010 1016 8 09 B 1161 x Aporrectodea spp 31.132 30.955 31.091 31.059 300 130.8 5820 444 30-Sep-2010 1016 8 10 B 1162 x Aporrectodea spp 30.177 30.325 30.222 30.241 200 153.6 5821 445 30-Sep-2010 1016 8 01 B 1163 x Aporrectodea spp 28.091 28.160 28.071 28.107 200 109.7 5822 446 30-Sep-2010 1016 8 12 B 1164 x Aporrectodea spp 30.376 30.432 30.364 30.391 200 142.8 5823 447 30-Sep-2010 1016 8 13 B 1165 x Aporrectodea spp 31.889 31.809 31.801 31.833 200 162.7 5824 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 448 30-Sep-2010 1016 8 14 B 1166 x Aporrectodea spp 35.323 35.398 35.469 35.397 200 150.8 5825 449 30-Sep-2010 1016 8 15 B 1167 x Lumbricus spp 43.133 43.284 43.219 43.212 150 171.2 5826 450 23-Sep-2010 1017 3 01 B 1168 x Aporrectodea spp 15.611 15.566 15.628 15.602 400 18.0 5827 451 23-Sep-2010 1017 3 02 B 1169 x Lumbricus spp 22.824 22.835 22.817 22.825 300 73.2 5828 452 23-Sep-2010 1017 3 03 B 1170 x Lumbricus spp 29.184 29.307 29.281 29.257 300 119.8 5829 453 23-Sep-2010 1017 3 04 B 1171 x Aporrectodea spp 35.978 36.033 36.108 36.040 200 172.1 5830 454 23-Sep-2010 1017 3 05 B 1172 x Lumbricus spp 29.851 29.895 29.920 29.889 200 171.2 5831 455 23-Sep-2010 1017 8 01 B 1173 x Lumbricus spp 55.865 55.898 55.826 55.863 200 208.5 5832 456 24-Sep-2010 1018 2 01 B 1174 x Lumbricus spp 9.318 9.298 9.321 9.312 600 5.7 5833 457 24-Sep-2010 1018 2 02 B 1175 Amynthas spp 48.749 48.878 48.810 48.812 150 396.7 5834 458 24-Sep-2010 1018 9 01 B 1176 x Aporrectodea spp 19.586 19.674 19.569 19.610 400 41.8 5835 APPENDIX F 107 459 21-Sep-2010 1019 2 01 B 1178 x Lumbricus spp 28.974 28.969 28.937 28.960 300 127.8 5836 460 21-Sep-2010 1019 2 02 B 1179 x Lumbricus spp 33.419 33.237 33.358 33.338 300 128.6 5837 461 21-Sep-2010 1019 2 03 B 1180 x Lumbricus spp 46.458 46.387 46.293 46.379 200 308.1 5838 462 21-Sep-2010 1019 3 01 B 1181 x Octolasion spp 34.101 33.963 34.167 34.077 300 120.2 5839 463 24-Sep-2010 1021 5 01 B 1182 Amynthas spp 41.839 41.862 41.773 41.825 150 385.1 5840 464 24-Sep-2010 1021 6 02 B 1184 Amynthas spp 46.698 46.706 46.655 46.686 200 319.7 5841 465 24-Sep-2010 1021 6 03 B 1185 Amynthas spp 59.022 58.934 59.094 59.017 150 497.8 5842 466 24-Sep-2010 1021 6 04 B 1186 x Aporrectodea spp 10.004 10.053 9.994 10.017 400 6.4 5843 467 20-Sep-2010 1022 3 01 B 1187 x Lumbricus spp 31.322 31.307 31.327 31.319 300 87.7 5844 468 20-Sep-2010 1022 3 02 B 1188 Lumbricus rubellus 19.595 19.591 19.593 19.593 300 41.7 5845 469 20-Sep-2010 1022 3 03 B 1189 x Lumbricus spp 17.172 17.174 17.219 17.188 400 28.4 5846 470 20-Sep-2010 1022 3 04 B 1190 x Octolasion spp 20.821 20.805 20.807 20.811 400 37.0 5847 471 20-Sep-2010 1022 3 05 B 1191 x Lumbricus spp 38.112 38.142 38.129 38.128 200 159.2 5848 472 20-Sep-2010 1022 3 06 B 1192 x Lumbricus spp 48.695 48.642 48.734 48.690 200 183.4 5849 473 20-Sep-2010 1022 3 07 B 1193 x Lumbricus spp 42.678 42.940 42.833 42.817 200 219.9 5850 474 20-Sep-2010 1022 3 08 B 1194 x Lumbricus spp 42.642 42.788 42.722 42.717 200 324.5 5851 475 20-Sep-2010 1022 4 01 B 1195 x Aporrectodea spp 17.459 17.463 17.402 17.441 400 13.0 5852 476 20-Sep-2010 1022 4 02 B 1196 x Aporrectodea spp 15.329 15.317 15.330 15.325 400 15.7 5853 477 20-Sep-2010 1022 4 03 B 1197 x Lumbricus spp 33.500 33.450 33.480 33.477 200 76.1 5854 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 478 21-Sep-2010 1024 1 01 B 1198 x Lumbricus spp 14.051 14.095 14.036 14.061 400 11.0 5855 479 21-Sep-2010 1024 1 02 B 1199 x Aporrectodea spp 7.869 7.874 7.854 7.866 800 0.8 5856 480 21-Sep-2010 1024 1 03 B 1200 x Aporrectodea spp 6.222 6.192 6.218 6.211 600 0.8 5857 481 21-Sep-2010 1024 3 01 B 1201 x Aporrectodea spp 7.177 7.228 7.170 7.192 600 1.1 5858 482 21-Sep-2010 1024 3 02 B 1202 x Aporrectodea spp 7.088 7.145 7.246 7.160 600 1.1 5859 483 23-Sep-2010 1025 2 01 B 1203 x Lumbricus spp 22.134 22.147 22.178 22.153 300 63.1 5860 484 23-Sep-2010 1025 2 02 B 1204 x Lumbricus spp 44.783 45.074 45.105 44.987 200 183.8 5861 485 23-Sep-2010 1025 2 03 B 1205 x Lumbricus spp 42.464 42.492 42.549 42.502 150 344.4 5862 486 23-Sep-2010 1025 2 04 B 1206 Lumbricus rubellus 55.563 55.678 55.486 55.576 200 315.8 5863 487 21-Sep-2010 1024 2 01 B 1207 x Aporrectodea spp 4.549 4.496 4.551 4.532 800 0.8 5864 488 21-Sep-2010 1024 2 02 B 1208 x Aporrectodea spp 5.863 5.888 5.817 5.856 600 0.3 5865 APPENDIX F 108 489 21-Sep-2010 1024 2 03 B 1209 x Aporrectodea spp 5.388 5.311 5.329 5.343 800 0.9 5866 490 21-Sep-2010 1024 2 04 B 1210 x Aporrectodea spp 8.605 8.607 8.640 8.617 600 1.0 5867 491 21-Sep-2010 1024 2 05 B 1211 x Aporrectodea spp 8.473 8.440 8.472 8.462 600 1.8 5868 492 21-Sep-2010 1024 2 06 B 1212 x Aporrectodea spp 11.271 11.252 11.278 11.267 400 4.0 5869 493 21-Sep-2010 1024 2 07 B 1213 x Aporrectodea spp 10.150 10.146 10.153 10.150 400 3.3 5870 494 21-Sep-2010 1024 2 08 B 1214 x Lumbricus spp 20.534 20.472 20.607 20.538 200 42.9 5871 495 23-Sep-2010 1025 3 01 B 1215 x Aporrectodea spp 15.727 15.728 15.597 15.684 300 12.0 5872 496 23-Sep-2010 1025 3 02 B 1216 x Lumbricus spp 11.707 11.755 11.756 11.739 600 10.0 5873 497 23-Sep-2010 1025 3 03 B 1217 x Lumbricus spp 13.931 13.918 13.933 13.927 400 14.3 5874 498 23-Sep-2010 1025 3 04 B 1218 x Lumbricus spp 23.330 23.354 23.316 23.333 200 32.0 5875 499 23-Sep-2010 1025 3 05 B 1219 x Lumbricus spp 19.266 19.267 19.285 19.273 300 41.3 5876 500 23-Sep-2010 1025 3 06 B 1220 x Lumbricus spp 26.148 26.276 26.228 26.217 200 55.6 5877 501 23-Sep-2010 1025 3 07 B 1221 x Lumbricus spp 16.510 16.555 16.539 16.535 300 27.6 5878 502 23-Sep-2010 1025 3 08 B 1222 x Lumbricus spp 31.445 31.306 31.373 31.375 200 123.8 5879 503 23-Sep-2010 1025 3 09 B 1223 x Lumbricus spp 48.518 48.520 48.628 48.555 200 292.4 5880 504 23-Sep-2010 1025 3 10 B 1224 Lumbricus rubellus 46.645 46.519 46.522 46.562 150 310.4 5881 505 23-Sep-2010 1025 3 11 B 1225 Lumbricus rubellus 54.227 54.070 54.220 54.172 150 500.0 5882 506 12-Oct-2010 1025 3 02 B 1227 x Octolasion spp 7.525 7.468 7.471 7.488 600 13.0 5883 507 12-Oct-2010 1025 3 03 B 1228 x Lumbricus spp 11.597 11.560 11.600 11.586 400 10.7 5884 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 508 12-Oct-2010 1025 9 01 B 1229 x Lumbricus spp 10.665 10.592 10.610 10.622 400 10.0 5885 509 23-Sep-2010 1025 9 01 B 1230 x Lumbricus spp 12.636 12.654 12.692 12.661 400 7.5 5886 510 23-Sep-2010 1025 9 02 B 1231 x Lumbricus spp 10.567 10.530 10.608 10.568 400 35.0 5887 511 12-Oct-2010 1025 3 04 B 1232 x Lumbricus spp 17.165 17.081 17.187 17.144 300 54.0 5888 512 12-Oct-2010 1025 3 05 B 1233 x Lumbricus spp 20.233 20.222 20.190 20.215 200 90.4 5889 513 12-Oct-2010 1025 3 06 B 1234 x Octolasion spp 26.291 26.276 26.255 26.274 200 334.3 5890 514 12-Oct-2010 1025 3 07 B 1235 Octolasion tyrtaeum 35.217 35.109 35.106 35.144 150 300.0 5891 515 12-Oct-2010 1025 3 08 B 1236 x Lumbricus spp 46.546 46.630 46.475 46.550 150 293.0 5892 516 12-Oct-2010 1025 3 09 B 1237 x Lumbricus spp 38.351 38.318 38.299 38.323 200 281.3 5893 517 12-Oct-2010 1025 3 10 B 1238 Octolasion tyrtaeum 41.920 42.097 41.878 41.965 200 380.2 5894 518 23-Sep-2010 1025 9 03 B 1239 x Lumbricus spp 10.392 10.385 10.448 10.408 400 6.2 5895 APPENDIX F 109 519 23-Sep-2010 1025 9 04 B 1240 x Octolasion spp 25.719 25.679 25.627 25.675 200 80.9 5896 520 23-Sep-2010 1025 8 01 B 1241 x Aporrectodea spp 13.956 14.001 13.954 13.970 600 9.3 5897 521 23-Sep-2010 1025 8 02 B 1242 x Lumbricus spp 14.623 14.672 14.646 14.647 300 19.5 5898 522 23-Sep-2010 1025 8 03 B 1243 x Lumbricus spp 27.437 27.435 27.492 27.455 200 108.4 5899 523 23-Sep-2010 1025 8 04 B 1244 x Lumbricus spp 26.582 26.578 26.482 26.547 200 102.6 5900 524 23-Sep-2010 1025 8 05 B 1245 x Lumbricus spp 44.503 44.566 44.589 44.553 200 206.4 5901 525 23-Sep-2010 1025 8 06 B 1246 x Octolasion spp 29.592 29.655 29.616 29.621 200 107.6 5902 526 23-Sep-2010 1025 8 07 B 1247 x Lumbricus spp 26.360 26.371 26.403 26.378 200 92.0 5903 527 23-Sep-2010 1025 8 08 B 1248 x Lumbricus spp 37.050 37.039 37.054 37.048 150 188.9 5904 528 23-Sep-2010 1025 8 09 B 1249 x Lumbricus spp 27.639 27.611 27.686 27.645 200 175.2 5905 529 12-Oct-2010 1025 8 01 B 1250 x Aporrectodea spp 7.743 7.709 7.666 7.706 600 1.3 5906 530 12-Oct-2010 1025 8 02 B 1251 x Octolasion spp 9.097 9.067 9.052 9.072 400 7.5 5907 531 12-Oct-2010 1025 8 03 B 1252 Dendrobaena octaedra 12.775 12.812 12.752 12.780 600 10.0 5908 532 12-Oct-2010 1025 8 04 B 1253 x Aporrectodea spp 15.277 15.286 15.274 15.279 300 14.4 5909 533 12-Oct-2010 1025 8 05 B 1254 x Lumbricus spp 20.129 20.141 20.174 20.148 200 68.6 5910 534 12-Oct-2010 1025 8 06 B 1255 x Lumbricus spp 19.365 19.364 19.410 19.380 200 57.3 5911 535 12-Oct-2010 1025 8 07 B 1256 x Lumbricus spp 25.139 25.018 25.052 25.070 300 112.7 5912 536 21-Sep-2010 1026 2 01 B 1257 x Lumbricus spp 30.723 30.689 30.830 30.747 300 77.5 5913 537 21-Sep-2010 1026 3 01 B 1258 x Lumbricus spp 29.870 29.819 29.833 29.841 200 123.0 5914 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 538 23-Sep-2010 1028 3 01 B 1259 x Octolasion spp 11.849 11.896 11.880 11.875 400 13.8 5915 539 23-Sep-2010 1028 3 02 B 1260 x Aporrectodea spp 26.173 26.008 26.217 26.133 300 64.5 5916 540 23-Sep-2010 1028 3 03 B 1261 Octolasion tyrtaeum 37.164 37.307 37.166 37.212 200 302.9 5917 541 23-Sep-2010 1028 8 01 B 1262 x Lumbricus spp 29.716 29.551 29.736 29.668 200 119.1 5918 542 23-Sep-2010 1029 2 01 B 1263 x Aporrectodea spp 11.109 10.968 11.013 11.030 300 2.0 5919 543 23-Sep-2010 1029 2 02 B 1264 x Lumbricus spp 12.977 12.978 12.998 12.984 600 7.1 5920 544 23-Sep-2010 1029 2 03 B 1265 x Aporrectodea spp 20.518 20.574 20.642 20.578 200 49.4 5921 545 23-Sep-2010 1029 2 04 B 1266 x Aporrectodea spp 23.219 23.239 23.145 23.201 300 74.6 5922 546 23-Sep-2010 1029 2 05 B 1267 x Aporrectodea spp 32.206 32.200 32.145 32.184 200 113.7 5923 547 23-Sep-2010 1029 2 06 B 1268 x Lumbricus spp 31.904 31.945 31.922 31.924 150 189.4 5924 548 23-Sep-2010 1029 3 01 B 1269 x Aporrectodea spp 7.311 7.306 7.337 7.318 600 0.7 5925 APPENDIX F 110 549 23-Sep-2010 1029 3 02 B 1270 x Aporrectodea spp 10.797 10.779 10.820 10.799 400 7.3 5926 550 23-Sep-2010 1029 3 03 B 1271 x Aporrectodea spp 12.723 12.970 12.983 12.892 400 11.7 5927 551 23-Sep-2010 1029 3 04 B 1272 x Aporrectodea spp 10.968 10.949 10.905 10.941 400 17.3 5928 552 23-Sep-2010 1029 3 05 B 1273 x Aporrectodea spp 27.712 27.570 27.547 27.610 200 111.1 5929 553 23-Sep-2010 1029 3 06 B 1274 x Aporrectodea spp 31.572 31.572 31.540 31.561 150 136.0 5930 554 23-Sep-2010 1029 8 02 B 1276 x Aporrectodea spp 19.885 19.897 19.877 19.886 300 42.9 5931 555 23-Sep-2010 1029 8 03 B 1277 x Aporrectodea spp 20.238 20.175 20.222 20.212 300 35.8 5932 556 23-Sep-2010 1029 9 04 B 1282 x Octolasion spp 15.559 15.605 15.574 15.579 300 29.3 5933 557 23-Sep-2010 1029 9 05 B 1283 x Lumbricus spp 16.713 16.769 16.684 16.722 300 33.6 5934 558 21-Sep-2010 1030 2 02 B 1284 Octolasion tyrtaeum 29.964 30.084 30.057 30.035 200 177.0 5935 559 21-Sep-2010 1030 2 01 B 1285 Octolasion tyrtaeum 32.745 32.817 32.782 32.781 200 185.0 5936 560 23-Sep-2010 1031 9 01 B 1287 x Aporrectodea spp 4.155 4.126 4.134 4.138 800 0.2 5937 561 23-Sep-2010 1031 8 01 B 1288 Dendrodrilus rubidus 16.636 16.714 16.664 16.671 300 20.7 5938 562 23-Sep-2010 1031 8 02 B 1289 x Aporrectodea spp 21.684 21.558 21.651 21.631 200 93.0 5939 563 23-Sep-2010 1033 2 01 B 1290 x Lumbricus spp 12.587 12.531 12.611 12.576 400 3.2 5940 564 21-Sep-2010 1035 2 01 B 1291 x Lumbricus spp 27.564 27.712 27.620 27.632 300 75.4 5941 565 21-Sep-2010 1035 2 02 B 1292 x Lumbricus spp 23.271 23.112 23.283 23.222 300 63.1 5942 566 21-Sep-2010 1035 2 03 B 1293 x Lumbricus spp 33.852 33.891 33.790 33.844 200 118.0 5943 567 21-Sep-2010 1035 2 04 B 1294 Lumbricus rubellus 41.904 41.843 41.947 41.898 200 174.3 5944 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 568 21-Sep-2010 1035 2 05 B 1295 Octolasion tyrtaeum 39.195 38.994 39.216 39.135 150 223.0 5945 569 21-Sep-2010 1035 3 01 B 1296 x Lumbricus spp 35.866 35.788 35.773 35.809 300 137.3 5946 570 21-Sep-2010 1035 3 02 B 1297 x Lumbricus spp 46.640 46.968 46.726 46.778 200 261.6 5947 571 21-Sep-2010 1035 8 01 B 1298 x Lumbricus spp 50.987 51.035 50.788 50.937 150 359.0 5948 572 21-Sep-2010 1035 8 02 B 1299 x Lumbricus spp 7.116 7.044 7.104 7.088 600 3.4 5949 573 21-Sep-2010 1035 9 01 B 1300 x Lumbricus spp 18.655 18.668 18.720 18.681 300 43.8 5950 574 21-Sep-2010 1035 9 02 B 1301 x Lumbricus spp 33.007 32.887 32.997 32.964 200 101.4 5951 575 21-Sep-2010 1035 9 03 B 1302 Octolasion tyrtaeum 33.087 33.074 33.110 33.090 200 134.3 5952 576 21-Sep-2010 1034 1 21 B 1303 x Lumbricus spp 73.478 73.006 73.567 73.350 150 712.9 5953 577 20-Sep-2010 1039 3 05 B 1304 Amynthas spp 53.874 53.988 53.992 53.951 100 418.0 5954 578 23-Sep-2010 1045 9 02 B 1305 Amynthas spp 45.471 45.369 45.466 45.435 100 409.0 5955 APPENDIX F 111 579 07-Oct-2010 1054 9 01 B 1306 Amynthas spp 45.613 45.577 45.498 45.563 100 372.0 5956 580 15-Oct-2010 1055 3 09 B 1307 x Aporrectodea spp 55.723 55.847 55.654 55.741 150 462.3 5957 581 15-Oct-2010 1055 3 10 B 1308 x Aporrectodea spp 51.195 51.315 51.351 51.287 150 481.6 5958 582 15-Oct-2010 1055 3 11 B 1309 x Aporrectodea spp 49.436 49.432 49.444 49.437 150 492.6 5959 583 15-Oct-2010 1055 3 12 B 1310 x Lumbricus spp 54.806 54.674 55.064 54.848 100 549.3 7776 584 15-Oct-2010 1055 4 14 B 1311 Octolasion tyrtaeum 32.100 32.023 32.100 32.074 200 226.3 5960 585 05-Oct-2010 1058 2 01 B 1312 x Aporrectodea spp 6.198 6.184 6.233 6.205 400 5.9 5961 586 05-Oct-2010 1058 2 02 B 1313 x Lumbricus spp 11.602 11.629 11.580 11.604 600 9.0 5962 587 05-Oct-2010 1058 2 03 B 1314 x Lumbricus spp 11.594 11.615 11.603 11.604 600 9.2 5963 588 05-Oct-2010 1058 2 04 B 1315 x Lumbricus spp 10.534 10.517 10.556 10.536 400 8.5 5964 589 05-Oct-2010 1058 2 05 B 1316 x Aporrectodea spp 13.229 13.261 13.251 13.247 400 8.4 5965 590 05-Oct-2010 1058 2 06 B 1317 x Octolasion spp 21.126 21.018 21.121 21.088 200 84.7 5966 591 05-Oct-2010 1058 2 07 B 1318 x Lumbricus spp 27.815 27.861 27.715 27.797 300 127.4 5967 592 05-Oct-2010 1058 2 08 B 1319 x Lumbricus spp 30.726 30.703 30.786 30.738 200 186.5 5968 593 05-Oct-2010 1058 2 09 B 1320 x Lumbricus spp 29.094 29.039 29.096 29.076 200 130.6 5969 594 05-Oct-2010 1058 2 10 B 1321 x Lumbricus spp 31.323 31.168 31.175 31.222 200 242.6 5970 595 05-Oct-2010 1058 3 01 B 1322 x Lumbricus spp 15.238 15.226 15.253 15.239 300 24.5 5971 596 05-Oct-2010 1058 3 02 B 1323 x Aporrectodea spp 48.223 48.132 48.222 48.192 150 262.5 5972 597 05-Oct-2010 1058 3 03 B 1324 Lumbricus rubellus 44.690 44.156 44.617 44.488 200 416.2 5973 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 598 05-Oct-2010 1058 3 04 B 1325 Lumbricus rubellus 37.544 37.611 37.626 37.594 200 252.0 5974 599 05-Oct-2010 1058 3 05 B 1326 Octolasion tyrtaeum 44.191 44.286 44.103 44.193 150 393.6 5975 600 05-Oct-2010 1058 3 06 B 1327 Aporrectodea calignosa 54.490 54.293 54.482 54.422 200 404.8 5976 601 05-Oct-2010 1058 8 01 B 1328 x Lumbricus spp 13.473 13.457 13.421 13.450 400 30.2 5977 602 05-Oct-2010 1058 8 02 B 1329 x Aporrectodea spp 14.293 14.287 14.325 14.302 300 11.9 5978 603 05-Oct-2010 1058 8 03 B 1330 x Aporrectodea spp 18.664 18.571 18.692 18.642 300 37.2 5979 604 05-Oct-2010 1058 8 04 B 1331 x Aporrectodea spp 25.510 25.556 25.432 25.499 200 106.9 5980 605 05-Oct-2010 1058 8 05 B 1332 x Lumbricus spp 32.889 32.944 32.870 32.901 200 141.4 5981 606 05-Oct-2010 1058 8 06 B 1333 x Lumbricus spp 33.650 33.736 33.713 33.700 200 213.6 5982 607 05-Oct-2010 1058 8 07 B 1334 Aporrectodea calignosa 50.350 50.625 50.477 50.484 200 283.0 5983 608 05-Oct-2010 1058 8 08 B 1335 Octolasion tyrtaeum 39.780 39.990 39.816 39.862 150 356.2 5984 APPENDIX F 112 609 05-Oct-2010 1058 8 09 B 1336 Octolasion tyrtaeum 43.276 43.038 43.319 43.211 200 461.7 5985 610 05-Oct-2010 1058 9 11 B 1337 x Aporrectodea spp 37.454 37.380 37.312 37.382 200 136.6 5986 611 05-Oct-2010 1058 9 12 B 1338 x Aporrectodea spp 38.209 38.350 38.338 38.299 200 159.3 5987 612 05-Oct-2010 1058 9 13 B 1339 Aporrectodea calignosa 53.266 53.288 53.360 53.305 100 378.8 5988 613 05-Oct-2010 1058 9 14 B 1340 Aporrectodea calignosa 49.753 49.864 49.877 49.831 200 394.0 5989 614 05-Oct-2010 1058 9 15 B 1341 Octolasion tyrtaeum 41.123 40.995 41.106 41.075 100 418.0 5990 615 05-Oct-2010 1058 9 16 B 1342 Aporrectodea calignosa 49.968 50.005 49.966 49.980 150 359.1 5991 616 30-Sep-2010 1060 1 01 B 1343 Amynthas spp 55.609 55.714 55.537 55.620 150 464.5 5992 617 30-Sep-2010 1060 2 02 B 1345 Amynthas spp 46.745 46.900 46.486 46.710 150 309.0 5993 618 30-Sep-2010 1060 2 03 B 1346 Amynthas spp 52.437 52.672 52.458 52.522 150 389.5 5994 619 30-Sep-2010 1060 2 04 B 1347 Amynthas spp 52.415 52.287 52.448 52.383 150 363.6 5995 620 30-Sep-2010 1060 2 05 B 1348 Amynthas spp 54.979 54.682 54.804 54.822 150 440.3 5996 621 30-Sep-2010 1060 3 01 B 1349 x Aporrectodea spp 10.862 10.907 10.881 10.883 600 3.3 5997 622 30-Sep-2010 1060 3 02 B 1350 Amynthas spp 41.819 41.956 41.806 41.860 200 270.9 5998 623 30-Sep-2010 1060 4 02 B 1352 Amynthas spp 52.340 52.123 52.274 52.246 150 372.8 6000 624 13-Oct-2010 1064 2 02 B 1354 Dendrodrilus rubidus 18.812 18.821 18.824 18.819 300 71.5 6002 625 13-Oct-2010 1064 2 03 B 1355 Dendrodrilus rubidus 23.206 23.266 23.523 23.332 200 77.2 6003 626 13-Oct-2010 1063 4 02 B 1357 x Lumbricus spp 11.568 11.504 11.541 11.538 400 8.5 6004 627 13-Oct-2010 1063 4 03 B 1358 x Lumbricus spp 12.851 12.881 12.907 12.880 400 13.7 6005 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 628 13-Oct-2010 1063 4 04 B 1359 x Aporrectodea spp 12.456 12.453 12.496 12.468 400 15.0 6006 629 13-Oct-2010 1063 4 05 B 1360 x Lumbricus spp 11.920 11.882 11.888 11.897 400 9.5 6007 630 13-Oct-2010 1063 4 06 B 1361 x Lumbricus spp 17.513 17.431 17.456 17.467 300 38.9 6008 631 13-Oct-2010 1063 4 07 B 1362 x Aporrectodea spp 18.759 18.780 18.728 18.756 300 19.2 6009 632 13-Oct-2010 1063 4 08 B 1363 x Aporrectodea spp 15.509 15.476 15.515 15.500 300 18.2 6010 633 13-Oct-2010 1063 4 09 B 1364 x Aporrectodea spp 17.859 17.782 17.722 17.788 300 33.0 6011 634 13-Oct-2010 1063 4 10 B 1365 x Aporrectodea spp 18.377 18.365 18.351 18.364 300 17.3 6012 635 13-Oct-2010 1063 4 11 B 1366 x Lumbricus spp 20.382 20.481 20.405 20.423 300 45.3 6013 636 13-Oct-2010 1063 4 12 B 1367 x Lumbricus spp 17.694 17.622 17.656 17.657 200 28.2 6014 637 13-Oct-2010 1063 4 13 B 1368 x Lumbricus spp 23.052 23.102 23.020 23.058 200 55.8 6015 638 13-Oct-2010 1063 4 14 B 1369 x Lumbricus spp 22.332 22.318 22.289 22.313 200 66.2 6016 APPENDIX F 113 639 13-Oct-2010 1063 4 15 B 1370 x Lumbricus spp 26.549 26.514 26.512 26.525 200 110.6 6017 640 13-Oct-2010 1063 4 16 B 1371 x Lumbricus spp 28.232 28.078 28.195 28.168 150 117.2 6018 641 13-Oct-2010 1063 4 17 B 1372 x Lumbricus spp 35.006 34.971 35.005 34.994 150 232.7 6019 642 13-Oct-2010 1063 4 18 B 1373 x Aporrectodea spp 42.282 42.292 42.297 42.290 100 338.0 6020 643 13-Oct-2010 1063 4 19 B 1374 x Aporrectodea spp 37.379 37.361 37.285 37.342 100 196.4 6021 644 13-Oct-2010 1063 4 20 B 1375 x Aporrectodea spp 51.351 51.010 51.206 51.189 100 398.0 6022 645 13-Oct-2010 1063 4 21 B 1376 x Aporrectodea spp 53.310 53.302 53.206 53.273 100 415.2 6023 646 13-Oct-2010 1063 4 22 B 1377 Aporrectodea calignosa 60.221 60.151 60.203 60.192 100 463.0 6024 647 13-Oct-2010 1063 4 23 B 1378 Aporrectodea calignosa 53.647 53.771 53.597 53.672 100 522.0 6025 648 13-Oct-2010 1063 3 01 B 1379 x Lumbricus spp 10.333 10.373 10.326 10.344 400 6.7 6026 649 13-Oct-2010 1063 3 02 B 1380 x Lumbricus spp 10.439 10.406 10.489 10.445 400 6.8 6027 650 13-Oct-2010 1063 3 03 B 1381 x Lumbricus spp 11.109 11.182 11.092 11.128 400 9.8 6028 651 13-Oct-2010 1063 3 04 B 1382 x Lumbricus spp 12.151 12.216 12.173 12.180 300 11.9 6029 652 13-Oct-2010 1063 3 05 B 1383 x Lumbricus spp 11.276 11.264 11.298 11.279 400 7.6 6030 653 13-Oct-2010 1063 3 06 B 1384 x Lumbricus spp 10.147 10.118 10.156 10.140 400 7.7 6031 654 13-Oct-2010 1063 3 07 B 1385 x Aporrectodea spp 17.799 17.789 17.834 17.807 300 18.2 6032 655 13-Oct-2010 1063 3 08 B 1386 x Aporrectodea spp 20.286 20.244 20.291 20.274 200 24.7 6033 656 13-Oct-2010 1063 3 09 B 1387 x Aporrectodea spp 22.467 22.424 22.499 22.463 300 37.2 6034 657 13-Oct-2010 1063 3 10 B 1388 x Aporrectodea spp 22.115 22.006 22.142 22.088 200 46.0 6035 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 658 13-Oct-2010 1063 3 11 B 1389 x Lumbricus spp 35.654 35.525 35.579 35.586 150 255.2 6036 659 13-Oct-2010 1063 2 01 B 1390 x Lumbricus spp 12.238 12.220 12.184 12.214 400 10.6 6037 660 13-Oct-2010 1063 2 02 B 1391 x Lumbricus spp 20.015 20.017 19.956 19.996 300 69.2 6038 661 13-Oct-2010 1063 2 03 B 1392 x Lumbricus spp 19.498 19.401 19.499 19.466 300 67.5 6039 662 13-Oct-2010 1063 2 04 B 1393 x Lumbricus spp 23.602 23.542 23.499 23.548 200 96.7 6040 663 13-Oct-2010 1063 2 05 B 1394 x Lumbricus spp 28.546 28.488 28.541 28.525 150 190.0 6041 664 13-Oct-2010 1063 2 06 B 1395 Aporrectodea calignosa 48.373 48.275 48.448 48.365 150 388.1 6042 665 13-Oct-2010 1063 2 07 B 1396 x Lumbricus spp 53.356 53.640 53.170 53.389 150 463.0 6043 666 13-Oct-2010 1064 3 01 B 1397 Lumbricus rubellus 13.811 13.820 13.776 13.802 300 54.5 6044 667 13-Oct-2010 1064 3 02 B 1398 Dendrodrilus rubidus 20.310 20.333 20.421 20.355 200 82.7 6045 668 13-Oct-2010 1064 3 03 B 1399 Dendrodrilus rubidus 23.054 22.983 23.054 23.030 200 68.1 6046 APPENDIX F 114 669 13-Oct-2010 1064 3 04 B 1400 Dendrodrilus rubidus 22.625 22.587 22.602 22.605 200 65.4 6047 670 13-Oct-2010 1063 1 01 B 1401 x Aporrectodea spp 9.114 9.120 9.122 9.119 600 10.6 6048 671 13-Oct-2010 1063 1 02 B 1402 x Lumbricus spp 12.088 12.112 12.077 12.092 400 9.2 6049 672 13-Oct-2010 1063 1 03 B 1403 x Aporrectodea spp 16.258 16.301 16.243 16.267 400 16.7 6050 673 13-Oct-2010 1063 1 04 B 1404 x Aporrectodea spp 14.596 14.612 14.577 14.595 400 12.1 6051 674 13-Oct-2010 1063 1 05 B 1405 x Aporrectodea spp 13.720 13.786 13.741 13.749 400 12.4 6052 675 13-Oct-2010 1063 1 06 B 1406 x Aporrectodea spp 16.075 16.087 15.990 16.051 400 19.0 6053 676 15-Oct-2010 1067 8 15 B 1407 x Lumbricus spp 24.236 24.247 24.204 24.229 200 46.3 6054 677 15-Oct-2010 1067 8 16 B 1408 x Aporrectodea spp 30.064 30.180 30.092 30.112 200 106.9 6055 678 15-Oct-2010 1067 8 17 B 1409 x Aporrectodea spp 31.677 31.808 31.710 31.732 200 96.0 6056 679 15-Oct-2010 1067 8 18 B 1410 x Aporrectodea spp 31.106 30.990 30.986 31.027 200 101.3 6057 680 15-Oct-2010 1067 8 19 B 1411 x Lumbricus spp 23.050 23.050 22.966 23.022 200 127.8 6058 681 15-Oct-2010 1067 8 20 B 1412 x Lumbricus spp 25.568 25.497 25.571 25.545 300 87.7 6059 682 13-Oct-2010 1064 8 01 B 1413 x Lumbricus spp 7.265 7.289 7.272 7.275 600 7.5 6060 683 13-Oct-2010 1064 8 02 B 1414 x Lumbricus spp 11.442 11.432 11.456 11.443 400 11.2 6061 684 13-Oct-2010 1064 8 03 B 1415 x Lumbricus spp 21.769 21.811 21.725 21.768 300 45.9 6062 685 13-Oct-2010 1064 8 04 B 1416 Lumbricus rubellus 22.568 22.508 22.566 22.547 200 80.2 6063 686 13-Oct-2010 1064 8 05 B 1417 Amynthas spp 48.064 47.884 47.872 47.940 150 328.0 6064 687 13-Oct-2010 1064 9 01 B 1418 x Lumbricus spp 16.436 16.467 16.410 16.438 300 29.3 6065 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 688 13-Oct-2010 1064 9 02 B 1419 Lumbricus rubellus 19.370 19.464 19.365 19.400 200 61.5 6066 689 13-Oct-2010 1064 9 03 B 1420 Lumbricus rubellus 19.446 19.438 19.387 19.424 200 65.0 6067 690 13-Oct-2010 1064 9 04 B 1421 Lumbricus rubellus 20.767 20.740 20.715 20.741 200 63.7 6068 691 13-Oct-2010 1064 9 05 B 1422 Lumbricus rubellus 19.677 19.705 19.649 19.677 200 60.1 6069 692 15-Oct-2010 1067 3 01 B 1423 x Aporrectodea spp 24.225 24.331 24.264 24.273 200 60.4 6070 693 15-Oct-2010 1067 3 02 B 1424 x Aporrectodea spp 24.194 24.303 24.318 24.272 200 53.5 6071 694 15-Oct-2010 1067 3 03 B 1425 x Aporrectodea spp 37.694 37.596 37.549 37.613 150 149.6 6072 695 15-Oct-2010 1067 2 01 B 1426 x Lumbricus spp 6.877 6.875 6.894 6.882 400 7.2 6073 696 15-Oct-2010 1067 2 02 B 1427 x Aporrectodea spp 11.565 11.594 11.567 11.575 400 8.4 6074 697 15-Oct-2010 1067 2 03 B 1428 x Aporrectodea spp 15.629 15.645 15.612 15.629 400 15.0 6075 698 15-Oct-2010 1067 2 04 B 1429 x Aporrectodea spp 18.618 18.645 18.522 18.595 300 23.7 6076 APPENDIX F 115 699 15-Oct-2010 1067 2 05 B 1430 x Aporrectodea spp 17.889 18.004 17.907 17.933 300 17.3 6077 700 15-Oct-2010 1067 2 06 B 1431 x Aporrectodea spp 16.374 16.417 16.446 16.412 300 13.6 6078 701 15-Oct-2010 1067 2 07 B 1432 x Lumbricus spp 26.444 26.522 26.420 26.462 200 83.5 6079 702 15-Oct-2010 1067 2 08 B 1433 x Aporrectodea spp 33.690 33.497 33.733 33.640 200 161.0 6080 703 15-Oct-2010 1067 2 09 B 1434 x Aporrectodea spp 47.356 47.359 47.351 47.355 150 261.8 6081 704 15-Oct-2010 1067 2 10 B 1435 x Aporrectodea spp 46.977 47.045 46.872 46.965 150 370.0 6082 705 15-Oct-2010 1067 2 11 B 1436 x Aporrectodea spp 58.933 59.060 59.018 59.004 150 514.0 6083 706 15-Oct-2010 1067 2 12 B 1437 Aporrectodea calignosa 52.530 52.455 52.485 52.490 100 343.1 6084 707 15-Oct-2010 1067 2 13 B 1438 Aporrectodea calignosa 55.586 56.029 56.038 55.884 150 467.0 6085 708 15-Oct-2010 1067 2 14 B 1439 Aporrectodea calignosa 67.613 67.648 67.599 67.620 100 601.6 6086 709 15-Oct-2010 1067 2 15 B 1440 Aporrectodea calignosa 67.879 68.147 67.662 67.896 100 633.0 6087 710 15-Oct-2010 1067 9 01 B 1441 x Lumbricus spp 11.074 11.067 11.116 11.086 400 6.9 6088 711 15-Oct-2010 1067 9 02 B 1442 x Aporrectodea spp 16.802 16.816 16.764 16.794 300 16.9 6089 712 15-Oct-2010 1067 9 03 B 1443 x Aporrectodea spp 16.119 16.209 16.160 16.163 300 16.9 6090 713 15-Oct-2010 1067 9 04 B 1444 x Lumbricus spp 19.916 19.751 19.875 19.847 300 37.7 6091 714 15-Oct-2010 1067 9 05 B 1445 x Aporrectodea spp 24.040 24.026 24.197 24.088 200 43.2 6092 715 15-Oct-2010 1067 9 06 B 1446 x Aporrectodea spp 21.755 21.881 21.899 21.845 300 36.6 6093 716 15-Oct-2010 1067 9 07 B 1447 x Lumbricus spp 28.866 28.900 28.885 28.884 300 87.7 6094 717 15-Oct-2010 1067 9 08 B 1448 x Aporrectodea spp 28.080 28.171 28.208 28.153 200 95.8 6095 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 718 15-Oct-2010 1067 9 09 B 1449 x Aporrectodea spp 31.046 31.123 31.124 31.098 200 86.1 6096 719 15-Oct-2010 1067 9 10 B 1450 x Aporrectodea spp 40.316 40.201 39.982 40.166 200 139.0 6097 720 15-Oct-2010 1067 9 11 B 1451 Aporrectodea calignosa 58.942 59.043 58.808 58.931 150 367.0 6098 721 14-Oct-2010 1070 8 01 B 1453 Dendrobaena octaedra 11.306 11.325 11.304 11.312 400 11.1 6100 722 14-Oct-2010 1071 9 01 B 1456 Amynthas spp 47.758 48.022 47.756 47.845 150 404.5 6102 723 21-Sep-2010 1072 3 01 B 1457 x Lumbricus spp 27.349 27.489 27.376 27.405 200 93.0 6103 724 21-Sep-2010 1072 3 02 B 1458 Dendrobaena octaedra 10.363 10.451 10.456 10.423 600 12.7 6104 725 07-Oct-2010 1072 3 01 B 1459 Dendrobaena octaedra 14.453 14.640 14.510 14.534 400 19.2 6105 726 07-Oct-2010 1072 3 02 B 1460 Dendrobaena octaedra 20.612 20.656 20.488 20.585 300 38.7 6106 727 07-Oct-2010 1072 3 03 B 1461 x Lumbricus spp 21.236 21.317 21.187 21.247 300 72.9 6107 728 07-Oct-2010 1072 8 01 B 1462 Dendrobaena octaedra 11.787 11.800 11.763 11.783 600 8.8 6108 APPENDIX F 116 729 07-Oct-2010 1072 8 02 B 1463 Dendrobaena octaedra 9.356 9.298 9.242 9.299 600 6.7 6109 730 07-Oct-2010 1072 8 03 B 1464 Dendrobaena octaedra 13.561 13.529 13.549 13.546 400 14.9 6110 731 07-Oct-2010 1072 9 01 B 1465 x Lumbricus spp 19.033 18.980 19.010 19.008 200 49.6 6111 732 14-Oct-2010 1083 8 01 B 1467 x Lumbricus spp 6.634 6.674 6.640 6.649 800 4.1 6113 733 14-Oct-2010 1083 8 02 B 1468 x Aporrectodea spp 9.729 9.738 9.668 9.712 600 6.6 6114 734 14-Oct-2010 1083 2 11 B 1469 x Lumbricus spp 38.430 38.521 38.470 38.474 200 212.6 6115 735 14-Oct-2010 1083 2 12 B 1470 Lumbricus rubellus 45.207 45.562 45.557 45.442 150 351.4 6116 736 14-Oct-2010 1083 2 13 B 1471 x Lumbricus spp 50.258 50.299 50.547 50.368 150 332.6 6117 737 14-Oct-2010 1083 2 14 B 1472 x Aporrectodea spp 53.023 53.073 53.112 53.069 150 400.5 6118 738 14-Oct-2010 1083 9 10 B 1473 x Aporrectodea spp 21.850 21.848 21.869 21.856 300 34.2 6119 739 14-Oct-2010 1083 9 11 B 1474 x Aporrectodea spp 31.776 32.018 31.862 31.885 200 106.0 6120 740 14-Oct-2010 1083 9 12 B 1475 x Aporrectodea spp 39.653 39.952 39.776 39.794 200 164.4 6121 741 14-Oct-2010 1083 9 13 B 1476 x Aporrectodea spp 29.790 29.886 29.677 29.784 150 98.4 6122 742 14-Oct-2010 1083 9 14 B 1477 x Aporrectodea spp 32.062 32.110 32.129 32.100 200 140.3 6123 743 14-Oct-2010 1083 9 15 B 1478 x Aporrectodea spp 32.516 32.378 32.728 32.541 200 116.7 6124 744 14-Oct-2010 1083 9 16 B 1479 x Aporrectodea spp 36.123 36.295 36.221 36.213 200 154.3 6125 745 14-Oct-2010 1083 9 17 B 1480 x Aporrectodea spp 41.168 41.062 41.210 41.147 200 153.9 6126 746 14-Oct-2010 1083 9 18 B 1481 x Aporrectodea spp 36.197 36.157 36.241 36.198 200 179.5 6127 747 14-Oct-2010 1083 9 19 B 1482 x Aporrectodea spp 51.178 51.339 51.312 51.276 200 223.0 6128 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 748 14-Oct-2010 1083 9 20 B 1483 x Aporrectodea spp 30.759 30.634 30.742 30.712 200 118.7 6129 749 14-Oct-2010 1083 9 21 B 1484 x Lumbricus spp 41.521 41.618 41.657 41.599 150 321.8 6130 750 14-Oct-2010 1083 9 22 B 1485 x Aporrectodea spp 51.355 51.491 51.413 51.420 150 403.3 6131 751 07-Oct-2010 3668 2 09 B 1486 x Lumbricus spp 41.507 41.777 41.824 41.703 150 281.8 6132 752 07-Oct-2010 3668 2 10 B 1487 x Lumbricus spp 45.716 45.832 45.692 45.747 150 277.4 6133 753 07-Oct-2010 3668 2 11 B 1488 x Lumbricus spp 40.121 40.039 40.284 40.148 150 297.7 6134 754 07-Oct-2010 3668 2 12 B 1489 x Lumbricus spp 41.821 41.830 41.778 41.810 150 260.3 6135 755 13-Oct-2010 1063 4 31 B 1514 x Lumbricus spp 9.405 9.376 9.365 9.382 300 5.5 7778 756 30-Sep-2010 1016 2 18 B 1515 x Aporrectodea spp 10.005 10.017 9.995 10.006 400 5.5 7777 757 20-Sep-2010 1002 9 01 B 2000 x Lumbricus spp 48.583 48.810 48.456 48.616 200 334.5 6170 758 20-Sep-2010 1003 3 04 B 2001 Lumbricus rubellus 54.032 54.055 54.165 54.084 150 404.5 6171 APPENDIX F 117 759 20-Sep-2010 1010 2 02 B 2002 Amynthas spp 55.220 55.204 55.101 55.175 100 436.0 6172 760 20-Sep-2010 1010 2 03 B 2003 Amynthas spp 58.520 58.650 58.712 58.627 100 465.0 6173 761 20-Sep-2010 1010 2 04 B 2004 Amynthas spp 55.789 55.945 55.765 55.833 100 437.0 6174 762 20-Sep-2010 1010 2 05 B 2005 Amynthas spp 59.773 59.922 59.765 59.820 100 514.0 6175 763 20-Sep-2010 1010 3 08 B 2006 Amynthas spp 59.491 59.686 59.772 59.650 100 508.0 6176 764 20-Sep-2010 1010 8 03 B 2007 Amynthas spp 54.124 53.947 53.933 54.001 100 405.0 6177 765 20-Sep-2010 1010 8 04 B 2008 Amynthas spp 56.803 56.854 56.883 56.847 100 456.0 6178 766 20-Sep-2010 1010 9 04 B 2009 Amynthas spp 57.244 57.281 57.336 57.287 100 444.0 6179 767 20-Sep-2010 1011 2 08 B 2010 x Lumbricus spp 58.420 58.069 58.186 58.225 150 612.0 6181 768 20-Sep-2010 1011 5 09 B 2011 Lumbricus rubellus 45.687 45.733 45.804 45.741 150 334.0 6182 769 20-Sep-2010 1011 6 06 B 2012 x Lumbricus spp 66.346 66.139 66.311 66.265 100 915.0 6185 770 21-Sep-2010 1013 1 02 B 2013 x Lumbricus spp 44.835 44.846 44.889 44.857 150 278.0 6186 771 23-Sep-2010 1015 3 09 B 2014 Lumbricus rubellus 52.639 52.865 52.745 52.750 150 485.0 6187 772 30-Sep-2010 1016 3 08 B 2015 x Lumbricus spp 75.998 75.639 75.896 75.844 75 1443.0 6188 773 24-Sep-2010 1018 8 01 B 2016 Amynthas spp 60.870 60.707 60.651 60.743 150 540.0 6189 774 24-Sep-2010 1018 2 03 B 2017 Amynthas spp 65.500 65.371 65.951 65.607 150 624.0 6190 775 23-Sep-2010 1017 3 06 B 2018 Lumbricus rubellus 49.803 50.246 50.264 50.104 200 413.5 6191 776 24-Sep-2010 1021 1 01 B 2019 Amynthas spp 51.792 51.927 51.877 51.865 200 397.0 6192 777 24-Sep-2010 1021 1 02 B 2020 Amynthas spp 51.384 51.392 51.232 51.336 200 630.0 6193 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 778 24-Sep-2010 1021 1 03 B 2021 Amynthas spp 56.435 56.171 56.686 56.431 100 521.5 6194 779 24-Sep-2010 1021 5 02 B 2022 Amynthas spp 58.022 58.026 57.908 57.985 100 541.5 6195 780 12-Oct-2010 1025 9 02 B 2023 Aporrectodea calignosa 61.492 61.616 61.762 61.623 150 509.5 6196 781 12-Oct-2010 1025 8 08 B 2024 Aporrectodea calignosa 50.759 50.763 50.918 50.813 100 512.5 6197 782 12-Oct-2010 1025 8 09 B 2025 Aporrectodea calignosa 47.641 47.573 47.575 47.596 200 591.5 6198 783 07-Oct-2010 1054 3 03 B 2026 Amynthas spp 64.611 64.737 64.546 64.631 150 445.5 6199 784 21-Sep-2010 1035 8 03 B 2027 Lumbricus rubellus 61.148 60.948 61.258 61.118 200 287.2 6200 785 21-Sep-2010 1035 9 04 B 2028 x Lumbricus spp 56.530 56.389 56.758 56.559 150 370.2 6201 786 23-Sep-2010 1029 2 07 B 2029 x Lumbricus spp 64.028 64.363 63.997 64.129 150 372.8 6202 787 23-Sep-2010 1045 9 03 B 2030 Amynthas spp 67.317 67.064 66.958 67.113 150 543.0 6203 788 23-Sep-2010 1045 9 04 B 2031 Amynthas spp 63.282 63.496 63.424 63.401 150 564.5 6204 APPENDIX F 118 789 15-Oct-2010 1055 2 07 B 2032 x Aporrectodea spp 67.130 67.016 67.078 67.075 150 549.5 6205 790 15-Oct-2010 1055 3 13 B 2033 x Aporrectodea spp 71.308 71.415 71.572 71.432 150 702.5 6206 791 15-Oct-2010 1055 3 14 B 2034 x Lumbricus spp 75.610 75.688 75.710 75.669 100 1023.5 6207 792 15-Oct-2010 1055 4 15 B 2035 x Lumbricus spp 75.018 75.112 74.986 75.039 100 900.0 6208 793 15-Oct-2010 1055 4 16 B 2036 Aporrectodea calignosa 98.844 98.539 98.447 98.610 100 1211.0 6209 794 13-Oct-2010 1063 4 25 B 2037 Aporrectodea calignosa 60.952 61.139 61.074 61.055 100 695.5 6210 795 13-Oct-2010 1063 4 26 B 2038 Aporrectodea calignosa 68.021 67.990 67.934 67.982 150 627.0 6211 796 13-Oct-2010 1063 4 24 B 2039 Aporrectodea calignosa 59.559 59.329 59.317 59.402 150 457.5 6212 797 13-Oct-2010 1063 1 07 B 2040 x Aporrectodea spp 14.447 14.427 14.372 14.415 400 18.2 6213 798 13-Oct-2010 1063 1 08 B 2041 x Lumbricus spp 17.117 17.127 17.095 17.113 400 23.5 6214 799 13-Oct-2010 1063 1 09 B 2042 x Aporrectodea spp 15.527 15.492 15.512 15.510 300 19.2 6215 800 13-Oct-2010 1063 1 10 B 2043 x Aporrectodea spp 16.548 16.619 16.544 16.570 300 22.4 6216 801 13-Oct-2010 1063 1 11 B 2044 x Aporrectodea spp 19.430 19.400 19.434 19.421 300 27.6 6217 802 13-Oct-2010 1063 1 12 B 2045 x Aporrectodea spp 21.953 21.995 21.989 21.979 200 87.9 6218 803 13-Oct-2010 1063 1 13 B 2046 x Aporrectodea spp 27.546 27.525 27.517 27.529 200 71.6 6219 804 13-Oct-2010 1063 1 14 B 2047 Aporrectodea calignosa 43.769 43.746 43.822 43.779 100 362.6 6220 805 13-Oct-2010 1063 1 15 B 2048 Aporrectodea calignosa 46.035 45.796 45.612 45.814 150 376.1 6221 806 13-Oct-2010 1063 1 16 B 2049 Aporrectodea calignosa 57.117 57.074 56.794 56.995 150 663.4 6222 807 13-Oct-2010 1063 1 17 B 2050 x Lumbricus spp 76.656 76.566 76.684 76.635 100 1227.0 6223 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 808 15-Oct-2010 1067 8 21 B 2051 Aporrectodea calignosa 80.546 80.690 80.571 80.602 100 747.3 6224 809 15-Oct-2010 1067 8 22 B 2052 x Aporrectodea spp 67.130 67.269 67.203 67.201 150 603.7 6225 810 15-Oct-2010 1067 8 23 B 2053 Aporrectodea calignosa 68.601 68.559 68.387 68.516 150 593.7 6226 811 15-Oct-2010 1067 8 24 B 2054 Aporrectodea calignosa 57.357 57.317 57.335 57.336 100 675.9 6227 812 15-Oct-2010 1067 8 25 B 2055 x Aporrectodea spp 44.905 45.048 44.989 44.981 150 390.4 6228 813 15-Oct-2010 1067 8 26 B 2056 x Aporrectodea spp 35.467 35.637 35.656 35.587 200 149.6 6229 814 15-Oct-2010 1067 8 27 B 2057 x Aporrectodea spp 36.289 36.344 36.350 36.328 200 132.2 6230 815 15-Oct-2010 1067 8 28 B 2058 x Aporrectodea spp 36.942 37.151 36.928 37.007 200 168.9 6231 816 15-Oct-2010 1067 8 29 B 2059 x Aporrectodea spp 42.257 42.153 42.174 42.195 150 217.8 6232 817 15-Oct-2010 1067 8 30 B 2060 x Aporrectodea spp 34.433 34.482 34.495 34.470 200 146.3 6233 818 15-Oct-2010 1067 3 04 B 2061 Aporrectodea calignosa 60.954 60.963 61.029 60.982 100 558.4 6234 APPENDIX F 119 819 15-Oct-2010 1067 3 05 B 2062 Aporrectodea calignosa 72.266 72.638 72.824 72.576 150 674.7 6235 820 15-Oct-2010 1067 9 13 B 2063 Aporrectodea calignosa 56.092 55.755 56.150 55.999 100 473.1 6236 821 15-Oct-2010 1067 9 14 B 2064 Aporrectodea calignosa 65.696 65.410 65.410 65.505 150 475.4 6237 822 15-Oct-2010 1067 9 15 B 2065 x Aporrectodea spp 59.886 59.759 59.971 59.872 150 377.5 6238 823 15-Oct-2010 1067 9 16 B 2066 Aporrectodea calignosa 67.673 67.671 67.581 67.642 150 697.8 6239 824 15-Oct-2010 1067 9 17 B 2067 Aporrectodea calignosa 65.630 65.325 65.237 65.397 100 264.3 6240 825 15-Oct-2010 1067 9 18 B 2068 x Aporrectodea spp 57.584 57.617 57.643 57.615 150 555.3 6241 826 14-Oct-2010 1070 3 01 B 2069 Octolasion tyrtaeum 78.427 78.163 78.241 78.277 100 947.5 6242 827 14-Oct-2010 1083 8 03 B 2070 x Lumbricus spp 10.482 10.395 10.501 10.459 600 7.2 6243 828 14-Oct-2010 1083 8 04 B 2071 x Lumbricus spp 9.792 9.735 9.757 9.761 600 8.1 6244 829 14-Oct-2010 1083 8 05 B 2072 x Octolasion spp 9.678 9.700 9.730 9.703 600 6.9 6245 830 14-Oct-2010 1083 8 06 B 2073 x Lumbricus spp 9.108 9.089 9.121 9.106 600 6.4 6246 831 14-Oct-2010 1083 8 07 B 2074 x Aporrectodea spp 11.903 11.879 11.837 11.873 400 11.5 6247 832 14-Oct-2010 1083 8 08 B 2075 x Lumbricus spp 12.271 12.260 12.252 12.261 400 11.9 6248 833 14-Oct-2010 1083 8 09 B 2076 x Aporrectodea spp 15.089 15.071 15.104 15.088 400 18.2 6249 834 14-Oct-2010 1083 8 10 B 2077 x Lumbricus spp 16.353 16.308 16.388 16.350 300 24.0 6250 835 14-Oct-2010 1083 8 11 B 2078 x Aporrectodea spp 18.510 18.617 18.560 18.562 300 28.5 6251 836 14-Oct-2010 1083 8 12 B 2079 x Lumbricus spp 25.024 24.975 25.047 25.015 300 80.1 6252 837 14-Oct-2010 1083 8 13 B 2080 x Aporrectodea spp 42.054 42.011 41.969 42.011 200 251.0 6253 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 838 14-Oct-2010 1083 8 14 B 2081 x Aporrectodea spp 22.690 23.043 22.958 22.897 200 54.4 6254 839 14-Oct-2010 1083 8 15 B 2082 x Aporrectodea spp 18.794 18.847 18.768 18.803 300 38.8 6255 840 14-Oct-2010 1083 8 17 B 2084 x Aporrectodea spp 52.094 51.701 52.127 51.974 200 258.4 6257 841 14-Oct-2010 1083 8 18 B 2085 Lumbricus rubellus 41.711 41.839 41.868 41.806 150 376.3 6258 842 07-Oct-2010 1388 2 02 B 2087 x Lumbricus spp 12.865 12.911 12.842 12.873 400 10.9 6259 843 07-Oct-2010 1388 2 03 B 2088 x Octolasion spp 26.468 26.370 26.651 26.496 200 121.0 6260 844 07-Oct-2010 1388 2 04 B 2089 Aporrectodea rosea 31.680 31.793 31.800 31.758 200 133.1 6261 845 07-Oct-2010 1388 3 02 B 2091 x Lumbricus spp 50.461 50.611 50.476 50.516 200 318.5 6262 846 20-Sep-2010 1002 3 04 B 3001 Lumbricus terrestris 73.501 73.661 73.599 73.587 100 653.0 6349 847 20-Sep-2010 1002 8 04 B 3002 Lumbricus terrestris 73.364 73.377 72.977 73.239 100 1312.0 6350 848 20-Sep-2010 1006 9 01 B 3003 Lumbricus rubellus 85.920 86.079 86.144 86.048 100 1185.0 6351 APPENDIX F 120 849 30-Sep-2010 1016 9 07 B 3004 Lumbricus terrestris 96.455 96.123 96.136 96.238 100 1513.0 6352 850 30-Sep-2010 1016 9 08 B 3005 Lumbricus terrestris 102.101 102.142 102.122 102.122 100 2266.0 6353 851 24-Sep-2010 1021 2 01 B 3006 Amynthas spp 61.025 60.743 60.966 60.911 150 543.0 6354 852 24-Sep-2010 1021 6 05 B 3007 Amynthas spp 56.708 56.726 56.823 56.752 150 532.0 6355 853 13-Oct-2010 1068 2 01 B 3008 Amynthas spp 80.161 80.138 79.998 80.099 75 1994.0 6356 854 13-Oct-2010 1068 2 02 B 3009 Amynthas spp 93.418 93.125 93.397 93.313 100 2496.0 6357 855 13-Oct-2010 1068 2 03 B 3010 Amynthas spp 61.641 61.555 61.530 61.575 100 1246.0 6358 856 13-Oct-2010 1068 4 06 B 3011 Amynthas spp 69.478 69.438 69.270 69.395 150 991.7 6359 857 13-Oct-2010 1068 4 07 B 3012 Amynthas spp 77.943 77.730 77.879 77.851 100 1802.0 6360 858 20-Sep-2010 1039 2 01 B 3013 Amynthas spp 91.961 91.784 91.653 91.799 100 1683.5 6361 859 20-Sep-2010 1039 2 02 B 3014 Amynthas spp 74.171 74.229 74.383 74.261 100 1095.0 6362 860 20-Sep-2010 1039 8 01 B 3015 Amynthas spp 96.291 96.365 96.599 96.418 100 1890.0 6363 861 20-Sep-2010 1039 9 02 B 3016 Amynthas spp 69.625 70.033 69.624 69.761 75 1127.0 6364 862 20-Sep-2010 1039 9 03 B 3017 Amynthas spp 72.731 72.761 72.663 72.718 75 1130.0 6365 863 20-Sep-2010 1039 9 04 B 3018 Amynthas spp 81.181 81.116 81.232 81.176 100 1214.6 6366 864 30-Sep-2010 1044 2 01 B 3019 Amynthas spp 95.454 95.213 95.605 95.424 100 2260.0 6367 865 30-Sep-2010 1044 2 02 B 3020 Amynthas spp 88.531 88.474 88.119 88.375 100 1905.0 6368 866 30-Sep-2010 1044 2 03 B 3021 Amynthas spp 81.480 81.772 81.595 81.616 100 1616.0 6369 867 30-Sep-2010 1044 2 04 B 3022 Amynthas spp 99.255 99.388 99.224 99.289 75 2463.0 6370 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 868 30-Sep-2010 1044 2 05 B 3023 Amynthas spp 94.914 95.338 95.144 95.132 100 2186.0 6371 869 30-Sep-2010 1044 2 06 B 3024 Amynthas spp 84.939 84.831 84.770 84.847 75 2075.0 6372 870 30-Sep-2010 1044 8 04 B 3025 Amynthas spp 100.486 100.668 100.703 100.619 75 2716.0 6373 871 30-Sep-2010 1044 8 05 B 3026 Amynthas spp 85.573 85.380 85.089 85.347 75 1714.0 6374 872 30-Sep-2010 1044 8 06 B 3027 Amynthas spp 102.779 102.098 102.060 102.312 100 2319.0 6375 873 30-Sep-2010 1044 8 07 B 3028 Amynthas spp 80.785 80.940 80.884 80.870 100 1410.0 6376 874 30-Sep-2010 1044 9 03 B 3029 Amynthas spp 74.132 74.301 74.321 74.251 100 1160.0 6377 875 30-Sep-2010 1044 9 04 B 3030 Amynthas spp 115.525 115.329 115.268 115.374 75 3344.0 6378 876 30-Sep-2010 1044 9 05 B 3031 Amynthas spp 66.377 66.347 66.346 66.357 100 1207.0 6379 877 30-Sep-2010 1044 9 06 B 3032 Amynthas spp 80.288 80.457 80.464 80.403 75 1969.0 6380 878 30-Sep-2010 1044 9 07 B 3033 Amynthas spp 98.853 98.829 98.643 98.775 100 2373.0 6381 APPENDIX F 121 879 23-Sep-2010 1045 2 01 B 3034 Amynthas spp 88.775 88.745 88.927 88.816 100 2215.0 6382 880 07-Oct-2010 1050 9 03 B 3035 x Lumbricus spp 53.041 53.241 53.132 53.138 200 474.7 6383 881 07-Oct-2010 1050 9 04 B 3036 x Lumbricus spp 75.991 76.074 76.391 76.152 150 876.2 6384 882 07-Oct-2010 1051 3 02 B 3037 Lumbricus terrestris 129.827 129.448 130.194 129.823 100 2858.0 6385 883 15-Oct-2010 1055 1 08 B 3038 x Lumbricus spp 74.126 74.212 74.131 74.156 150 959.2 6386 884 15-Oct-2010 1055 1 09 B 3039 Lumbricus terrestris 84.536 84.679 84.607 84.607 100 1693.0 6387 885 15-Oct-2010 1055 1 10 B 3040 Lumbricus terrestris 98.036 98.417 98.687 98.380 100 2099.0 6388 886 15-Oct-2010 1055 2 08 B 3041 Lumbricus terrestris 114.928 114.696 114.428 114.684 100 3153.0 6389 887 15-Oct-2010 1055 4 17 B 3042 Lumbricus terrestris 111.828 111.962 111.966 111.919 100 2710.0 6390 888 13-Oct-2010 1063 4 27 B 3043 Lumbricus terrestris 100.437 100.501 100.822 100.587 100 1684.0 6391 889 13-Oct-2010 1063 4 28 B 3044 Lumbricus terrestris 91.479 91.569 91.575 91.541 100 1736.0 6392 890 13-Oct-2010 1063 4 29 B 3045 Lumbricus terrestris 86.328 85.834 85.856 86.006 100 1780.0 6393 891 13-Oct-2010 1063 4 30 B 3046 Lumbricus terrestris 83.521 83.218 83.127 83.289 100 1479.0 6394 892 13-Oct-2010 1063 3 12 B 3047 Lumbricus terrestris 98.056 97.643 97.756 97.818 100 2430.0 6395 893 13-Oct-2010 1063 3 13 B 3048 Lumbricus terrestris 103.373 103.324 103.310 103.336 100 3126.0 6396 894 13-Oct-2010 1063 3 14 B 3049 Lumbricus terrestris 125.305 125.901 125.658 125.621 75 3395.0 6398 895 13-Oct-2010 1064 9 06 B 3050 Amynthas spp 73.773 73.537 73.903 73.738 100 1053.0 6400 896 15-Oct-2010 1067 9 19 B 3051 Lumbricus terrestris 78.695 78.350 78.270 78.438 100 1575.0 6401 897 14-Oct-2010 1083 2 15 B 3052 x Aporrectodea spp 70.032 69.649 69.967 69.883 150 579.3 6402 Metroparks Field Study: Earthworm Raw Data Specimen Length (mm) Worm ID Identification Img. Wet Cnt Date Vial ID Mag. Wt. Image ID samp 1 samp 2 samp 3 mean Site Mod Num Pre Num Juv. Genus Species (%)** (mg) 898 14-Oct-2010 1083 3 15 B 3053 x Aporrectodea spp 61.509 61.528 61.471 61.503 150 444.1 6403 899 14-Oct-2010 1083 3 16 B 3054 x Aporrectodea spp 65.698 65.639 65.703 65.680 150 635.4 6404 900 14-Oct-2010 1083 3 17 B 3055 x Aporrectodea spp 73.076 73.124 72.939 73.046 150 750.6 6405 901 14-Oct-2010 1083 3 18 B 3056 Lumbricus terrestris 131.642 131.565 131.704 131.637 75 2260.0 6406 902 14-Oct-2010 1083 9 23 B 3057 Aporrectodea longa 63.064 63.173 63.052 63.096 150 444.8 6407 903 07-Oct-2010 1388 2 01 B 3058 x Lumbricus spp 74.400 74.427 74.274 74.367 100 992.8 6408 904 24-Sep-2010 AT02 2 06 B 3059 Lumbricus terrestris 97.642 97.496 97.840 97.659 100 468.0 6409 905 24-Sep-2010 AT01 8 06 B 3060 Lumbricus rubellus 56.602 56.778 56.679 56.686 100 1803.0 6410 906 24-Sep-2010 1018 2 04 B 4001 Amynthas spp 101.054 101.350 101.135 101.180 100 2559.0 6423 max 131.637 800 3395.0 avg 32.171 200 247.1 APPENDIX F 122 min 3.387 75 0.1 APPENDIX G1

Metroparks Field Study: Plot Profile, by Earthworm Species

Adults By Species Juveniles By Species

Site ID Site SamplingInstance

Aporrectodeaspp. Aporrectodeacalignosa Aporrectodealonga Aporrectodearosea Dendrobaenaoctaedra Dendrodrilus rubidus fetida Eisenia Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasionspp. Octolasioncyaneum Octolasiontyrtaeum Amynthas spp. SUBTOTAL Aporrectodeaspp. Aporrectodeacalignosa Aporrectodealonga Aporrectodearosea Dendrobaenaoctaedra Dendrodrilus rubidus fetida Eisenia Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasionspp. Octolasioncyaneum Octolasiontyrtaeum Amynthas spp. SUBTOTAL 1002 1 1 2 3 6 6 1003 1 1 1 2 1 1 2 1004 1 1 1 0 1005 1 0 3 6 1 10 1006 1 1 1 0 1008 1 1 1 2 8 1 11 1009 1 0 0 1010 1 1 19 20 1 1 1011 1 1 1 2 6 27 1 34 1012 1 1 1 4 4 1013 1 2 2 3 3 1014 1 0 0 1015 1 1 1 2 12 3 17 1016 1 2 1 3 2 1 24 27 1017 1 1 1 2 4 6 1018 1 4 4 1 1 2 1019 1 0 3 1 4 1021 1 9 9 1 1 1022 1 1 1 2 7 1 10 1024 1 0 11 2 13 1025 1 3 3 2 21 2 25 1025 2 3 1 2 6 2 9 3 14 1026 1 0 2 2 1028 1 1 1 1 1 1 3 1029 1 0 12 4 1 17 1030 1 2 2 0 1031 1 1 1 2 2 1033 1 0 1 1 1034 1 1 1 14 4 1 19 1035 1 2 2 4 1 1 1038 1 0 0 1039 1 9 9 3 3 1040 1 1 1 2 12 4 6 22 1041 1 6 1 2 9 2 24 1 27 1044 1 16 16 5 5 1045 1 4 4 0 1047 1 1 1 0 1048 1 1 1 0 1050 1 6 1 7 2 7 1 10 1051 1 1 1 1 3 2 2 1053 1 0 0 1054 1 5 5 0 1055 1 1 1 4 1 7 32 1 33 1058 1 5 2 4 11 1 18 2 21 1060 1 7 7 1 1 1063 1 9 7 16 24 28 52 1064 1 5 6 2 13 4 4 1067 1 14 1 15 35 17 52

123 Metroparks Field Study: Plot Profile, by Earthworm Species

Adults By Species Juveniles By Species

Site ID Site SamplingInstance

Aporrectodeaspp. Aporrectodeacalignosa Aporrectodealonga Aporrectodearosea Dendrobaenaoctaedra Dendrodrilus rubidus fetida Eisenia Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasionspp. Octolasioncyaneum Octolasiontyrtaeum Amynthas spp. SUBTOTAL Aporrectodeaspp. Aporrectodeacalignosa Aporrectodealonga Aporrectodearosea Dendrobaenaoctaedra Dendrodrilus rubidus fetida Eisenia Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasionspp. Octolasioncyaneum Octolasiontyrtaeum Amynthas spp. SUBTOTAL 1068 1 5 5 9 1 10 1070 1 1 1 2 0 1071 1 1 1 0 1072 1 1 1 1 1 1072 2 5 5 2 2 1074 1 0 0 1083 1 1 2 1 4 45 23 1 69 1136 1 0 0 1376 1 0 0 1388 1 1 1 2 6 1 9 3420 1 0 5 5 3484 1 0 0 3596 1 0 3 3 3668 1 2 2 39 17 56 3732 1 0 0 AT01 1 3 1 4 2 1 3 AT02 1 1 1 2 2 2 4 Total 0 32 1 1 24 14 1 0 28 19 0 2 19 82 223 285 0 0 0 9 0 0 306 0 0 29 0 0 0 629

124 Metroparks Field Study: Earthworm Site Profiles, By Species

All By Species

Site ID Site SamplingInstance

Species(byspecies) Richness

Aporrectodeaspp. Aporrectodeacalignosa Aporrectodealonga Aporrectodearosea Dendrobaenaoctaedra Dendrodrilus rubidus fetida Eisenia Lumbricus spp. Lumbricus rubellus Lumbricus terrestris Octolasionspp. Octolasioncyaneum Octolasiontyrtaeum Amynthas spp. TOTAL 1002 1 6 1 2 9 2 1003 1 1 1 1 1 4 2 1004 1 1 1 1 1005 1 3 6 1 10 3 1006 1 1 1 1 1008 1 2 1 8 1 12 4 1009 1 0 0 1010 1 1 1 19 21 3 1011 1 6 27 1 1 1 36 3 1012 1 5 5 1 1013 1 2 3 5 2 1014 1 0 0 1015 1 2 12 1 3 18 3 1016 1 2 1 24 2 1 30 4 1017 1 2 4 1 7 2 1018 1 1 1 4 6 3 1019 1 3 1 4 2 1021 1 1 9 10 2 1022 1 2 7 1 1 11 3 1024 1 11 2 13 2 1025 1 2 21 3 2 28 3 1025 2 2 3 1 9 3 2 20 4 1026 1 2 2 1 1028 1 1 1 1 1 4 3 1029 1 12 4 1 17 3 1030 1 2 2 1 1031 1 2 1 3 2 1033 1 1 1 1 1034 1 14 4 1 1 20 3 1035 1 1 2 2 5 2 1038 1 0 0 1039 1 3 9 12 2 1040 1 12 1 4 6 1 24 4 1041 1 2 6 1 24 2 1 36 5 1044 1 5 16 21 2 1045 1 4 4 1 1047 1 1 1 1 1048 1 1 1 1 1050 1 2 6 7 1 1 17 4 1051 1 1 2 1 1 5 3 1053 1 0 0 1054 1 5 5 1 1055 1 32 1 1 1 4 1 40 4 1058 1 1 5 18 2 2 4 32 3 1060 1 1 7 8 2 1063 1 24 9 28 7 68 2 1064 1 5 4 6 2 17 3 1067 1 35 14 17 1 67 2

125 AT02 AT01 3732 3668 3596 3484 3420 1388 1376 1136 1083 1074 1072 1072 1071 1070 1068

Total Site ID

1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 Sampling Instance Metroparks Field Study: Earthworm Site Profiles, By Species By Field Site Study: Profiles, Earthworm Metroparks 285 39 45

3 5 2 9 Aporrectodea spp. 32 Aporrectodea calignosa

1 1 Aporrectodea longa 1 1 Aporrectodea rosea 33 3 5 5 1 1 Dendrobaena octaedra 14

Dendrodrilus rubidus All By Species

1 Eisenia fetida 306 17 23

2 1 6 2 1 1 Lumbricus spp. 28 1 2 Lumbricus rubellus 19 1 1 Lumbricus terrestris 29 1 1 Octolasion spp.

2 Octolasion cyaneum 19 2 1 Octolasion tyrtaeum 82 1 5 Amynthas spp. 126 852 58 10 73 15 0 3 0 5 0 0 0 7 2 1 2 6 7 TOTAL 0 3 1 0 1 3 0 0 4 0 2 2 1 2 3 2 2 Species Richness (by species) APPENDIX G2

Metroparks Field Study: Plot Profile, by Earthworm Genus

Adults by Genus Juveniles by Genus All by Genus

Site ID Sampling Instance

SpeciesRichness Genus) (by

Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas SUBTOTAL Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas SUBTOTAL Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas TOTAL 1002 1 3 3 6 6 9 9 1 1003 1 1 1 2 1 1 11 11 2 13 2 1004 1 1 1 0 1 1 1 1005 1 0 3 6 1 10 3 6 1 10 3 1006 1 1 1 0 1 1 1 1008 1 1 1 2 8 1 11 2 1 8 1 12 4 1009 1 0 0 0 1010 1 1 19 20 1 1 1 1 19 21 3 1011 1 1 1 2 6 27 1 34 6 28 2 36 3 1012 1 1 1 4 4 5 5 1 1013 1 2 2 3 3 2 3 5 2 1014 1 0 0 0 1015 1 1 1 2 12 3 17 2 13 3 18 3 1016 1 2 1 3 2 1 24 45 2 1 26 1 48 4 1017 1 1 1 2 4 6 2 5 7 2 1018 1 4 4 1 1 2 1 1 4 6 3 1019 1 0 3 1 4 3 1 4 2 1021 1 9 9 1 1 1 9 10 2 1022 1 1 1 2 7 1 10 2 8 1 11 3 1024 1 0 11 2 13 11 2 13 2 1025 1 3 3 2 21 2 25 2 24 2 28 3 1025 2 3 1 2 6 2 9 3 14 5 1 9 5 20 4 1026 1 0 2 2 2 2 1 1028 1 1 1 1 1 1 3 1 1 2 4 3 1029 1 0 12 4 1 17 12 4 1 17 3 1030 1 2 2 0 2 2 1 1031 1 1 1 2 2 2 1 3 2 1033 1 0 1 1 1 1 1 1034 1 1 1 14 4 1 19 14 4 2 20 3 1035 1 2 2 4 1 10 12 2 14 2 1038 1 0 0 0 1039 1 9 9 3 3 3 9 12 2 1040 1 1 1 2 12 4 6 22 12 1 4 7 24 4 1041 1 6 1 2 9 2 24 1 27 2 6 1 26 1 36 5 1044 1 16 16 5 5 5 16 21 2 1045 1 4 4 0 4 4 1 1047 1 1 1 0 1 1 1 1048 1 1 1 0 1 1 1 1050 1 6 1 7 2 7 1 10 2 6 8 1 17 4 1051 1 1 2 3 2 2 1 4 5 2 1053 1 0 0 0 1054 1 5 5 0 5 5 1 1055 1 1 5 1 7 32 1 42 33 15 1 49 3 1058 1 5 2 4 11 1 18 2 30 15 2 6 41 3 1060 1 7 7 1 1 1 7 8 2 1063 1 9 7 16 24 28 52 33 35 68 2

127 Metroparks Field Study: Plot Profile, by Earthworm Genus

Adults by Genus Juveniles by Genus All by Genus

Site ID Sampling Instance

SpeciesRichness Genus) (by

Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas SUBTOTAL Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas SUBTOTAL Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus Octolasion Amynthas TOTAL 1064 1 5 6 2 13 4 4 5 1 2 17 3 1067 1 14 1 15 35 17 52 49 18 67 2 1068 1 5 5 9 1 10 9 1 5 15 3 1070 1 1 1 2 0 1 1 2 2 1071 1 1 1 0 1 1 1 1072 1 1 1 1 1 1 1 2 2 1072 2 5 5 2 2 5 2 7 2 1074 1 0 0 0 1083 1 1 3 4 45 23 1 69 46 26 1 73 3 1136 1 0 0 0 1376 1 0 0 0 1388 1 1 1 2 6 1 9 3 6 1 10 3 3420 1 0 5 5 5 5 1 3484 1 0 0 0 3596 1 0 3 3 3 3 1 3668 1 2 2 39 17 56 39 17 2 58 3 3732 1 0 0 0 AT01 1 3 1 4 2 1 3 5 2 7 2 AT02 1 1 1 2 2 2 4 3 3 6 2 Total 34 24 14 1 47 21 82 223 312 9 0 0 333 29 0 683 346 33 14 1 380 50 82 906

128 APPENDIX H

Metroparks Field Study: Litter Data

Weight (g)

Wet Dry

Site ID Site Module Samp.Inst. Collection Date Moisture Cnt Total Sample Total Sample 001 1002 2 1 20-Sep-2010 54.57 45.48 45.57 37.98 16.49% 002 1003 2 1 20-Sep-2010 34.89 34.89 22.96 22.96 34.19% 003 1004 1 1 22-Sep-2010 57.80 57.80 25.56 25.56 55.78% 004 1005 2 1 20-Sep-2010 42.93 42.93 34.25 34.25 20.22% 005 1006 2 1 20-Sep-2010 269.04 186.31 114.41 79.23 57.47% 006 1008 2 1 21-Sep-2010 55.60 55.60 31.57 31.57 43.22% 007 1009 2 1 20-Sep-2010 84.39 84.39 55.76 55.76 33.93% 008 1010 2 1 20-Sep-2010 131.28 100.69 80.80 61.97 38.45% 009 1011 n/a 1 22-Sep-2010 n/a n/a n/a n/a n/a 010 1012 2 1 22-Sep-2010 165.87 99.40 74.76 44.80 54.93% 011 1013 1 1 21-Sep-2010 30.53 30.53 27.24 27.24 10.78% 012 1014 1 1 21-Sep-2010 84.35 84.35 52.68 52.68 37.55% 013 1015 2 1 23-Sep-2010 93.98 93.98 36.97 36.97 60.66% 014 1016 n/a 1 2-Oct-2010 88.98 88.98 33.70 33.70 62.13% 015 1017 2 1 22-Sep-2010 73.65 73.65 62.98 62.98 14.49% 016 1018 2 1 24-Sep-2010 51.68 51.68 36.56 36.56 29.26% 017 1019 2 1 21-Sep-2010 30.63 30.63 27.96 27.96 8.72% 018 1021 2 1 24-Sep-2010 38.86 38.86 25.36 25.36 34.74% 019 1022 2 1 20-Sep-2010 72.89 42.14 56.92 32.91 21.90% 020 1024 1 1 21-Sep-2010 247.00 69.12 170.49 47.71 30.98% 021 1025 2 1 23-Sep-2010 54.92 54.92 25.99 25.99 52.68% 022 1025 2 2 12-Oct-2010 92.17 70.00 61.02 46.34 33.80% 023 1026 2 1 21-Sep-2010 164.08 71.76 127.98 55.97 22.00% 024 1028 2 1 22-Sep-2010 72.45 72.45 35.36 35.36 51.19% 025 1029 2 1 23-Sep-2010 58.49 58.49 23.93 23.93 59.09% 026 1030 4 1 21-Sep-2010 14.09 14.09 11.12 11.12 21.08% 027 1031 n/a 1 22-Sep-2010 170.42 88.94 88.97 46.43 47.80% 028 1033 n/a 1 22-Sep-2010 88.10 88.10 42.90 42.90 51.31% 029 1034 1 1 24-Sep-2010 51.31 51.31 36.15 36.15 29.55% 030 1035 2 1 21-Sep-2010 50.13 50.13 36.04 36.04 28.11% 031 1038 2 1 24-Sep-2010 146.57 75.58 105.19 54.24 28.23% 032 1039 2 1 20-Sep-2010 59.55 59.55 36.46 36.46 38.77% 033 1040 n/a 1 22-Sep-2010 77.93 77.93 49.38 49.38 36.64% 034 1041 2 1 23-Sep-2010 147.65 78.04 81.34 42.99 44.91% 035 1044 n/a 1 30-Sep-2010 22.18 22.18 9.59 9.59 56.76% 036 1045 1 23-Sep-2010 n/a n/a n/a n/a n/a 037 1047 2 1 22-Sep-2010 91.26 91.26 43.02 43.02 52.86% 038 1048 2 1 13-Oct-2010 149.80 70.83 86.46 40.88 42.28% 039 1050 2 1 5-Oct-2010 393.54 393.54 118.42 118.42 69.91% 040 1051 2 1 5-Oct-2010 128.88 128.88 37.78 37.78 70.69% 041 1053 2 1 24-Sep-2010 48.94 48.94 39.06 39.06 20.19% 042 1054 2 1 5-Oct-2010 41.01 41.01 11.84 11.84 71.13% 043 1055 2 1 15-Oct-2010 112.89 112.89 46.52 46.52 58.79% 044 1058 9 1 5-Oct-2010 211.78 211.78 57.07 57.07 73.05% 045 1060 n/a 1 30-Sep-2010 228.38 228.38 86.52 86.52 62.12% 046 1063 n/a 1 13-Oct-2010 n/a n/a n/a n/a n/a

129 Metroparks Field Study: Litter Data

Weight (g)

Wet Dry

Site ID Site Module Samp.Inst. Collection Date Moisture Cnt Total Sample Total Sample 047 1064 n/a 1 13-Oct-2010 n/a n/a n/a n/a n/a 048 1067 n/a 1 15-Oct-2010 274.81 197.02 54.25 38.89 80.26% 049 1068 2 1 13-Oct-2010 69.64 69.64 55.02 55.02 20.99% 050 1070 2 1 14-Oct-2010 155.11 155.11 52.13 52.13 66.39% 051 1071 2 1 14-Oct-2010 78.97 78.97 24.33 24.33 69.19% 052 1072 2 1 21-Sep-2010 46.06 46.06 40.57 40.57 11.92% 053 1072 2 2 7-Oct-2010 173.21 173.21 74.74 74.74 56.85% 054 1074 1 1 14-Oct-2010 10.99 10.99 5.21 5.21 52.59% 055 1083 2 1 14-Oct-2010 111.23 111.23 50.00 50.00 55.05% 056 1136 2 1 12-Oct-2010 131.19 131.19 96.46 96.46 26.47% 057 1376 9 1 7-Oct-2010 196.68 196.68 90.48 90.48 54.00% 058 1388 2 1 7-Oct-2010 202.77 202.77 102.25 102.25 49.57% 059 3420 1 1 7-Oct-2010 190.61 190.61 82.36 82.36 56.79% 060 3484 2 1 7-Oct-2010 241.53 96.15 101.71 40.49 57.89% 061 3596 2 1 7-Oct-2010 190.12 190.12 72.56 72.56 61.83% 062 3668 2 1 7-Oct-2010 41.46 41.46 22.15 22.15 46.58% 063 3732 1 1 7-Oct-2010 69.30 69.30 29.79 29.79 57.01% 064 AT01 8 1 24-Sep-2010 99.02 57.40 93.09 53.96 5.99% 065 AT02 n/a 1 24-Sep-2010 n/a n/a n/a n/a n/a

130 APPENDIX I

Earthworm Community - Plant Community Interactions The following are Pearson correlations that yielded relationships of interest. Abundances and biomasses are natural log transformed; FQAI, percent sensitive plants, tolerant plants, and bare ground are arcsine-square root transformed. a) Earthworm Abundance vs. Plant Community Metrics.

Sensitive Plants Tolerant Bare FQAI (%) Plants (%) Ground (%) -2 (m ) r P r P r P r P Aporrectodea -0.29 0.03 -0.37 0.01 0.25 0.07 0.21 0.13 Dendrobaena -0.02 0.92 0.18 0.20 -0.14 0.32 -0.10 0.47 Dendrodrilus -0.18 0.20 0.10 0.47 -0.09 0.51 0.12 0.37 Eisenia 0.14 0.30 0.07 0.59 -0.09 0.54 0.05 0.75 Lumbricus -0.24 0.09 -0.06 0.65 0.19 0.17 0.12 0.39 Octolasion 0.01 0.95 -0.22 0.11 0.19 0.18 0.29 0.03 Amynthas 0.13 0.37 -0.09 0.53 -0.16 0.25 0.17 0.23 N=54

b) Earthworm Biomass by Genus vs. Plant Community Metrics. FQAI Sensitive Plants Tolerant Bare (m-2) r P r P r P r P Aporrectodea -0.30 0.02 -0.40 0.003 0.30 0.03 0.22 0.11 Dendrobaena -0.04 0.80 0.21 0.13 -0.17 0.23 -0.12 0.38 Dendrodrilus 0.17 0.23 0.09 0.51 -0.07 0.61 0.21 0.12 Eisenia 0.14 0.30 0.07 0.59 -0.09 0.54 0.05 0.75 Lumbricus -0.28 0.04 0.02 0.86 0.21 0.14 0.06 0.69 Octolasion 0.03 0.82 -0.12 0.38 0.23 0.09 0.17 0.24 Amynthas 0.14 0.30 -0.06 0.67 -0.17 0.22 -0.18 0.21 N=54

c) Earthworm Biomass by Ecological Group vs. Plant Community Metrics. FQAI Sensitive Plants Tolerant Bare (mg/m-2) r P r P r P r P Epigeic -0.31 0.02 -0.26 0.06 0.18 0.18 0.18 0.21 Endogeic -0.26 0.06 0.04 0.77 0.18 0.19 0.11 0.44 Anecic 0.14 0.30 -0.06 0.67 -0.17 0.22 -0.18 0.21 N=54

131 APPENDIX J

Earthworm Community - Invertebrate Community / Litter Interactions The following are Pearson correlations that yielded relationships of interest. Abundances and biomasses are natural log transformed. Evenness is arcsine-square root transformed. a1) Earthworm Abundance vs. Invertebrate Community Metrics. Dry Litter Abundance Mass (m-2) Evenness (mg/m2) -2 (m ) r P r P r P Aporrectodea -0.08 0.55 -0.19 0.17 -0.09 0.53 Dendrobaena -0.07 0.59 0.04 0.79 0.30 0.03 Dendrodrilus 0.17 0.21 0.03 0.86 -0.03 0.84 Eisenia 0.11 0.44 0.06 0.66 -0.05 0.72 Lumbricus -0.14 0.33 0.07 0.63 0.001 0.99 Octolasion -0.16 0.25 0.10 0.46 -0.05 0.74 Amynthas 0.11 0.42 -0.05 0.70 -0.003 0.98 ALL Genera -0.13 0.33 -0.02 0.86 0.02 0.88 N=58 a2) Earthworm Abundance vs. Invertebrate Community Metrics.

Acari Collembola Coleoptera Hymenoptera Araneae (m-2) (m-2) (m-2) (m-2) (m-2) -2 (m ) r P r P r P r P r P Aporrectodea -0.21 0.14 -0.03 0.81 0.04 0.77 0.05 0.74 0.00 0.99 Dendrobaena 0.10 0.47 -0.15 0.29 -0.05 0.73 -0.003 0.99 -0.19 0.17 Dendrodrilus -0.01 0.94 0.11 0.44 0.19 0.16 -0.12 0.37 0.44 0.001 Eisenia -0.14 0.33 0.03 0.83 0.16 0.25 -0.21 0.12 0.34 0.01 Lumbricus -0.09 0.53 -0.15 0.27 -0.02 0.91 -0.05 0.73 0.23 0.10 Octolasion -0.19 0.18 -0.14 0.31 -0.12 0.39 0.03 0.86 0.08 0.55 Amynthas 0.04 0.80 0.06 0.68 0.16 0.26 -0.08 0.59 0.05 0.73 ALL Genera -0.13 0.34 -0.15 0.27 0.05 0.70 -0.02 0.91 0.16 0.24 N=58

132 Earthworm Community - Invertebrate Community / Litter Interactions b1) Earthworm Biomass by Genus vs. Invertebrate Community Metrics. Dry Litter Abundance Mass (m-2) Evenness (mg/m2) -2 (m ) r P r P r P Aporrectodea 0.06 0.67 0.13 0.340 -0.04 0.76 Dendrobaena 0.08 0.55 0.01 0.92 0.18 0.19 Dendrodrilus 0.20 0.13 -0.11 0.41 0.11 0.41 Eisenia 0.13 0.33 0.03 0.85 0.11 0.43 Lumbricus -0.01 0.94 0.20 0.14 0.06 0.67 Octolasion -0.08 0.54 0.16 0.23 -0.26 0.05 Amynthas 0.07 0.59 0.10 0.450 -0.25 0.05 ALL Genera 0.09 0.51 0.27 0.04 -0.17 0.19 N=58 b2) Earthworm Biomass by Genus vs. Invertebrate Community Metrics.

Araneae Acari Collembola Coleoptera Hymenoptera (m-2) (m-2) (m-2) (m-2) (m-2) -2 (m ) r P r P r P r P r P Aporrectodea -0.004 0.98 0.08 0.53 -0.01 0.94 0.19 0.16 -0.02 0.87 Dendrobaena 0.18 0.18 0.09 0.51 0.04 0.77 0.08 0.57 -0.03 0.82 Dendrodrilus 0.17 0.22 0.21 0.12 0.03 0.83 0.25 0.06 0.25 0.06 Eisenia 0.21 0.11 0.01 0.47 0.11 0.42 0.17 0.20 0.31 0.02 Lumbricus -0.06 0.63 0.03 0.80 -0.07 0.60 0.26 0.05 -0.03 0.84 Octolasion -0.04 0.78 -0.04 0.79 -0.05 0.69 0.21 0.12 -0.17 0.20 Amynthas 0.01 0.94 -0.05 0.70 0.26 0.05 -0.15 0.26 0.19 0.16 ALL Genera -0.001 0.99 0.06 0.68 0.09 0.50 0.21 0.11 0.11 0.44 N=58

133 Earthworm Community - Invertebrate Community / Litter Interactions c1) Earthworm Biomass by Ecological Group vs. Invertebrate Community Metrics. Dry Litter Abundance Mass (m-2) Evenness (mg/m2) -2 (AFDM mg/m ) r P r P r P Epigeic 0.10 0.44 0.13 0.34 0.04 0.75 Endogeic -0.02 0.91 0.19 0.15 0.003 0.98 Anecic 0.07 0.59 0.10 0.45 -0.25 0.05 N=58 c2) Earthworm Biomass by Ecological Group vs. Invertebrate Community Metrics.

Araneae Acari Collembola Coleoptera Hymenoptera (m-2) (m-2) (m-2) (m-2) (m-2) -2 (AFDM mg/m ) r P r P r P r P r P Epigeic 0.07 0.59 0.14 0.31 -0.001 0.99 0.23 0.09 0.04 0.79 Endogeic -0.06 0.64 0.05 0.72 -0.01 0.48 0.31 0.02 -0.05 0.74 Anecic 0.01 0.94 -0.05 0.70 0.26 0.05 -0.15 0.26 0.19 0.16 N=58 d) Invertebrate Abundance (m-2) vs. Dry Litter Mass (g/m2) (r=0.39, P=0.002)

134 APPENDIX K

Earthworm Community - Earthworm Community Interactions The following are Pearson correlations that yielded relationships of interest. Abundances and biomasses are natural log transformed. a) Earthworm Interactions for Abundance by Genus.

Aporrectodea Dendrobaena Dendrodrilus Eisenia Lumbricus (m- Octolasion (m-2) (m-2) (m-2) (m-2) 2) (m-2)

-2 (m ) r P r P r P r P r P r P Aporrectodea Dendrobaena -0.25 0.06 Dendrodrilus -0.10 0.46 -0.12 0.38 Eisenia 0.01 0.97 -0.06 0.66 0.68* <0.001 Lumbricus 0.52 <0.001 0.003 0.98 0.19 0.18 0.21 0.13 Octolasion 0.36 0.01 -0.15 0.29 -0.07 0.60 0.04 0.76 0.48 <0.001 Amynthas -0.15 0.29 -0.22 0.11 0.09 0.50 -0.07 0.63 -0.47 <0.001 -0.37 0.01 N=54 * This is an artifact of the statistical program: it is not possible to produce a correlation with a single data point (Eisenia, N=1). b) Earthworm Interactions for Biomass by Genus.

Dendrob. Eisenia Octolasion Aporrect. Dendrodrilus Lumbricus (AFDM (AFDM (AFDM (AFDM mg/m2) (AFDM mg/m2) (AFDM mg/m2) mg/m2) mg/m2) mg/m2)

2 (AFDM mg/m ) r P r P r P r P r P r P Aporrectodea Dendrobaena -0.22 0.11 Dendrodrilus -0.12 0.38 -0.14 0.33 Eisenia -0.01 0.95 -0.06 0.66 0.49* <0.001 Lumbricus 0.46 0.001 0.170 0.23 0.03 0.86 0.09 0.51 Octolasion 0.30 0.03 -0.13 0.35 -0.16 0.25 -0.13 0.37 0.35 0.01 Amynthas -0.19 0.16 -0.24 0.09 0.11 0.43 -0.07 0.61 -0.56 <0.001 -0.41 0.002 N=54 * This is an artifact of the statistical program: it is not possible to produce a correlation with a single data point (Eisenia, N=1). c) Earthworm InteractionsEpigeic for Biomass byEndogeic Ecological Group. (AFDM (AFDM mg/m2) mg/m2) (AFDM mg/m2) r P r P Epigeic Endogeic 0.48 <0.001 Anecic -0.24 0.08 -0.64 <0.001 N=54

d) T-tests between Plots with and without Dendrobaena by Abundance. Genus* P Aporrectodea 0.16 Dendrodrilus 0.05 Lumbricus 0.82 Octolasion 0.90

Amynthas <0.001 OtherGenera Dendrobaena *Eisenia (N=1) excluded from analysis due to insufficient representation. N = 12 42

135 APPENDIX L

Earthworm Community - Soil Community Interactions The following are Pearson correlations that yielded relationships of interest. Biomasses and ppm quantities are natural log transformed. Percentages are arcsine-square root transformed. a1) Earthworm Biomass by Genus vs. Soil Parameters 1.

Organic Total Total Matter Carbon (%) Nitrogen (%) (%) pH -2 (m ) r P r P r P r P Aporrectodea 0.23 0.09 -0.33 0.01 -0.23 0.09 0.17 0.22 Dendrobaena 0.34 0.01 0.26 0.06 0.35 0.01 -0.42 0.002 Dendrodrilus 0.07 0.64 0.14 0.32 0.02 0.87 -0.10 0.49 Eisenia 0.05 0.71 0.08 0.56 0.02 0.86 0.12 0.41 Lumbricus -0.27 0.05 -0.41 0.002 -0.11 0.42 -0.20 0.15 Octolasion -0.15 0.27 -0.17 0.21 -0.13 0.36 0.09 0.52 Amynthas -0.06 0.69 0.09 0.53 -0.13 0.36 0.13 0.36 N=54 a2) Earthworm Biomass by Genus vs. Soil Parameters 2.

Phosphorus, Phosphorus, Potassium Magnesium P1 (ppm) P2 (ppm) (ppm) (ppm) Calcium (ppm) -2 (m ) r P r P r P r P r P Aporrectodea -0.24 0.09 0.06 0.68 -0.04 0.75 0.05 0.71 0.03 0.83 Dendrobaena -0.01 0.97 -0.09 0.52 -0.09 0.54 -0.36 0.01 -0.44 0.001 Dendrodrilus -0.12 0.38 -0.05 0.72 -0.13 0.36 -0.05 0.75 -0.001 0.99 Eisenia -0.09 0.50 0.06 0.67 0.01 0.95 0.14 0.31 0.16 0.25 Lumbricus -0.27 0.05 -0.17 0.23 -0.15 0.28 -0.26 0.06 -0.35 0.01 Octolasion -0.19 0.18 -0.06 0.65 0.09 0.53 0.13 0.35 0.08 0.59 Amynthas 0.17 0.23 0.13 0.36 -0.11 0.44 0.15 0.27 0.26 0.05 N=54

136 Earthworm Community - Soil Community Interactions b1) Earthworm Biomass by Ecological Group vs. Soil Parameters 1.

Organic Total Total Matter Carbon (%) Nitrogen (%) (%) pH -2 (m ) r P r P r P r P Epigeic -0.34 0.01 -0.36 0.01 -0.24 0.08 -0.05 0.71 Endogeic -0.20 0.15 -0.28 0.04 -0.21 0.13 0.16 0.26 Anecic -0.16 0.25 -0.19 0.18 -0.14 0.30 -0.14 0.33 N=54 b2) Earthworm Biomass by Ecological Group vs. Soil Parameters 2.

Phosphorus, Phosphorus, Potassium Magnesium P1 (ppm) P2 (ppm) (ppm) (ppm) Calcium (ppm) -2 (m ) r P r P r P r P r P Epigeic -0.18 0.21 -0.04 0.78 -0.23 0.10 -0.08 0.59 -0.10 0.50 Endogeic -0.27 0.05 -0.05 0.73 -0.04 0.76 0.10 0.50 0.06 0.67 Anecic -0.06 0.69 -0.13 0.36 -0.05 0.70 -0.16 0.24 0.21 0.13 N=54 c) Soil Chemistry Comparisons between: Pa, plots with and without earthworms and Pb, plots with Amynthas and plot with earthworms other than Amynthas.

Pa Pb Total Carbon (%) 0.40 0.54 Total Nitrogen (%) 0.89 0.67 d) T-test between Plots with Dendrobaena Organic Matter (%) 0.08 0.51 and those with Other Genera by Soil pH. pH 0.17 0.58 P < 0.001 Phosphorus, Bray-P1 (ppm) 0.98 0.19 Phosphorus, Bray-P2 (ppm) 0.92 0.77 Calcium (ppm) 0.10 0.25 Magnesium (ppm) 0.01 0.45

Potassium (ppm) 0.92 0.73

Earthworms NoEarthworms Amynthas Other Genera N = 54 9 12 42

137 APPENDIX M

Total 12 88 183 7 78 74 27 65 Total Types 5 12 7 5 6 4 4 12 Unidentified winged pupa malacostraca eumalacostraca isopoda sow bugs 1 insecta psocoptera barklouse insecta hymenoptera tenthredinidae saw fly insecta hymenoptera formicidae ant 1 1 4 3 insecta hymenoptera wasp 3 1 1 insecta hymenoptera wasp/bee/ant 1 insecta hemiptera tingidae lace bug insecta hemiptera true bug 1 insecta hemiptera locust-form insecta hemiptera nymph 1 5 15 insecta hemiptera true bug 2 2 insecta diptera fly larva 1 1 insecta diptera chironomidae chironomid larva insecta diptera adult midge insecta diptera midge 1 insecta pterygota thysanoptera thrips 1 insecta pterygota lepidoptera moth 2 insecta pterygota lepidoptera moth larva insecta pterygota lepidoptera catepillar insecta pterygota lepidoptera moth 1 2 1 insecta pterygota coleoptera staphylinidae rove beetle insecta pterygota coleoptera nitulidae sap beetle 1 1 insecta pterygota coleoptera elateridae click beetle insecta pterygota coleoptera derodontidae fungus beetle 2 1 insecta pterygota coleoptera wevil 7 insecta pterygota coleoptera scaraboid beetle 2 insecta pterygota coleoptera beetle larva 2 insecta pterygota coleoptera beetle 1 1 2 4 insecta dermaptera earwig gastropoda shelled snail 1 entognatha collembola sminthuridae globular springtail entognatha collembola snowflea springtail entognatha collembola springtail 3 4 24 1 3 4 7 4 entognatha diplura campodea diplurans diplopoda millipede worm chilopoda lithobiomorpha stone centipede 1 chilopoda geophilomorpha soil centipede 1 arachnida dromopoda pseudoscorpiones pseudoscorpion 1 1 arachnida dromopoda opilliones harvestmen arachnida acari oribatid mite 57 132 2 39 65 15 47 arachnida acari gamasid mite 5 1 32 arachnida acari mite 4 1 arachnida araneae spider 2 9 1 1006 1008 1009 1010 1002 1003 1004 1005 Site ID Site class order genus family subclass 005 006 007 008 001 002 003 004 Count Metroparks Field Study: Invertebrate Raw Data Invertebrate Study: Field Metroparks

138 Metroparks Field Study: Invertebrate Raw Data

snowflea springtail

globular springtail

chironomid larva

scaraboid beetle

wasp/bee/ant 1 wasp/bee/ant

stone centipedestone

pseudoscorpion

Total Types Total

soil centipede

fungus beetlefungus

gamasid mitegamasid

oribatid mite

winged pupa

shelled snail

harvestmen

adult midge

beetle larva

locust-form

rove beetle rove

click beetle

moth larvamoth

sap sap beetle

true bug 2 true bug 1 true

barklouse

millipede diplurans springtail catepillar bugs sow

lace bug

beetle 1

midge 1 midge fly larva

moth 1 moth 2 moth

nymph

saw flysaw

earwig

Total Total

spider

worm

thrips

wevil

wasp

mite

ant Count Site ID

12 15 009 1012 1 1 1 4

12 010 1013 3 5 2 2 4

38 44 011 1014 2 2 1 1 5

24 30 012 1015 1 2 1 1 1 6

16 013 1016 8 1 3 1 2 1 6

16 18 014 1017 2 2

10 26 015 1018 3 4 6 1 3 1 1 3 3 1

016 1019 1 1 1 1 4 4

017 1021 2 2 1 3 5

20 11 37 018 1022 1 2 1 1 2 5 1 2 1 1

11 20

2 3 2 1 1 2 3 1 1 2 2

139 019 1024

11 37 17 10 82 020 1025 2 4 3 3 2 2 1

56 66 021 1026 1 1 1 1 3 2 1 8

24 29 022 1028 1 1 2 1 5

023 1029 1 1 2 3 4

11 16 024 1030 2 1 1 1 5

44 67 025 1031 4 9 1 1 3 4 1 8

116

12 69 23 11 026 1033 4 1 1 2 1 1 1 1

18 027 1034 2 8 5 1 1 1 6

25 41 028 1035 5 1 2 3 3 1 1 8

029 1038 2 2 1 3 5

15 24 21 73 030 1039 6 1 1 4 1 8

102 113 031 1040 2 1 5 1 2 6

50 14 14 10 95 032 1041 5 2 1 5 2 1 1

12 033 1044 1 3 3 4 1 5

17 034 1047 1 8 1 5 1 1 6

46 18 12 85 035 1048 2 1 1 1 2 2 9

14 13 16 57 036 1050 2 6 1 1 3 1 9 Metroparks Field Study: Invertebrate Raw Data

snowflea springtail

globular springtail

chironomid larva

scaraboid beetle

wasp/bee/ant 1 wasp/bee/ant

stone centipedestone

pseudoscorpion

Total Types Total

soil centipede

fungus beetlefungus

gamasid mitegamasid

oribatid mite

winged pupa

shelled snail

harvestmen

adult midge

beetle larva

locust-form

rove beetle rove

click beetle

moth larvamoth

sap sap beetle

true bug 2 true bug 1 true

barklouse

millipede diplurans springtail catepillar bugs sow

lace bug

beetle 1

midge 1 midge fly larva

moth 1 moth 2 moth

nymph

saw flysaw

earwig

Total Total

spider

worm

thrips

wevil

wasp

mite

ant Count Site ID

15 037 1051 3 4 7 1 4

12 038 1053 3 2 7 3

32 039 1054 6 6 5 5 1 1 8 7

10 19 14 14 58 040 1055 2 1 1 4 1 1 1 1 1 1 1

10 26 041 1058 1 5 1 8 3 1 1 2 1 3

101

37 39 13 042 1060 3 5 1 1 1 1 9

10 44 10 82 043 1067 5 5 8 6

103

56 24 044 1068 7 2 3 9 2 7

15 48 82 045 1070 8 5 4 1 1 7

32 18 67 046 1071 8 5 2 1 1 7

140 18 42 047 1072 1 8 7 1 3 2 1 1 9

048 1074 1 1 1

81 93 049 1083 1 2 1 1 1 3 1 2 9

128

60 36 13 050 1136 9 9 1 6

102 161

10 15 21 10 051 1376 2 2 2 1 4 2

13 052 1388 1 5 1 1 3 1 1 7

11 19 39 053 3420 1 5 1 2 6

16 054 3484 1 3 9 1 1 1 6

106 181

38 20 10 055 3596 2 4 1 1 1 2 6

12 15 36 056 3668 1 1 3 1 3 7

14 27 46 057 3732 1 3 1 5

110 220

13 65 14 058 AT01 2 9 2 3 4 1 2 4 3 1 1

1727 3211

300 466

68 35 13 37 47 29 94 71 44 30 13 14 13 33 12 14 64 29 TOTAL 8 1 4 8 5 1 3 1 2 7 3 1 0 0 3 1 1 5 0 0 1 1 1 1 Earthworm Identification Table

In Study Setae

Genus Species Family Ecological Group Pigmentation Live color Pairing Location x Aporrectodea calignosa Lumbricidae endogeic none pink nose or tail closely ventral

Aporrectodea tuberculata Lumbricidae endogeic none pink nose or tail closely ventral

Aporrectodea trapezoides Lumbricidae endogeic none pink nose or tail closely ventral

x Aporrectodea longa Lumbricidae endogeic may have light head pigmentation closely ventral

x Aporrectodea rosea Lumbricidae endogeic none very pink nose or tail closely ventral

Allolobophora chlorotica Lumbricidae endogeic none distinct greenish closely ventral

APPENDIX N x Octolasion tyrtaeum Lumbricidae endogeic none grey, blue, or pink widely circumf.

141 x Octolasion cyaneum Lumbricidae endogeic none widely circumf.

x Dendrobaena octaedra Lumbricidae epigeic strongly: red to dark brown separate circumf.

moderate: red to dark brown; less x Dendrodrilus rubidus Lumbricidae epigeic widely circumf. on tail

strongly red-brown back; pale x Lumbricus terrestris Lumbricidae anecic closely ventral yellow, purple irrid belly strongly red-brown back; pale x Lumbricus rubellus Lumbricidae epi-endogeic closely ventral yellow, purple irrid belly

yellow bands between x Eisenia fetida Lumbricidae epigeic strongly red on back closely ventral segments

strongly dark brown back; golden tetraedra Lumbricidae epigeic closely ventral yellow belly

strongly red-brown on back; less on Eiseniella eiseni Lumbricidae epigeic closely ventral belly light or dark; no contrast between x Amynthas spp. Megascolecidae epi-endogeic bristle circumf. back & belly Earthworm Identification Table

In Study Clitellum

Segment Position

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Genus Species Shape qualifier x M G T TG T G Aporrectodea calignosa probable clitellum location bounded in bold

lowercase letters are used to indicate that the landmark may or may not pe present

M = Male Pore Aporrectodea tuberculata M T T T

Aporrectodea trapezoides M G G T TG TG TG

x Aporrectodea longa m M m T T T T TG T TG TG

T =T Tuberculata Pubertatis x Aporrectodea rosea very flared M T T T

Allolobophora chlorotica M T T T

x Octolasion tyrtaeum M T T T T

142 x Octolasion cyaneum M T T T T

x Dendrobaena octaedra m T T T

G = Genital Tumescence x Dendrodrilus rubidus usually M t T T T T T t

x Lumbricus terrestris m M m T T T T

x Lumbricus rubellus m T T T T

x Eisenia fetida M G G G tG TG TG TG tG G

Eiseniella tetraedra M T T T t

Eiseniella eiseni

smooth, x Amynthas spp. … annular Earthworm Identification Table

In Study Clitellum Landmark Config Length (cm) Range

Tuberculata Genital Max Genus Species Pubertatis Tumescence Probocis Lo Hi Prevalence Common Name(s) Comments x Aporrectodea calignosa notched, adult alt seg only epilobic 09 15 most common & widely dist. A. calignosa endogeic complex Aporrectodea tuberculata notched, adult alt & cons segs epilobic 09 15

Angle Worm, Aporrectodea trapezoides unnotched alt & cons segs epilobic 08 14 common & widely dist. endogeic Canadian Gray Worm common in agriculture; less x Aporrectodea longa elliptical alt & cons segs epilobic 09 15 Black Head Worm common in forests less common than other species x Aporrectodea rosea elliptical not pres epilobic 02 05 08 Rose Worm in genus button or less common than Aporrectodea Swamp Worm, prefers wet or Allolobophora chlorotica maybe epilobic 03 07 suckerlike discs & Octolasion Green Worm swampy conditions linear, oval; much less common than clitellum may be x Octolasion tyrtaeum maybe epilobic 03 07 18 contrasts clitellum Aporrectodea; patchy orange, red, or yellow Field Worm 143 puckered appear; clitellum is usually x Octolasion cyaneum maybe epilobic 03 07 18 less common than O. tyrtaeum contrasts yellowish or beige most common & widespread x Dendrobaena octaedra linear, threadlike not pres epilobic 01 03 06 Small Leaf Worm species in world small ovals, much less common than D. x Dendrodrilus rubidus ventral edge, if; 29- not pres epilobic 02 05 09 Small Litter Worm octaedra 30

x Lumbricus terrestris broadly oval maybe tanylobic 09 15 30 very common in N. America Night Crawler flattened tail

broadly oval to x Lumbricus rubellus maybe tanylobic 05 10 15 extremely common Beaver Tail flattened tail slightly notched

Red Wriggler, x Eisenia fetida linear oval if present epilobic 03 13 not found in natural habitats Compost Worm

Small Brown-nosed Eiseniella tetraedra typically broad not usu pres epilobic 02 06 uncommon Litter Worm

Eiseniella eiseni not pres maybe epilobic 03 06 uncommon Brown Litter Worm

nose and tail are x Amynthas spp. not pres not pres 04 20 increasing Alabama Jumpers more pointed