The Rise of Earthworm DNA Barcode in India

Total Page:16

File Type:pdf, Size:1020Kb

The Rise of Earthworm DNA Barcode in India Sci Vis 18 (1), 01—10 (2018) Available at www.sciencevision.org OPEN ACCESS Research Review Oligochaete taxonomy – The rise of earthworm DNA barcode in India H. Lalthanzara1*, Ruth Lalfelpuii1, C. Zothansanga1, M. Vabeiryureilai2, N. Senthil Kumar2, G. Gurusubramanium3 1Department of Zoology, Pachhunga University College, Aizawl 796001, India 2Department of Biotechnology, 3Department of Zoology, Mizoram University, Tanhril 796004, India Oligochaeta is a class of segmented worms under the phylum Annelida that are characterised Received 01 December 2017 Accepted 14 December 2017 by the presence of tiny setae in each body segment. Earthworms are the main members, consisting of approximately 6200 species. Their ecological importance is well known as they *For correspondence : are the major soil macro-fauna; Aristotle had named them as “the intestines of soil”. Classifi- [email protected] cation of earthworms is a controversial issue since the introduction of modern taxonomical system on earthworm by Michaelsen in 1921. This is mainly because conventional identifica- tion using morphological and anatomical characters are complicated and confusing. The key diagnostic features such as the position and structure of the reproductive organs, clitellum and the associated tubercular pubertatis are not always reliable, particularly in different de- velopmental stages, especially when the available specimens are the juveniles. DNA barcod- ing has offered a potential solution, even at the levels of identifying the juveniles or cocoons. Several genes including mitochondrial cytochrome-c oxidase I, 16S, 18S and 28S ribosomal RNAs, and protein-coding histone H3 genes have been introduced in the taxonomy and phy- logeny of earthworm. It is anticipated that DNA barcoding will help conflicting taxonomy and further exploration of species diversity in India. Contact us : [email protected] Key words: Oligochaeta; earthworm; DNA barcode; taxonomy. https://doi.org/10.33493/scivis.18.01.01 Introduction ISSN (print) 0975-6175/(online) 2229-6026. 2018 The Mizo Academy of Sciences. CC BY-SA 4.0 International. 1 Sci Vis 18 (1), 1—10 (2018) Historical Record The Taxonomic Impediment ) Č 2 Sci Vis 18 (1), 1—10 (2018) Modern Molecular Approach 3 Sci Vis 18 (1), 1—10 (2018) DNA Barcoding for Earthworm Species Characterization 4 Sci Vis 18 (1), 1—10 (2018) http://ibol.org/ http://www.barcodinglife.org Earthworm Species Diversity and DNA Barcoding - Indian Scenario 5 Sci Vis 18 (1), 1—10 (2018) worm taxonomy (Oligochaeta, Lumbricidae). Pedobi- ologia 47, 428-433. 12. Michaelsen, W. (1913) Oligochäten vom tropischen und südlich-subtropischen Afrika I. Zoologica Stuttgart 26, 139–170 13. Pickford, G.E. (1937). A Monograph of the Acantho- driline Earthworms of South Africa, Heffer, Cam- bridge. 612 p. 14. Murchie, W.R. (1959). Redescription of Allolobophora muldali Omodco. Ohio Journal of Science, 59, 229-232. 15. Jamieson, B.G.M. (1971). A review of the Megascolecoid References earthworm genera (Oligochaeta) of Australia. Part I. Reclassification and Checklist of the megascolecoid genera of the world. Proc. R. Soc. Qld. 82, 75-86. 1. Lavelle, P. & Spain, A.V. (2001). Soil Ecology. Kluwer 16. Jamieson, B.G.M. (1972). The Australian earthworm Academic Publishers, Dordrecht. genus Spenceriella and description of two new genera 2. Decaens, T., Jimenez, J.J., Gioia, C., Measey, G.J. & (Megascolecidae: Oligochaeta). Mem. Natn. Mus. Viet. Lavelle, P. (2006). The values of soil animals for conser- 33, 73-87 vation biology. European Journal of Soil Biology 42, S23- S38. 17. Zicsi A. (1981) Weitere Angaben zur Lumbriciden- 3. Yeates, G. (2017). Earthworms. Te Ara - the Encyclope- fauna Italiens (Oligochaeta: Lumbricidae) Opusc. Zool. dia of New Zealand, http://www.TeAra.govt.nz/en/ Budapest, 17/18, 157–180. earthworms. 18. Coates, K.A. (1990). Redescription of Aspidodrilus and 4. Blanchart, E., Brauman, A., Brossard, M., Duboisset, A. Pelmatodrilus enchytraeids (Annelida, Oligochaeta) & Feller, C. (2010). Historical approach of the role of ectocommensal on earthworms. Canadian Journal of earthworms and termites in soil functioning. 19th World Zoology, 68, 498-505. Congress of Soil Science, Soil Solutions for a Changing 19. Blakemore, R.J. (1997). Two new genera and some new World 1 – 6 August 2010, Brisbane, Australia. species of Australian earthworms (Acanthodrilidae, 5. Csuzdi, C.S. (2012): Earthworm species, a searchable Megascolecidae: Oligochaeta). Journal of Natural His- database. Opuscula Zoologica (Budapest) 43(1), 97–99. tory 31,1785-1848. 6. Csuzdi, C. & Szlávecz, K. (2016). Earthworm (Clitellata: 20. Blakemore, R.J. (2011). Further records on non-cryptic Megadrili) taxonomy in the last 200 years: A homage to New Zealand earthworms. Zookeys. 160, 23-46. András Zicsi (1928−2015). Opuscula Zoologica (Budapest) 21. Blakemore, R.J. (2012). On Schmarda's lost earthworm 47, 01–07. and some newly found New Zealand species 7. Edwards, C.A. & Lofty, J.R. (1977). The Biology of (Oligochaeta: Megadrilacea: Lumbricidae, Acanthodrili- Earthworms. Chapman and Hall, London, U.K. pp. 42- dae, Octochaetidae, & Megascolecidae s. stricto), Journal 51. of Species Research, 1, 105-132. 8. Bouche, M. (1972). Lombriciens de France. Ecologie et 22. Shen, Huei-Ping, Tsai, Chu-Fa & Tsai, Su-Chen. (2003). Syste´matique, Institut National de Recherches Six new earthworms of the genus Amynthas Agronomiques, Paris. (Oligochaeta: Megascolecidae) from Central Taiwan. 9. Sims, R.W. & Gerard, B.M. (1999). Earthworms. FSC Zoological Studies 42, 479-490. Publications, London, UK. 23. Plisko, J.D. (2007). New species of South African acan- 10. Richard, B., Decaens, T., Rougerie, R., James, S.W., thodriline earthworms of the genera Eodriloides and Porco, D. & Hebert, P.D.N. (2010). Re-integrating Chilota, with a redescription of Chilota quindecimus earthworm juveniles into soil biodiversity studies: spe- (Oligochaeta: Acanthodrilidae). African Invertebrates cies identification through DNA barcoding. Molecular 48, 33–40. Ecological Resource 10, 606-614. 24. Bantaowong, U., Chanabun, R., Piyoros Tongkerd, P., 11. Pop, A.A., Wink, M. & Pop, V.V. (2003). Use of 18S, Sutchari,t .C, James, S.W. & Panha, S. (2011). New earth- 16S rDNA and cytochrome c oxidase sequences in earth- worm species of the genus Amynthas Kinberg, 1867 6 Sci Vis 18 (1), 1—10 (2018) from Thailand (Clitellata, Oligochaeta, Megascolecidae). mtDNA variation: mitochondrial gene trees versus nu- ZooKeys 90, 35–62 clear gene trees. Evolution 49, 718-726. 25. Chanabun, R., Sutcharit, C., Tongkerd, P. & Panha, S. 37. Mindell, D.P., Sorenson, M.D., Huddleston, C., (2013). The semi-aquatic freshwater earthworms of the Miranda, H.C. & Knight, A. (1997). Phylogenetic rela- genus Glyphidrilus Horst, 1889 from Thailand tionships among and within select avian orders based on (Oligochaeta, Almidae) with re-descriptions of several mitochondrial DNA. In: Avian Molecular Evolutionary species. ZooKeys 265, 1–76. Systematics. (Mindell, D.P. Ed.), New York, Academic 26. Bouche, M.B., & Beugnot, M. (1972). La Complexité Press, pp. 214–217. taxonomique de Lumbricus Herculeus illustrée par les 38. Behura, S.K. (2006). Molecular marker systems in in- caractéristiques de populations de stations de la R.C. P. sects: current trends and future avenues. Molecular 40. Revue d’Écologie et de Biologie Du Sol, 9, 697-704. Ecology 15, 3087-3113. 27. James, S.W., Porco, D., Decaens, T., Richard, B., 39. Arnheim, N. (1983). Concerted evolution of multigene Rougerie, R. & Erseus, C. (2010). DNA barcoding re- families. In: Evolution of genes and proteins (M. Nei and veals cryptic diversity in Lumbricus terrestris L., 1758 Koehn RK, eds). Sinauer, Sunderland, Mass, pp. 38-61. (Clitellata): resurrection of L. herculeus (Savigny, 1826). 40. Gerbi, S.A. (1985). Evolution of ribosomal DNA. In: PLoS ONE 5, e15629. Molecular Evolution and Genetics (R. J. Macintyre, ed.) 28. Novo, M., Almodovar, A., Fernandez, R., Trigo, D. & pp. 419-517. Cosin, D.J. (2010). Cryptic speciation of hormogastrid 41. Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. & earthworms revealed by mitochondrial and nuclear data. Vogler, A.P. (2003). A plea for DNA taxonomy. Trends Molecular Phylogenetics and Evolution 56, 507-512. in Ecological & Evolution 18, 70-74. 29. Rougerie, R., Decaens, T., Deharveng, L., Porco, D., 42. King, R.A.,Tibble, A.L. & Symondson, W.O.C. (2008). James, S.W., Chang, C.H., Richard, B., Potapov, M., Opening a can of worms: unprecedented sympatric Suhardjono, Y. & Hebert, P.D.N. (2009). DNA bar- cryptic diversity within British lumbricid earthworms. codes for soil Animal taxonomy. Pesquisa Ag- Molecular Ecology 17, 4684-4698. ropecuária Brasileira 44, 789-801. 43. Dupont, L., Lazrek, F., Porco, D., King, R.A., Rougerie, 30. Palumbi, S.R. & Cipriano, F. (1998). Species identifica- R., Symondson, W.O.C., Livet, A., Richard, B., De- tion using genetic tools: the value of nuclear and mito- caens, T., Butt, K.R. & Mathieu, J. (2011). New insight chondrial gene sequences in whale conservation. Journal into the genetic structure of the Allolobophora chlorotica of Heredity 89, 459-464. aggregate in Europe using microsatellite and mitochon- 31. Symondson, W.O.C. (2002). Molecular identification of drial data. Pedobiologia 54, 217-224. prey in predator diets. Molecular Ecology 11, 627-641. 44. Jalali, S.K., Ojha, R. & Venkatesan, T. (2015). DNA 32. Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, Barcoding for Identification of Agriculturally Impor- J.R. (2003a). Biological
Recommended publications
  • Redalyc.CONTINENTAL BIODIVERSITY of SOUTH
    Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Christoffersen, Martin Lindsey CONTINENTAL BIODIVERSITY OF SOUTH AMERICAN OLIGOCHAETES: THE IMPORTANCE OF INVENTORIES Acta Zoológica Mexicana (nueva serie), núm. 2, 2010, pp. 35-46 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57515556003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0065-1737 Acta ZoológicaActa Zoológica Mexicana Mexicana (n.s.) Número (n.s.) Número Especial Especial 2: 35-46 2 (2010) CONTINENTAL BIODIVERSITY OF SOUTH AMERICAN OLIGOCHAETES: THE IMPORTANCE OF INVENTORIES Martin Lindsey CHRISTOFFERSEN Universidade Federal da Paraíba, Departamento de Sistemática e Ecologia, 58.059-900, João Pessoa, Paraíba, Brasil. E-mail: [email protected] Christoffersen, M. L. 2010. Continental biodiversity of South American oligochaetes: The importance of inventories. Acta Zoológica Mexicana (n.s.), Número Especial 2: 35-46. ABSTRACT. A reevaluation of South American oligochaetes produced 871 known species. Megadrile earthworms have rates of endemism around 90% in South America, while Enchytraeidae have less than 75% endemism, and aquatic oligochaetes have less than 40% endemic taxa in South America. Glossoscolecid species number 429 species in South America alone, a full two-thirds of the known megadrile earthworms. More than half of the South American taxa of Oligochaeta (424) occur in Brazil, being followed by Argentina (208 taxa), Ecuador (163 taxa), and Colombia (142 taxa).
    [Show full text]
  • Size Variation and Geographical Distribution of the Luminous Earthworm Pontodrilus Litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan
    A peer-reviewed open-access journal ZooKeys 862: 23–43 (2019) Size variation and distribution of Pontodrilus litoralis 23 doi: 10.3897/zookeys.862.35727 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan Teerapong Seesamut1,2,4, Parin Jirapatrasilp2, Ratmanee Chanabun3, Yuichi Oba4, Somsak Panha2 1 Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2 Ani- mal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand 4 Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan Corresponding authors: Somsak Panha ([email protected]), Yuichi Oba ([email protected]) Academic editor: Samuel James | Received 24 April 2019 | Accepted 13 June 2019 | Published 9 July 2019 http://zoobank.org/663444CA-70E2-4533-895A-BF0698461CDF Citation: Seesamut T, Jirapatrasilp P, Chanabun R, Oba Y, Panha S (2019) Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. ZooKeys 862: 23–42. https://doi.org/10.3897/zookeys.862.35727 Abstract The luminous earthworm Pontodrilus litoralis (Grube, 1855) occurs in a very wide range of subtropical and tropical coastal areas. Morphometrics on size variation (number of segments, body length and diameter) and genetic analysis using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequence were conducted on 14 populations of P.
    [Show full text]
  • Phylogenetic and Phenetic Systematics of The
    195 PHYLOGENETICAND PHENETICSYSTEMATICS OF THE OPISTHOP0ROUSOLIGOCHAETA (ANNELIDA: CLITELLATA) B.G.M. Janieson Departnent of Zoology University of Queensland Brisbane, Australia 4067 Received September20, L977 ABSTMCT: The nethods of Hennig for deducing phylogeny have been adapted for computer and a phylogran has been constructed together with a stereo- phylogran utilizing principle coordinates, for alL farnilies of opisthopor- ous oligochaetes, that is, the Oligochaeta with the exception of the Lunbriculida and Tubificina. A phenogran based on the sane attributes conpares unfavourably with the phyLogralnsin establishing an acceptable classification., Hennigrs principle that sister-groups be given equal rank has not been followed for every group to avoid elevation of the more plesionorph, basal cLades to inacceptabl.y high ranks, the 0ligochaeta being retained as a Subclass of the class Clitellata. Three orders are recognized: the LumbricuLida and Tubificida, which were not conputed and the affinities of which require further investigation, and the Haplotaxida, computed. The Order Haplotaxida corresponds preciseLy with the Suborder Opisthopora of Michaelsen or the Sectio Diplotesticulata of Yanaguchi. Four suborders of the Haplotaxida are recognized, the Haplotaxina, Alluroidina, Monil.igastrina and Lunbricina. The Haplotaxina and Monili- gastrina retain each a single superfanily and fanily. The Alluroidina contains the superfamiJ.y All"uroidoidea with the fanilies Alluroididae and Syngenodrilidae. The Lurnbricina consists of five superfaniLies.
    [Show full text]
  • The Giant Palouse Earthworm (Driloleirus Americanus)
    PETITION TO LIST The Giant Palouse Earthworm (Driloleirus americanus) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT June 30, 2009 Friends of the Clearwater Center for Biological Diversity Palouse Audubon Palouse Prairie Foundation Palouse Group of the Sierra Club 1 June 30, 2009 Ken Salazar, Secretary of the Interior Robyn Thorson, Regional Director U.S. Department of the Interior U.S. Fish & Wildlife Service 1849 C Street N.W. Pacific Region Washington, DC 20240 911 NE 11th Ave Portland, Oregon Dear Secretary Salazar, Friends of the Clearwater, Center for Biological Diversity, Palouse Prairie Foundation, Palouse Audubon, Palouse Group of the Sierra Club and Steve Paulson formally petition to list the Giant Palouse Earthworm (Driloleirus americanus) as a threatened or endangered species pursuant to the Endangered Species Act (”ESA”), 16 U.S.C. §1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14 (1990), which grant interested parties the right to petition for issuance of a rule from the Secretary of Interior. Petitioners also request that critical habitat be designated for the Giant Palouse Earthworm concurrent with the listing, pursuant to 50 CFR 424.12, and pursuant to the Administrative Procedures Act (5 U.S.C. 553). The Giant Palouse Earthworm (D. americanus) is found only in the Columbia River Drainages of eastern Washington and Northern Idaho. Only four positive collections of this species have been made within the last 110 years, despite the fact that the earthworm was historically considered “very abundant” (Smith 1897). The four collections include one between Moscow, Idaho and Pullman, Washington, one near Moscow Mountain, Idaho, one at a prairie remnant called Smoot Hill and a fourth specimen near Ellensberg, Washington (Fender and McKey- Fender, 1990, James 2000, Sánchez de León and Johnson-Maynard, 2008).
    [Show full text]
  • Checklist of New Zealand Earthworms Updated from Lee (1959) by R.J
    Checklist of New Zealand Earthworms updated from Lee (1959) by R.J. Blakemore August, 2006 COE fellow, Soil Ecology Group, Yokohama National Univeristy, Japan. Summary This review is based on Blakemore (2004) that updated the work completed over 40 years earlier by Lee (1959) as modified by Blakemore in Lee et al. , (2000) and in Glasby et al. (2007/8) based on the information presented at the "Species 2000" meeting held Jan. 2000 at Te Papa Museum in Wellington, New Zealand. In the current checklist Acanthodrilidae, Octochaetidae and Megascolecidae sensu Blakemore (2000b) are all given separate family status. Whereas Lee (1959) listed approximately 193 species, the current list has about 199 taxa. Because many of the natives have few reports, or are based on only a few specimens, approximately 77 are listed as "threatened" or "endangered" in Dept. Conservation threatened species list (see www.doc.govt.nz/Conservation/001~Plants-and-Animals/006~Threatened-species/Terrestrial-invertebrate-(part-one).asp April, 2005) and three species are detailed in McGuinness (2001). Further studies such as those of Springett & Grey (1998) are required. Currently I seek funding to complete my database into an interactive guide to species, to use to conduct surveys in New Zealand. Some of the changes in Blakemore (2004) from Lee (1959) are: • Microscolex macquariensis (Beddard, 1896) is removed from the list because it is known only from Macquarie Island, which is now claimed as Australian territory (see Blakemore, 2000b). • Megascolides orthostichon (Schmarda, 1861) is removed from the fauna as Fletcher (1886: 524) reported that “on the authority of Captain Hutton” this species was not from New Zealand and may be from Mt Wellington in Tasmania (see Blakemore, 2000b).
    [Show full text]
  • Download Full Article 945.9KB .Pdf File
    https://doi.org/10.24199/j.mmv.1972.33.10 7 February 1972 THE AUSTRALIAN EARTHWORM GENUS SPENCER1F.LLA AND DESCRIPTION OF TWO NEW GENERA (Megascolccidae: Oligochaeta) By B. G. M. Jamieson University of Queensland Abstract A neotype is designated for a rediscovered specimen of Diporochaeta notabilis, the only known material of the type-species of SpencerieHa Miehaelsen. The genus appears to belong to a Dichogttster-Megascolides group of genera, though poor preservation precludes certain demonstration of the stomate median meronephridia diagnostic of the group. Specimens from Lord Howe Island are shown to merit recognition of a new genus and species, Paraplutellus insularis, closely allied to Heteroporodrilus Jamieson and Plutellus Perrier on the Australian mainland. The new genus Simsia is established to receive six Victorian species assignable in former classifications to Plutellus, including the new species Simsia longwarricnsis. The type- species S. tuberculoid (Fletcher) is shown to be a senior synonym of Megascolides roseus Spencer. Paraplutellus and Simsia are members of a Perionyx group of genera. Introduction segment V, meronephridia, and tubular prostate glands with unbranched lumen. This superficial The author is currently studying the Baldwin definition (which ignored morphological hetero- Spencer earthworm collection through the kind geneity in other respects) and the disjunct geo- co-operation of Dr B. J. Smith and the authori- graphical distribution, has resulted in a poly- ties of the National Museum of Victoria. Atten- phyletic genus. Revision of the genus and tion has initially been directed to resolving the elucidation of the affinities of the included heterogeneous and clearly polyphyletic assemb- species necessitates examination of the type- lages Plutellus and Diporochaeta into distinct species.
    [Show full text]
  • Te Reo O Te Repo – the Voice of the Wetland Introduction 1
    TE REO O TE REPO THE VOICE OF THE WETLAND CONNECTIONS, UNDERSTANDINGS AND LEARNINGS FOR THE RESTORATION EDITED BY YVONNE TAURA CHERI VAN SCHRAVENDIJK-GOODMAN OF OUR WETLANDS AND BEVERLEY CLARKSON Te reo o te repo = The voice of the wetland: connections, understandings and learnings for the restoration of our wetlands / edited by Yvonne Taura, Cheri van Schravendijk-Goodman, Beverley Clarkson. -- Hamilton, N.Z. : Manaaki Whenua – Landcare Research and Waikato Raupatu River Trust, 2017. 1 online resource ISBN 978-0-478-34799-9 (electronic) ISBN 978-0-947525-03-3 (print) I. Taura, Y., ed. II. Manaaki Whenua – Landcare Research New Zealand Ltd. III. Waikato Raupatu River Trust. Published by Manaaki Whenua – Landcare Research Private Bag 3127, Hamilton 3216, New Zealand Waikato Raupatu River Trust PO Box 481, Hamilton 3204, New Zealand This handbook was funded mainly by the Ministry of Business, Innovation and Employment (contract C09X1002).The handbook is a collaborative project between the Waikato Raupatu River Trust and Manaaki Whenua – Landcare Research. Editors: Yvonne Taura (Ngāti Hauā, Ngāti Tūwharetoa, Ngai Te Rangi, Ngāti Rangi, Ngāti Uenuku/Waikato Raupatu River Trust and Manaaki Whenua), Cheri van Schravendijk-Goodman (Te Atihaunui a Papārangi, Ngāti Apa, Ngāti Rangi), and Beverley Clarkson (Manaaki Whenua). Peer reviewers: Anne Austin (Manaaki Whenua), Kiriwai Mangan (Waikato Raupatu Lands Trust), and Monica Peters (people+science). Design and layout: Abby Davidson (NZ Landcare Trust) This work is copyright. The copying, adaptation, or issuing of this work to the public on a non-profit basis is welcomed. No other use of this work is permitted without the prior consent of the copyright holder(s).
    [Show full text]
  • A Contribution to the Earthworm Diversity (Clitellata, Moniligastridae) of Kerala, a Component of the Western Ghats Biodiversity
    Animal Biodiversity and Conservation 44.1 (2021) 117 A contribution to the earthworm diversity (Clitellata, Moniligastridae) of Kerala, a component of the Western Ghats biodiversity hotspot, India, using integrated taxonomy S. S. Thakur, A. R. Lone, N. Tiwari, S. K. Jain, S. W. James, S. Yadav Thakur, S. S., Lone, A. R., Tiwari, N., Jain, S. K., James, S. W., Yadav, S., 2021. A contribution to the earthworm diversity (Clitellata, Moniligastridae) of Kerala, a component of the Western Ghats biodiversity hotspot, India, using integrated taxonomy. Animal Biodiversity and Conservation, 44.1 117–137, Doi: https://doi.org/10.32800/ abc.2021.44.0117 Abstract A contribution to the earthworm diversity (Clitellata, Moniligastridae) of Kerala, a component of the Western Ghats biodiversity hotspot, India, using integrated taxonomy. Earthworms (Clitellata, Moniligastridae) of Chaliyar River Malappuram, Eravikulam National Park, Neyyar Wildlife Sanctuary, Parambikulam Tiger Reserve, Peppara Wildlife Sanctuary, Periyar National Park, Shendurney Wildlife Sanctuary and Wayanad Forest, Kerala, a component of the hotspot of Western Ghats, India, were studied by the standard method of taxonomy, and their DNA barcode signatures using the mitochondrial gene cytochrome c oxidase I (COI) were generated for the first time. This study represents eleven species of earthworms of the family Moniligastridae: Drawida brunnea Stephenson, Drawida circumpapillata Aiyer, Drawida ghatensis Michaelsen, Drawida impertusa Stephenson, Drawida nilamburensis (Bourne), Drawida robusta (Bourne), Drawida scandens Rao, Drawida travancorense Michaelsen, Moniligaster aiyeri Gates, Moniligaster deshayesi Perrier, and Moniligaster gravelyi (Stephenson). In the phylogenetic analysis all the species were recovered in both neighbour–joining (NJ) and maximum likelihood (ML) trees with high clade support.
    [Show full text]
  • In the Phu Quoc Island, Vietnam, with Descriptions of Three New Species
    ZooKeys 932: 1–25 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.932.50314 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research The megascolecid earthworms (Annelida, Oligochaeta, Megascolecidae) in the Phu Quoc island, Vietnam, with descriptions of three new species Tung T. Nguyen1, Dang H. Lam1, Binh T. K. Trinh2, Anh D. Nguyen3,4 1 Department of Biology, School of Education, Can Tho University, Can Tho City, Vietnam 2 Department of Applied Biology, Faculty of Agriculture and Rural Development, Kien Giang University, Kien Giang, Vietnam 3 Duy Tan University, 254, Nguyen Van Linh, Da Nang, Vietnam 4 Institute of Ecology and Biological Resourc- es, Vietnam Academy of Science and Technology, 18, Hoangquocviet Rd., Caugiay District, Hanoi, Vietnam Corresponding author: Anh D. Nguyen ([email protected]) Academic editor: Samuel James | Received 28 January 2020 | Accepted 13 April 2020 | Published 12 May 2020 http://zoobank.org/6C64E085-E11A-4AEE-85EE-3443E296C8DF Citation: Nguyen TT, Lam DH, Trinh BTK, Nguyen AD (2020) The megascolecid earthworms (Annelida, Oligochaeta, Megascolecidae) in the Phu Quoc island, Vietnam, with descriptions of three new species. ZooKeys 932: 1–25. https://doi.org/10.3897/zookeys.932.50314 Abstract The megascolecid earthworms of the Phu Quoc island are intensively investigated. Twelve species in three genera (Lampito Kinberg, 1867, Amynthas Kinberg, 1867, and Metaphire Sims & Easton, 1972) are re- corded. Of these, Metaphire doiphamon Bantaowong & Panha, 2016 is recorded for the first time in Vi- etnam, and three species are newly described, namely Amynthas catenatus sp. nov., A. phuquocensis sp. nov., and A. poropapillatus sp.
    [Show full text]
  • An Integrative Taxonomic Approach to the Identification of Three New New Zealand Endemic Earthworm Species (Acanthodrilidae, Octochaetidae: Oligochaeta)
    Zootaxa 2994: 21–32 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) An integrative taxonomic approach to the identification of three new New Zealand endemic earthworm species (Acanthodrilidae, Octochaetidae: Oligochaeta) STEPHANE BOYER1,3, ROBERT J. BLAKEMORE2 & STEVE D. WRATTEN1 1Bio-Protection Research Centre, Lincoln University, New Zealand 2National Museum of Science and Nature in Tokyo, Japan 3Corresponding author. E-mail: [email protected] Abstract This work adds three new species to the ca. 200 currently known from New Zealand. In Acanthodrilidae is Maoridrilus felix and in Octochaetidae are Deinodrilus gorgon and Octochaetus kenleei. All three are endemics that often have restrict- ed ranges; however, little is yet known of their distribution, ecology nor conservation status. DNA barcoding was conduct- ed, which is the first time that New Zealand endemic holotypes have been so characterized. The barcoding region COI (cytochrome c oxidase subunit 1) as well as the 16S rDNA region were sequenced using tissue from the holotype specimen to provide indisputable uniqueness of the species. These DNA sequences are publically available on GenBank to allow accurate cross checking to verify the identification of other specimens or even to identify specimens on the basis of their DNA sequences alone. Based on their 16S rDNA sequences, the position of the three newly described species in the phy- logeny of New Zealand earthworms was discussed. The description of new species using this approach is encouraged, to provide a user-friendly identification tool for ecologists studying diverse endemic faunas of poorly known earthworm species.
    [Show full text]
  • On a New Species of California Earthworm, Haplotaxis Ichthyophagous (Oligochaeta, Annelida )1
    Vol. 84, No. 25, pp. 203-212 4 November 1971 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON ON A NEW SPECIES OF CALIFORNIA EARTHWORM, HAPLOTAXIS ICHTHYOPHAGOUS 1 (OLIGOCHAETA, ANNELIDA ) BY G. E. GATES Zoology Department, University of Maine, Orono 04473 Earthworms, on hooks, have been used, at least for one rnillenium by man as bait to catch fish. In California, the worm has turned, according to Briggs (1953), and even gets its fish as food without human assistance. Such worms may prove to be of considerable economic importance and should be of general interest because of the unusual diet and adapta- tion thereto. Several examples received directly or indirectly from Briggs in 1951 were juvenile. Further material was requested in hope of securing adults to enable description of the genitalia. Again only juveniles were provided. Various subsequent efforts to obtain additional specimens all were futile. Fortunately, researches of the last quarter century have shown that somatic megadrile anatomy, previously derogated or ignored by oligochaetologists of the classical school, is, rather generally, much more conservative phylogenetically than the genitalia. Accordingly a very short esophagus com- prising parts functioning as a pharynx and as a gizzard, the long but simple intestine, presence of only two longitudinal vascular trunks, absence of hearts but presence of a pair of long and much looped, lateral (in sensu stricto) commissures in each segment, enabled assigning the Californian juveniles to the presently monogeneric family Haplotaxidae. Further- more, pedestals of Timm under the nerve cord indicate to 1 The worms were studied during research financed by the National Science Foun- dation.
    [Show full text]
  • Phylogeny of the Megascolecidae and Crassiclitellata (Annelida
    Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA Barrie G. M. JAMIESON Department of Zoology and Entomology, University of Queensland, Brisbane 4072, Queensland (Australia) [email protected] Simon TILLIER Annie TILLIER Département Systématique et Évolution et Service de Systématique moléculaire, Muséum national d’Histoire naturelle, 43 rue Cuvier, F-75231 Paris cedex 05 (France) Jean-Lou JUSTINE Laboratoire de Biologie parasitaire, Protistologie, Helminthologie, Département Systématique et Évolution, Muséum national d’Histoire naturelle, 61 rue Buffon, F-75321 Paris cedex 05 (France) present address: UR “Connaissance des Faunes et Flores Marines Tropicales”, Centre IRD de Nouméa, B.P. A5, 98848 Nouméa cedex (Nouvelle-Calédonie) Edmund LING Department of Zoology and Entomology, University of Queensland, Brisbane 4072, Queensland (Australia) Sam JAMES Department of Life Sciences, Maharishi University of Management, Fairfield, Iowa 52557 (USA) Keith MCDONALD Queensland Parks and Wildlife Service, PO Box 834, Atherton 4883, Queensland (Australia) Andrew F. HUGALL Department of Zoology and Entomology, University of Queensland, Brisbane 4072, Queensland (Australia) ZOOSYSTEMA • 2002 • 24 (4) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. www.zoosystema.com 707 Jamieson B. G. M. et al. Jamieson B. G. M., Tillier S., Tillier A., Justine J.-L., Ling E., James S., McDonald K. & Hugall A. F. 2002. — Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA. Zoosystema 24 (4) : 707-734. ABSTRACT Analysis of megascolecoid oligochaete (earthworms and allies) nuclear 28S rDNA and mitochondrial 12S and 16S rDNA using parsimony and likeli- hood, partition support and likelihood ratio tests, indicates that all higher, suprageneric, classifications within the Megascolecidae are incompatible with the molecular data.
    [Show full text]