Proposed Construction and Operation of Halley VI Research Station, Brunt Ice Shelf,Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Proposed Construction and Operation of Halley VI Research Station, Brunt Ice Shelf,Antarctica Proposed Construction and Operation of Halley VI Research Station, Brunt Ice Shelf,Antarctica DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) February 2005 COVER: Artist’s impressions of concept designs for Halley VI Research Station. From top: Hopkins/Expedition/atelier ten – ‘walking’ buildings using hydraulic legs; FaberMaunsell and Hugh Broughton – modular buildings and service pods on skis; and Buro Happold and Lifschutz Davidson – ‘icecraft’ buildings on telescopic legs. DRAFT CEE HALLEY VI CONTENTS CONTENTS NON-TECHNICAL SUMMARY ............................................................................................................................. i 1. Introduction ...............................................................................................................................................1 1.1 The role of Halley Research Station............................................................................................................1 1.2 History of Halley Research Station .............................................................................................................2 1.3 Scientific research at Halley ........................................................................................................................4 1.4 The future development of Halley...............................................................................................................5 1.5 Preparation and production of the CEE for Halley VI.................................................................................7 2. Description of the proposed activity ........................................................................................................9 2.1 Scope ...........................................................................................................................................................9 2.2 Location.......................................................................................................................................................9 2.3 Principal characteristics of the proposed activity ........................................................................................9 2.4 General specification for Halley VI...........................................................................................................10 2.5 Construction of Halley VI .........................................................................................................................11 2.6 Area of disturbance....................................................................................................................................12 2.7 Timescale, duration and intensity ..............................................................................................................13 2.8 Decommissioning of Halley VI .................................................................................................................14 3. Design concepts for Halley VI ................................................................................................................15 3.1 Buro Happold and Lifschutz Davidson .....................................................................................................15 3.2 FaberMaunsell and Hugh Broughton.........................................................................................................21 3.3 Hopkins/Expedition/atelier ten ..................................................................................................................26 4. Alternatives to the proposed activity .....................................................................................................32 4.1 Discontinue scientific research at Halley...................................................................................................32 4.2 Attempt to extend the life of the existing facilities at Halley V................................................................32 4.3 Move existing facilities at Halley V eastwards on the Brunt Ice Shelf .....................................................32 4.4 Relocate and build Halley VI away from the Brunt Ice Shelf on grounded ice at the Lyddan Ice Rise....33 4.5 Commission alternative designs for Halley VI and build a new station at a safe loction on the Brunt Ice Shelf...........................................................................................................................................................34 5. Initial environmental reference state of the Brunt Ice Shelf...............................................................35 5.1 The Brunt Ice Shelf....................................................................................................................................35 5.2 Sea ice........................................................................................................................................................35 5.3 Glaciology .................................................................................................................................................36 5.4 Climate.......................................................................................................................................................38 5.5 Flora and fauna ..........................................................................................................................................41 5.6 Tourism......................................................................................................................................................43 5.7 Protected areas...........................................................................................................................................44 5.8 Human activities ........................................................................................................................................44 5.9 Prediction of the future environmental reference state in the absence of Halley VI .................................44 6. Identification or prediction of impacts, including preventative or mitigating measures..................45 6.1 Methods and data used to predict impacts and mitigation measures .........................................................45 6.2 Impact of construction activities................................................................................................................45 6.3 Impact of operation....................................................................................................................................50 6.4 Cumulative impacts ...................................................................................................................................59 6.5 Impact matrices..........................................................................................................................................59 7. Assessment and verification of impacts and monitoring......................................................................67 7.1 Station environmental monitoring .............................................................................................................67 7.2 Glaciological monitoring of the Brunt Ice Shelf and Stancomb–Wills Ice Stream ...................................67 7.3 Snow and atmospheric chemistry monitoring............................................................................................69 7.4 Environmental audit...................................................................................................................................70 8. Gaps in knowledge and uncertainties ....................................................................................................71 9. Conclusion ................................................................................................................................................72 10. Authors of the draft CEE and contact details.......................................................................................73 11. Acknowledgements ..................................................................................................................................73 12. List of references......................................................................................................................................74 13. Acronyms..................................................................................................................................................76 14. Appendices ...............................................................................................................................................77 DRAFT CEE HALLEY VI CONTENTS FIGURES Figure 1. Location of Halley Research Station on the Brunt Ice Shelf, Antarctica. ....................................... 1 Figure 2. Halley V Research Station, Brunt Ice Shelf. ................................................................................... 2 Figure 3. Left: Scientist releasing meteorological balloon. Right: High Frequency Southern Hemisphere Auroral Radar Experiment (SHARE) at Halley V station............................................................... 5 Figure 4. Timeline diagram showing the stages for the design competition and for the draft and final CEE for Halley VI.................................................................................................................................... 8 Figure 5. Brunt Ice Shelf showing Halley V and the proposed location of Halley VI. ................................ 10 Figure 6. Layout of Halley V Research
Recommended publications
  • 'Landscapes of Exploration' Education Pack
    Landscapes of Exploration February 11 – 31 March 2012 Peninsula Arts Gallery Education Pack Cover image courtesy of British Antarctic Survey Cover image: Launch of a radiosonde meteorological balloon by a scientist/meteorologist at Halley Research Station. Atmospheric scientists at Rothera and Halley Research Stations collect data about the atmosphere above Antarctica this is done by launching radiosonde meteorological balloons which have small sensors and a transmitter attached to them. The balloons are filled with helium and so rise high into the Antarctic atmosphere sampling the air and transmitting the data back to the station far below. A radiosonde meteorological balloon holds an impressive 2,000 litres of helium, giving it enough lift to climb for up to two hours. Helium is lighter than air and so causes the balloon to rise rapidly through the atmosphere, while the instruments beneath it sample all the required data and transmit the information back to the surface. - Permissions for information on radiosonde meteorological balloons kindly provided by British Antarctic Survey. For a full activity sheet on how scientists collect data from the air in Antarctica please visit the Discovering Antarctica website www.discoveringantarctica.org.uk and select resources www.discoveringantarctica.org.uk has been developed jointly by the Royal Geographical Society, with IBG0 and the British Antarctic Survey, with funding from the Foreign and Commonwealth Office. The Royal Geographical Society (with IBG) supports geography in universities and schools, through expeditions and fieldwork and with the public and policy makers. Full details about the Society’s work, and how you can become a member, is available on www.rgs.org All activities in this handbook that are from www.discoveringantarctica.org.uk will be clearly identified.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Halley Research Station
    British Antarctic Survey Halley Research Station Halley V The Station alley V took six years from being conceived at the The Laws Building comprises three sections, a Hdrawing board to its commissioning in February services/technical support area, living area and sleeping 1992. It is novel in that the three main buildings sit 4 m quarters. Diesel engines provide electrical power and above the snow on independent jackable steel platforms. their waste heat warms the buildings and melts snow to The largest is the Laws Building (accommodation) which provide water.The living area includes a darkroom, is 59 m long, 14.6 m wide and 3 m high.The smaller lounge, library, dining room, kitchen, computer room, base Simpson Building (meteorology and ozone studies) and commander’s office, communications room, recreation Piggott Building (upper atmospheric sciences) house room, storage areas, washrooms, a hospital and a surgery. specialist laboratories.The height of the platforms above There are 20 two-person bedrooms.The winter station the ice shelf affects the local wind turbulence and the complement ranges from 14 to 18 and includes scientists, build-up of drifting snow. Each summer the platforms are support staff and a doctor. Summer visitors are raised an average of 1m to compensate for the accommodated in the Drewry Building,a self-contained accumulated snowfall. In addition, the supporting legs can building on skis that is towed to a fresh site each year to be realigned to correct for distortion caused by avoid burial, and also serves as an emergency refuge.The differential movement in the flow of the ice shelf beneath.
    [Show full text]
  • The Centenary of the Scott Expedition to Antarctica and of the United Kingdom’S Enduring Scientific Legacy and Ongoing Presence There”
    Debate on 18 October: Scott Expedition to Antarctica and Scientific Legacy This Library Note provides background reading for the debate to be held on Thursday, 18 October: “the centenary of the Scott Expedition to Antarctica and of the United Kingdom’s enduring scientific legacy and ongoing presence there” The Note provides information on Antarctica’s geography and environment; provides a history of its exploration; outlines the international agreements that govern the territory; and summarises international scientific cooperation and the UK’s continuing role and presence. Ian Cruse 15 October 2012 LLN 2012/034 House of Lords Library Notes are compiled for the benefit of Members of the House of Lords and their personal staff, to provide impartial, politically balanced briefing on subjects likely to be of interest to Members of the Lords. Authors are available to discuss the contents of the Notes with the Members and their staff but cannot advise members of the general public. Any comments on Library Notes should be sent to the Head of Research Services, House of Lords Library, London SW1A 0PW or emailed to [email protected]. Table of Contents 1.1 Geophysics of Antarctica ....................................................................................... 1 1.2 Environmental Concerns about the Antarctic ......................................................... 2 2.1 Britain’s Early Interest in the Antarctic .................................................................... 4 2.2 Heroic Age of Antarctic Exploration .......................................................................
    [Show full text]
  • Inhomogeneity of the Surface Air Temperature Record from Halley, Antarctica
    15 JUNE 2021 K I N G E T A L . 4771 Inhomogeneity of the Surface Air Temperature Record from Halley, Antarctica a a a a a a JOHN C. KING, JOHN TURNER, STEVE COLWELL, HUA LU, ANDREW ORR, TONY PHILLIPS, a a J. SCOTT HOSKING, AND GARETH J. MARSHALL a British Antarctic Survey, Cambridge, United Kingdom (Manuscript received 25 September 2020, in final form 10 March 2021) ABSTRACT: Commencing in 1956, observations made at Halley Research Station in Antarctica provide one of the longest continuous series of near-surface temperature observations from the Antarctic continent. Since few other records of comparable length are available, the Halley record has been used extensively in studies of long-term Antarctic climate variability and change. The record does not, however, come from a single location but is a composite of observations from a sequence of seven stations, all situated on the Brunt Ice Shelf, that range from around 10 to 50 km in distance from the coast. Until now, it has generally been assumed that temperature data from all of these stations could be combined into a single composite record with no adjustment. Here, we examine this assumption of homogeneity. Application of a statistical changepoint algorithm to the composite record detects a sudden cooling associated with the move from Halley IV to Halley V station in 1992. We show that this temperature step is consistent with local temperature gradients measured by a network of automatic weather stations and with those simulated by a high-resolution atmospheric model. These temperature gradients are strongest in the coastal region and result from the onshore advection of maritime air.
    [Show full text]
  • Antarctic Treaty
    ANTARCTIC TREATY REPORT OF THE NORWEGIAN ANTARCTIC INSPECTION UNDER ARTICLE VII OF THE ANTARCTIC TREATY FEBRUARY 2009 Table of Contents Table of Contents ............................................................................................................................................... 1 1. Introduction ................................................................................................................................................... 2 1.1 Article VII of the Antarctic Treaty .................................................................................................................... 2 1.2 Past inspections under the Antarctic Treaty ................................................................................................... 2 1.3 The 2009 Norwegian Inspection...................................................................................................................... 3 2. Summary of findings ...................................................................................................................................... 6 2.1 General ............................................................................................................................................................ 6 2.2 Operations....................................................................................................................................................... 7 2.3 Scientific research ..........................................................................................................................................
    [Show full text]
  • Past and Future Dynamics of the Brunt Ice Shelf from Seabed Bathymetry and Ice Shelf Geometry
    The Cryosphere, 13, 545–556, 2019 https://doi.org/10.5194/tc-13-545-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Past and future dynamics of the Brunt Ice Shelf from seabed bathymetry and ice shelf geometry Dominic A. Hodgson1,2, Tom A. Jordan1, Jan De Rydt3, Peter T. Fretwell1, Samuel A. Seddon1,4, David Becker5, Kelly A. Hogan1, Andrew M. Smith1, and David G. Vaughan1 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 2Department of Geography, Durham University, Durham, DH1 3LE, UK 3Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK 4Seddon Geophysical Limited, Ipswich, UK 5Physical and Satellite Geodesy, Technische Universitaet Darmstadt, Franziska-Braun-Str. 7, 64287 Darmstadt, Germany Correspondence: Dominic A. Hodgson ([email protected]) Received: 18 September 2018 – Discussion started: 28 September 2018 Revised: 10 January 2019 – Accepted: 25 January 2019 – Published: 14 February 2019 Abstract. The recent rapid growth of rifts in the Brunt Ice expected calving event causes full or partial loss of contact Shelf appears to signal the onset of its largest calving event with the bed and whether the subsequent response causes re- since records began in 1915. The aim of this study is to de- grounding within a predictable period or a loss of structural termine whether this calving event will lead to a new steady integrity resulting from properties inherited at the grounding state in which the Brunt Ice Shelf remains in contact with the line. bed, or an unpinning from the bed, which could predispose it to accelerated flow or possible break-up.
    [Show full text]
  • BAS Science Summaries 2018-2019 Antarctic Field Season
    BAS Science Summaries 2018-2019 Antarctic field season BAS Science Summaries 2018-2019 Antarctic field season Introduction This booklet contains the project summaries of field, station and ship-based science that the British Antarctic Survey (BAS) is supporting during the forthcoming 2018/19 Antarctic field season. I think it demonstrates once again the breadth and scale of the science that BAS undertakes and supports. For more detailed information about individual projects please contact the Principal Investigators. There is no doubt that 2018/19 is another challenging field season, and it’s one in which the key focus is on the West Antarctic Ice Sheet (WAIS) and how this has changed in the past, and may change in the future. Three projects, all logistically big in their scale, are BEAMISH, Thwaites and WACSWAIN. They will advance our understanding of the fragility and complexity of the WAIS and how the ice sheets are responding to environmental change, and contributing to global sea-level rise. Please note that only the PIs and field personnel have been listed in this document. PIs appear in capitals and in brackets if they are not present on site, and Field Guides are indicated with an asterisk. Non-BAS personnel are shown in blue. A full list of non-BAS personnel and their affiliated organisations is shown in the Appendix. My thanks to the authors for their contributions, to MAGIC for the field sites map, and to Elaine Fitzcharles and Ali Massey for collating all the material together. Thanks also to members of the Communications Team for the editing and production of this handy summary.
    [Show full text]
  • Public Information Leaflet HISTORY.Indd
    British Antarctic Survey History The United Kingdom has a long and distinguished record of scientific exploration in Antarctica. Before the creation of the British Antarctic Survey (BAS), there were many surveying and scientific expeditions that laid the foundations for modern polar science. These ranged from Captain Cook’s naval voyages of the 18th century, to the famous expeditions led by Scott and Shackleton, to a secret wartime operation to secure British interests in Antarctica. Today, BAS is a world leader in polar science, maintaining the UK’s long history of Antarctic discovery and scientific endeavour. The early years Britain’s interests in Antarctica started with the first circumnavigation of the Antarctic continent by Captain James Cook during his voyage of 1772-75. Cook sailed his two ships, HMS Resolution and HMS Adventure, into the pack ice reaching as far as 71°10' south and crossing the Antarctic Circle for the first time. He discovered South Georgia and the South Sandwich Islands although he did not set eyes on the Antarctic continent itself. His reports of fur seals led many sealers from Britain and the United States to head to the Antarctic to begin a long and unsustainable exploitation of the Southern Ocean. Image: Unloading cargo for the construction of ‘Base A’ on Goudier Island, Antarctic Peninsula (1944). During the late 18th and early 19th centuries, interest in Antarctica was largely focused on the exploitation of its surrounding waters by sealers and whalers. The discovery of the South Shetland Islands is attributed to Captain William Smith who was blown off course when sailing around Cape Horn in 1819.
    [Show full text]
  • Observations of OH and HO2 Radicals in Coastal Antarctica
    Atmos. Chem. Phys., 7, 4171–4185, 2007 www.atmos-chem-phys.net/7/4171/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Observations of OH and HO2 radicals in coastal Antarctica W. J. Bloss1,*, J. D. Lee1,**, D. E. Heard1, R. A. Salmon2, S. J.-B. Bauguitte2, H. K. Roscoe2, and A. E. Jones2 1School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK 2British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK *now at: School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK **now at: Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK Received: 18 January 2007 – Published in Atmos. Chem. Phys. Discuss.: 23 February 2007 Revised: 27 July 2007 – Accepted: 10 August 2007 – Published: 16 August 2007 Abstract. OH and HO2 radical concentrations have been Field measurement campaigns, in which coordinated mea- measured in the boundary layer of coastal Antarctica for a surements of radical species such as OH, HO2, NO etc. have six-week period during the austral summer of 2005. The been performed, provide a means to test and refine our un- measurements were performed at the British Antarctic Sur- derstanding of fast radical photochemistry. Measurements ◦ 0 ◦ 0 vey’s Halley Research Station (75 35 S, 26 19 W), using of OH and HO2 radicals have been performed in a range the technique of on-resonance laser-induced fluorescence to of marine and continental, polluted and clean environments detect OH, with HO2 measured following chemical conver- (e.g.
    [Show full text]
  • Past Ice Sheet-Seabed Interactions in the Northeastern Weddell Sea Embayment, Antarctica Jan Erik Arndt1,2, Robert D
    Past ice sheet-seabed interactions in the northeastern Weddell Sea Embayment, Antarctica Jan Erik Arndt1,2, Robert D. Larter2, Claus-Dieter Hillenbrand2, Simon H. Sørli3, Matthias Forwick3, James A. Smith2, Lukas Wacker4 5 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 2British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom 3Department of Geosciences, UiT The Arctic University of Norway, Postboks 6050 Langnes, N-9037 Tromsø, Norway 4ETH Zürich, Laboratory of Ion Beam Physics, Schafmattstrasse 20, CH-8093 Zurich, Switzerland 10 Correspondence to: Jan Erik Arndt ([email protected]) Abstract. The Antarctic Ice Sheet extent in the Weddell Sea Embayment (WSE) during the Last Glacial Maximum (LGM; ca. 19-25 calibrated kiloyears before present, cal. ka BP) and its subsequent retreat from the shelf are poorly constrained, with two conflicting scenarios being discussed. Today, the modern Brunt Ice Shelf, the last remaining ice shelf in the northeastern WSE, is only pinned at a single location and recent crevasse development may lead to its rapid disintegration in the near future. We 15 investigated the seafloor morphology on the northeastern WSE shelf and discuss its implications, in combination with marine geological records, for reconstructions of the past behaviour of this sector of the East Antarctic Ice Sheet (EAIS), including ice-seafloor interactions. Our data show that an ice stream flowed through Stancomb-Wills Trough and acted as the main conduit for EAIS drainage during the LGM in this sector. Post-LGM ice-stream retreat occurred stepwise, with at least three documented grounding line still stands, and the trough had become free of grounded ice by ~10.5 cal.
    [Show full text]
  • PRESS RELEASE Iceberg A-74 Calves from the Brunt Ice Shelf In
    U.S. National Ice Center NOAA Satellite Operations Facility 4231 Suitland Road Suitland, MD 20746 PRESS RELEASE FOR IMMEDIATE RELEASE Contact: LT Falon Essary, NOAA [email protected] 301-817-3934 Iceberg A-74 Calves from the Brunt Ice Shelf in the Weddell Sea 01MAR20201, Suitland, MD — The U.S. National Ice Center (USNIC) has confirmed A-74 has calved from the north facing side of the Brunt Ice Shelf. The much anticipated break was first reported on the 26th of February by GPS equipment, but not confirmed until 27th of February via Sentinel-1A imagery. As of the 28th of February, the new iceberg A-74 was located at 75° 13' South, 25° 41' West and measures 30 nautical miles on its longest axis and 18 nautical miles on its widest axis. The western part of the shelf which was first identified as the next potential large iceberg to calve from Brunt due to several large crevasses running through it remains intact. A-74 was first reported by the British Antarctic Survey, and confirmed by USNIC Ice Analyst Christopher Readinger using the Sentinel-1A image shown below. Iceberg names are derived from the Antarctic quadrant in which they were originally sighted. The quadrants are divided counter-clockwise in the following manner: A = 0-90W (Bellingshausen/Weddell Sea) C = 180-90E (Western Ross Sea/Wilkesland) B = 90W-180 (Amundsen/Eastern Ross Sea) D = 90E-0 (Amery/Eastern Weddell Sea) When first sighted, an iceberg’s point of origin is documented by USNIC. The letter of the quadrant, along with a sequential number, is assigned to the iceberg.
    [Show full text]