Virophages Go Nuclear in the Marine Alga Bigelowiella Natans Matthias G

Total Page:16

File Type:pdf, Size:1020Kb

Virophages Go Nuclear in the Marine Alga Bigelowiella Natans Matthias G COMMENTARY Virophages go nuclear in the marine alga Bigelowiella natans Matthias G. Fischer1 particles can be seen under a light micro- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, scope and contain DNA genomes that 69120 Heidelberg, Germany code for more than 1,000 proteins (5). As it turns out, giant viruses are rather com- The virus world in which we live will never affect biodiversity and community structures mon in the environment, infecting freshwa- ter amoebae as well as marine heterotrophic cease to amaze us. Historically, viruses were of their hosts [for which they can even act and photosynthetic protists (6). Another un- studied primarily from medical and eco- as symbionts (2)], and perhaps most pro- expected finding was that giant viruses in nomic perspectives; however, the last decades foundly, viruses have influenced all cellular the family Mimiviridae were associated with have shown that viruses play roles far more life from its very beginning and they continue a previously unknown group of smaller versatile than we could have imagined. Being to leave their footprints in cellular genomes double-stranded DNA (dsDNA) viruses the most abundant biological entities on the (3, 4), including our own. One of biggest that acted as parasites of the former. Dubbed ∼ 10 planet (there are 10 virus particles in surprises in recent virological history was “virophages,” these icosahedrally shaped every liter of seawater), viruses drive biogeo- the discovery of Acanthamoeba polyphaga viruses with 20- to 30-kilobase-pair (kbp) ge- chemical cycles on a global scale (1), they mimivirus and other giant viruses, whose nomes replicate in the cytoplasmic virus fac- tories of their giant viruses, where they exploit the transcriptional machinery of their viral host (7). To replicate, virophages must therefore infect a susceptible host cell that is coinfected with a permissive giant virus, i.e., a virus that has the capacity to support gene expression of the virophage. Virophages ap- pear to have evolved multiple strategies to track down their viral and cellular hosts. The Sputnik virophage can adhere to long fibers on the surface of the mimivirus capsid, and it is assumed that Sputnik hitches a ride when mimivirus is phagocytosed by the amoebal host cell (8). By contrast, the mavi- rus virophage enters the host cell indepen- dently of its giant virus CroV, which lacks an external fiber coat (9). Another mecha- nism by which a virophage can stay in touch with its host cell or giant virus is to insert its genome into either host genome. Whereas Sputnik integration into the mimivirus genome has been described (10), no provirophages (i.e., integrated virophage genomes) in a eukaryotic genome have been found so far. In PNAS, Blanc et al. (11) now report such a case. The authors searched through more than 1,000 eukaryotic genomes for signatures of virophages, and they struck gold in the unicellular alga Bigelowiella natans. B. natans belongs to a group of mixotrophic protists called chlorarachniophytes that have trod- den an interesting evolutionary path. Their Fig. 1. A model for the protective effect of provirophages on their host cells. Modified from ref. 11. Shown is a schematic B. natans cell (A), which can be infected and lysed by a large dsDNA virus (B). Blanc et al. (11) propose that Author contributions: M.G.F. wrote the paper. a virophage could integrate into the nuclear genome of a host cell in the absence of a large dsDNA virus. The pro- The author declares no conflict of interest. virophage-carrying cell (C) does not produce virophage particles until the cell is infected by a large dsDNA virus, which is then inhibited in its infection cycle by the reactivated virophage (D). As a result, the host population may survive the See companion article on page E5318. viral infection and disseminate the provirophage (E). N, nucleus; P, plastid; VF, virus factory. 1Email: [email protected]. 11750–11751 | PNAS | September 22, 2015 | vol. 112 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.1515142112 Downloaded by guest on September 28, 2021 – plastids are derived from secondary endo- would be removed from the constant race (9, 14 16). These endogenous elements are COMMENTARY symbiosis, i.e., their heterotrophic ancestor against decay by adverse environmental widely distributed in the eukaryotic domain engulfed a eukaryotic cell (a green alga in conditions such as UV light, before it en- and stand out from most other DNA trans- this case) that already possessed a chloro- counters a new giant virus-infected host. posons due to a set of conserved genes with plast of cyanobacterial origin (12). Remark- Upon superinfection with a permissive giant undeniable virus-like properties. Two of these ably, not only did chlorarachniophytes retain virus, the provirophage would become active genes were recently found to be distant ver- the envelopes of those enslaved organisms again and interfere with the production of sions of the jelly-roll capsid proteins found in (their plastid is surrounded by four mem- new giant virus particles (Fig. 1). Indeed, many DNA viruses such as pox- and adeno- branes), but they still contain remnants of this scenario would describe a mutualistic viruses, as well as virophages (17). The ’ the green algal endosymbiont snucleus,which relationship between a virus and a host cell Maverick/Polinton transposons can there- is referred to as a nucleomorph. B. natans (2): the host cell provides an opportunity to fore be viewed as endogenous viruses, and therefore harbors four distinct genomes that the virophage to persist and spread vertically these “polintoviruses” may even have played arelocatedinthenucleus,themitochon- within the host population, and, in return, a pivotal role in the evolution of several drion, the plastid, and the nucleomorph. Fol- the virophage protects the host cell from families of eukaryotic DNA viruses, includ- lowingtheuptakeofthegreenalgal lysis by giant viruses (9, 11). ing giant viruses and their virophages (18). endosymbiont, substantial gene transfer The fact that no giant viruses infecting The Bigelowiella provirophages could repre- to the host nucleus occurred, which left Bigelowiella have been described to date does sent an intermediate form between freely the plastid and nucleomorph genomes not weaken this hypothesis. Remarkably, not replicating virophages and the endogenous with mere 57 and 284 protein-coding only does the B. natans genome harbor viro- Maverick/Polinton elements and may shed genes, respectively. Amid the resulting phage-like elements, it also contains pieces of more light on the flow of mobile genetic mosaic nuclear genome of B. natans putative large DNA virus genomes (11). The elements in the microbial world. (13), Blanc et al. identified 38 virophage- largest such fragment is 165 kbp long and Overall, the findings by Blanc et al. raise like elements. Although these elements contains 83 genes, most of which are un- ranged from extremely truncated gene known, but some display clear phylogenetic several interesting questions, such as how snippets of just 100 bp to presumably affinities to large algal viruses. In contrast to frequently and under which conditions a complete virus genomes of more than 30 the virophage-like elements, the large virus virophage can stably integrate into a host kbp, they were highly similar at the nucleo- insert was found to be transcriptionally silent genome. Unclear is also whether genome tide level, indicating that they derived from a and had a G+Ccontentsimilartothatofthe integration is a dead end for the virophage, or common ancestral virophage. It is difficult to host nuclear genome (11). This algal lineage whether the provirophage can be triggered estimate how much time has passed since the has apparently witnessed multiple encounters to resume active replication by an incoming B. natans genome was invaded by these viral with DNA viruses of various sizes. Blanc et al. giant virus. The most interesting question in elements, but the fact that the viral sequences demonstrate how paleovirology can reveal this context may be whether provirophages display a lower G+C content than the flank- stories of long ago battles between viruses play a role in defending protist populations ing host sequences implies that the inte- and their hosts, even between different viruses. from giant virus infections. The discovery gration events happened recently enough There is yet another, more far-reaching of provirophages in the B. natans genome to prevent complete assimilation to the twist to the story. Some virophages have strongly suggests the existence of chlorarach- host nucleotide composition. strong genetic ties with 15- to 25-kbp-long niophyte-specific giant viruses. Isolation of Blanc et al. then analyzed gene expression insertion elements, which have been named such a virus in laboratory culture may pro- data of several B. natans strains and found Maverick or Polinton DNA transposons vide answers to at least some of these riddles. most of the ∼300 virophage genes to be transcribed—a surprising finding because virophages are thought to rely on the tran- 1 Suttle CA (2007) Marine viruses—major players in the global 11 Blanc G, Gallot-Lavallée L, Maumus F (2015) Provirophages in the scription enzymes of a coinfecting giant vi- ecosystem. Nat Rev Microbiol 5(10):801–812. Bigelowiella genome bear testimony to past encounters with giant 2 Roossinck MJ (2011) The good viruses: Viral mutualistic symbioses. viruses. Proc Natl Acad Sci USA 112:E5318–E5326. rus. Whether this transcriptional activity is Nat Rev Microbiol 9(2):99–108. 12 Keeling PJ (2010) The endosymbiotic origin, diversification and indicative of a biological mechanism that 3 Aiewsakun P, Katzourakis A (2015) Endogenous viruses: fate of plastids. Philos Trans R Soc Lond B Biol Sci 365(1541): – Connecting recent and ancient viral evolution. Virology 479-480: 729 748. might benefit virophage or host cell remains 13 26–37.
Recommended publications
  • Chapitre Quatre La Spécificité D'hôtes Des Virophages Sputnik
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Morgan GAÏA Né le 24 Octobre 1987 à Aubagne, France Pour obtenir le grade de DOCTEUR de l’UNIVERSITE AIX -MARSEILLE SPECIALITE : Pathologie Humaine, Maladies Infectieuses Les virophages de Mimiviridae The Mimiviridae virophages Présentée et publiquement soutenue devant la FACULTE DE MEDECINE de MARSEILLE le 10 décembre 2013 Membres du jury de la thèse : Pr. Bernard La Scola Directeur de thèse Pr. Jean -Marc Rolain Président du jury Pr. Bruno Pozzetto Rapporteur Dr. Hervé Lecoq Rapporteur Faculté de Médecine, 13385 Marseille Cedex 05, France URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Directeur : Pr. Didier RAOULT Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Complete Sections As Applicable
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2015.001a-kF officers) Short title: A new family and two new genera for classification of virophages two new species (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 10 are required) 6 7 8 9 10 Author(s): Matthias Fischer – Max Planck Institute for Medical Research, Germany Mart Krupovic – Institut Pasteur, France Jens H. Kuhn – NIH/NIAID/IRF-Frederick, Maryland, USA Bernard La Scola – Aix Marseille Université, France Didier Raoult – Aix Marseille Université, France Corresponding author with e-mail address: Matthias Fischer, [email protected] Mart Krupovic, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: June 11, 2015 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Fungal and Protist Viruses Subcommittee Chair: Proposal approved for submission.
    [Show full text]
  • Characteristics of Virophages and Giant Viruses Beata Tokarz-Deptuła1*, Paulina Czupryńska2, Agata Poniewierska-Baran1 and Wiesław Deptuła2
    Vol. 65, No 4/2018 487–496 https://doi.org/10.18388/abp.2018_2631 Review Characteristics of virophages and giant viruses Beata Tokarz-Deptuła1*, Paulina Czupryńska2, Agata Poniewierska-Baran1 and Wiesław Deptuła2 1Department of Immunology, 2Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland Five years after being discovered in 2003, some giant genus, Mimiviridae family (Table 3). It was found in the viruses were demonstrated to play a role of the hosts protozoan A. polyphaga in a water-cooling tower in Brad- for virophages, their parasites, setting out a novel and ford (Table 1). Sputnik has a spherical dsDNA genome yet unknown regulatory mechanism of the giant virus- closed in a capsid with icosahedral symmetry, 50–74 nm es presence in an aqueous. So far, 20 virophages have in size, inside which there is a lipid membrane made of been registered and 13 of them have been described as phosphatidylserine, which probably protects the genetic a metagenomic material, which indirectly impacts the material of the virophage (Claverie et al., 2009; Desnues number of single- and multi-cell organisms, the environ- et al., 2012). Sputnik’s genome has 18343 base pairs with ment where giant viruses replicate. 21 ORFs that encode proteins of 88 to 779 amino ac- ids. They compose the capsids and are responsible for Key words: virophages, giant viruses, MIMIVIRE, Sputnik N-terminal acetylation of amino acids and transposases Received: 14 June, 2018; revised: 21 August, 2018; accepted: (Claverie et al., 2009; Desnues et al., 2012; Tokarz-Dep- 09 September, 2018; available on-line: 23 October, 2018 tula et al., 2015).
    [Show full text]
  • An Introduction to the Viruses
    Chapter 1 An introduction to the viruses Viruses are obligate intracellular parasites of man, other animals, plants and bacteria. They can only multiply within cells, and thus differ from bacteria, which can multiply in tissues in an extracellular position, and also in artificial culture media in the laboratory. It has always been recognized that viruses are distinct from the bacteria, but originally other groups of infective agents were included among the viruses which are now known to be organisms of a different and more complex nature. These included the Chlamydiae, organisms causing diseases such as lymphogranuloma venereum and trachoma, and the Rickettsiae, the causative agents of typhus and related infections. The specific treatment of infections caused by these two groups of agents will not be considered in this work, which is restricted to the chemotherapy of infections caused by the true viruses. The Chlamydiae and Rickettsiae are complete organisms, with cell walls, which possess both types of nucleic acid, enzyme systems which function within their cytoplasm, and a number of cell organelles. The viruses, on the other hand, possess either DNA or RNA as their genetic material, but not both. In some cases they contain enzymes, but these exert their functions within the host cell after the virus particle has under­ gone a process of dissolution during the early stage of infection. Except in the case of the arenaviruses, a group which contains the virus of Lassa fever, the virus particles do not contain organelles. A virus is thus much more rudimentary in structure, and relies upon the host cell to provide the systems for synthesizing its components which it does not possess itself.
    [Show full text]
  • Theory of an Immune System Retrovirus
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 9159-9163, December 1986 Medical Sciences Theory of an immune system retrovirus (human immunodeficiency virus/acquired immune deficiency syndrome) LEON N COOPER Physics Department and Center for Neural Science, Brown University, Providence, RI 02912 Contributed by Leon N Cooper, July 23, 1986 ABSTRACT Human immunodeficiency virus (HIV; for- initiates clonal expansion, sustained by interleukin 2 and y merly known as human T-cell lymphotropic virus type interferon. Ill/lymphadenopathy-associated virus, HTLV-Ill/LAV), the I first give a brief sketch of these events in a linked- retrovirus that infects T4-positive (helper) T cells of the interaction model in which it is assumed that antigen-specific immune system, has been implicated as the agent responsible T cells must interact with the B-cell-processed virus to for the acquired immune deficiency syndrome. In this paper, initiate clonal expansion (2). I then assume that virus-specific I contrast the growth of a "normal" virus with what I call an antibody is the major component ofimmune system response immune system retrovirus: a retrovirus that attacks the T4- that limits virus spread. As will be seen, the details of these positive T cells of the immune system. I show that remarkable assumptions do not affect the qualitative features of my interactions with other infections as well as strong virus conclusions. concentration dependence are general properties of immune Linked-Interaction Model for Clonal Expansion of Lympho- system retroviruses. Some of the consequences of these ideas cytes. Let X be the concentration of normal infecting virus are compared with observations.
    [Show full text]
  • Tiny Giants | Maxplanckresearch 3/2019
    BIOLOGY & MEDICINE_Viruses Tiny giants Viruses are usually incredibly small, but some deviate from the norm and reach sizes greater than that of a bacterial cell. Matthias Fischer from the Max Planck Institute for Medical Research in Heidelberg is one of a small number of scientists working on giant viruses of this kind. TEXT STEFANIE REINBERGER Photo: Wolfram Scheible 58 MaxPlanckResearch 3 | 19 n the laboratory of Matthias Fischer Although they look like nothing more As giant viruses are about at the Max Planck Institute in Hei- than vials of water to the naked eye, the the same size as bacteria, delberg, vials containing water samples are actually teeming with it is almost impossible to purify them by filtration samples are lined up against one life, which only becomes visible when only. However, as viruses another, each containing a whole viewed through a microscope: countless and bacteria have different I world of aquatic single-celled organ- tiny dots are scurrying back and forth. densities, they form layers isms and viruses. The labels reveal the “The smaller ones are bacteria, which when spun in an ultracen- trifuge. Scientists can then origins of the samples: Guenzburg, are devoured by larger cells that have a extract the viral band using Kiel, but also more exotic locations nucleus. These so-called protists are the a syringe and needle. such as Tallinn or the British Virgin reason we created the collection in the Islands. “The collection is the result of first place,” Fischer explains. Indeed, many years of work,” the microbiolo- these protists are susceptible to attack Photo: Wolfram Scheible gist explains.
    [Show full text]
  • West Nile Virus (WNV) Fact Sheet
    West Nile Virus (WNV) Fact Sheet What Is West Nile Virus? How Does West Nile Virus Spread? West Nile virus infection can cause serious disease. WNV is ▪ Infected Mosquitoes. established as a seasonal epidemic in North America that WNV is spread by the bite of an infected mosquito. flares up in the summer and continues into the fall. This Mosquitoes become infected when they feed on fact sheet contains important information that can help infected birds. Infected mosquitoes can then spread you recognize and prevent West Nile virus. WNV to humans and other animals when they bite. What Can I Do to Prevent WNV? ▪ Transfusions, Transplants, and Mother-to-Child. In a very small number of cases, WNV also has been The easiest and best way to avoid WNV is to prevent spread directly from an infected person through blood mosquito bites. transfusions, organ transplants, breastfeeding and ▪ When outdoors, use repellents containing DEET, during pregnancy from mother to baby. picaridin, IR3535, some oil of lemon eucalyptus or para- Not through touching. menthane-diol. Follow the directions on the package. ▪ WNV is not spread through casual contact such as ▪ Many mosquitoes are most active from dusk to dawn. touching or kissing a person with the virus. Be sure to use insect repellent and wear long sleeves and pants at these times or consider staying indoors How Soon Do Infected People Get Sick? during these hours. People typically develop symptoms between 3 and 14 days after they are bitten by the infected mosquito. ▪ Make sure you have good screens on your windows and doors to keep mosquitoes out.
    [Show full text]
  • Constructing Protocells: a Second Origin of Life
    04_SteenRASMUSSEN.qxd:Maqueta.qxd 4/6/12 11:45 Página 585 Session I: The Physical Mind CONSTRUCTING PROTOCELLS: A SECOND ORIGIN OF LIFE STEEN RASMUSSEN Center for Fundamental Living Technology (FLinT) Santa Fe Institute, New Mexico USA ANDERS ALBERTSEN, PERNILLE LYKKE PEDERSEN, CARSTEN SVANEBORG Center for Fundamental Living Technology (FLinT) ABSTRACT: What is life? How does nonliving materials become alive? How did the first living cells emerge on Earth? How can artificial living processes be useful for technology? These are the kinds of questions we seek to address by assembling minimal living systems from scratch. INTRODUCTION To create living materials from nonliving materials, we first need to understand what life is. Today life is believed to be a physical process, where the properties of life emerge from the dynamics of material interactions. This has not always been the assumption, as living matter at least since the origin of Hindu medicine some 5000 years ago, was believed to have a metaphysical vital force. Von Neumann, the inventor of the modern computer, realized that if life is a physical process it should be possible to implement life in other media than biochemistry. In the 1950s, he was one of the first to propose the possibilities of implementing living processes in computers and robots. This perspective, while being controversial, is gaining momentum in many scientific communities. There is not a generally agreed upon definition of life within the scientific community, as there is a grey zone of interesting processes between nonliving and living matter. Our work on assembling minimal physicochemical life is based on three criteria, which most biological life forms satisfy.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • Viral Infection Modulates Mitochondrial Function
    International Journal of Molecular Sciences Review Viral Infection Modulates Mitochondrial Function Xiaowen Li 1,2,3, Keke Wu 1,2,3, Sen Zeng 1,2,3, Feifan Zhao 1,2,3, Jindai Fan 1,2,3, Zhaoyao Li 1,2,3, Lin Yi 1,2,3, Hongxing Ding 1,2,3, Mingqiu Zhao 1,2,3, Shuangqi Fan 1,2,3,* and Jinding Chen 1,2,3,* 1 College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; [email protected] (X.L.); [email protected] (K.W.); [email protected] (S.Z.); [email protected] (F.Z.); [email protected] (J.F.); [email protected] (Z.L.); [email protected] (L.Y.); [email protected] (H.D.); [email protected] (M.Z.) 2 Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China 3 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China * Correspondence: [email protected] (S.F.); [email protected] (J.C.); Tel.: +86-20-8528-8017 (S.F.); +86-20-8528-8017 (J.C.) Abstract: Mitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases. A large number of studies have found that a variety of viral infec- tions could change mitochondrial dynamics, mediate mitochondria-induced cell death, and alter the mitochondrial metabolic status and cellular innate immune response to maintain intracellular survival.
    [Show full text]
  • The Origins of Giant Viruses, Virophages and Their Relatives in Host Genomes Aris Katzourakis* and Amr Aswad
    Katzourakis A and Aswad A BMC Biology 2014, 12:51 http://www.biomedcentral.com/1741-7007/12/51 COMMENTARY The origins of giant viruses, virophages and their relatives in host genomes Aris Katzourakis* and Amr Aswad Abstract including the discovery last month of Samba virus, a wild mimivirus from the Amazonian Rio Negro [4]. Al- Giant viruses have revealed a number of surprises that though slightly larger, Samba virus shares identity across challenge conventions on what constitutes a virus. the majority of its genome to the original Bradford The Samba virus newly isolated in Brazil expands the mimivirus, further expanding the widespread distribu- known distribution of giant mimiviruses to a near- tion of these giant viruses. The defining feature of giant global scale. These viruses, together with the viruses is that they are an extreme outlier in terms of transposon-related virophages that infect them, pose a genome size: Acanthamoeba polyphaga mimivirus has a number of questions about their evolutionary origins 1.2 Mb genome [1], which was double the size of the lar- that need to be considered in the light of the gest virus known at the time, and pandoravirus genomes complex entanglement between host, virus and reach up to 2.5 Mb [2]. Giant viruses are also extreme virophage genomes. outliers in terms of their physical size, being too large to pass through porcelain filters, a criterion historically See research article: used to define a virus. As a further challenge to the trad- http://www.virologyj.com/content/11/1/95. itional definition of viruses, giant viruses have several es- sential protein synthesis genes that have thus far been The discovery of giant viruses thought to be exclusive to cellular life [1].
    [Show full text]
  • Virophages Question the Existence of Satellites
    CORRESPONDENCE LINK TO ORIGINAL ARTICLE LINK TO AUTHOR’S REPLY located in front of 12 out of 21 Sputnik coding sequences and all 20 Cafeteria roenbergensis Virophages question the virus coding sequences (both promoters being associated with the late expression of genes) existence of satellites imply that virophage gene expression is gov- erned by the transcription machinery of the Christelle Desnues and Didier Raoult host virus during the late stages of infection. Another point concerns the effect of the virophage on the host virus. It has been argued In a recent Comment (Virophages or satel- genome sequences of other known viruses that the effect of Sputnik or Mavirus on the lite viruses? Nature Rev. Microbiol. 9, 762– indicates that the virophages probably belong host is similar to that observed for STNV and 763 (2011))1, Mart Krupovic and Virginija to a new viral family. This is further supported its helper virus1. However, in some cases the Cvirkaite-Krupovic argued that the recently by structural analysis of Sputnik, which infectivity of TNV is greater when inoculated described virophages, Sputnik and Mavirus, showed that MCP probably adopts a double- along with STNV (or its nucleic acid) than should be classified as satellite viruses. In a jelly-roll fold, although there is no sequence when inoculated alone, suggesting that STNV response2, to which Krupovic and Cvirkaite- similarity between the virophage MCPs and makes cells more susceptible to TNV11. Such Krupovic replied3, Matthias Fisher presented those of other members of the bacteriophage an effect has never been observed for Sputnik two points supporting the concept of the PRD1–adenovirus lineage9.
    [Show full text]