Transport in Plants

Total Page:16

File Type:pdf, Size:1020Kb

Transport in Plants BIOLOGY TRANSPORT IN PLANTS Transport in Plants In plants, materials such as gases, minerals, water, hormones and organic solutes need to be transported over short and long distances. Short distance transport occurs through through diffusion and cytoplasmic streaming accompanied by active transport. Long distance transport occurs through the xylem and phloem. This transport is called translocation. Means of Transport Facilitated Active Diffusion Diffusion Transport Diffusion The movement of molecules or ions from the region of higher concentration to the region of lower concentration, until the molecules are evenly distributed throughout the available space is known as diffusion. The rate of diffusion gets affected by temperature, density of diffusing substances, medium in which diffusion is taking place, diffusion pressure gradient. Characteristics of Diffusion The diffusing molecules move randomly along the concentration gradient. The direction of diffusion of one substance is independent of the movement of the other substance. www.topperlearning.com 2 BIOLOGY TRANSPORT IN PLANTS There is no energy expenditure. Importance of Diffusion in Plants Diffusion helps in CO2 intake and O2 output in photosynthesis and CO2 output and O2 intake in respiration. It is an effective means of transport of substances over very short distance. Facilitated Diffusion The spontaneous passage of molecules or ions across a biological membrane mediated by specific transmembrane carrier proteins without spending metabolic energy is called facilitated diffusion. Water soluble substances such as glucose, sodium ions and chloride ions are transported by this method. Action of Transport of Proteins The carrier protein acts as selective channels through which the molecules are transported across the membrane. Large transporter proteins create huge pores in the outer membranes of plastids, mitochondria and bacteria through which variety of molecules are passed. These transporter proteins are called porins. Aquaporins are the water channels through which massive amount of water diffuse into the cell. Types of Facilitated Diffusion Uniport: When a particular type of molecule moves across a membrane independent of the other molecule, the diffusion is called uniport. Symport: When the two types of molecules move in the same direction at the same time, it is called symport. Antiport: When the two types of molecules move in the opposite direction at the same time, it is called antiport. www.topperlearning.com 3 BIOLOGY TRANSPORT IN PLANTS Active Transport The process of transport of materials across the biological membrane with the help of a mobile carrier protein involving expenditure of energy in the form of ATP is called active transport. It is a kind of uphill transport against the concentration gradient and is faster than passive transport. Carrier proteins on the cell membrane act as pumps to transport substances across the membrane. Comparison of Different Transport Mechanisms Property Simple Diffusion Facilitated Diffusion Active Transport 1. Requires special No Yes Yes membrane proteins 2. Uphill transport No No Yes 3. Requires ATP energy No No Yes 4. Movement of transport No No Yes proteins Plant — Water Relations Water is an important constituent in living systems. Water is essential to maintain the turgidity of cells, functioning of the protoplasm and regulation of constant body temperature. Because water is important for all physiological activities of plants, it is important to understand plant– water relations concerned with some physiological processes in plants. www.topperlearning.com 4 BIOLOGY TRANSPORT IN PLANTS Water Potential The difference between the free energy of water molecules in pure water and the energy of water in any other system is termed water potential. Water potential is denoted by the symbol psi ѱ/ ѱw. The water potential is expressed in pressure units such as pascals (Pa), bars or atmospheres. Chemical potential of pure water at normal temperature and pressure is taken as zero. Chemical potential of water in any other system such as a solution or in a cell will be less than zero, i.e. negative. If there is a difference in the water potential between two regions, then the spontaneous movement of water will take place. The amount by which the water potential is reduced as a result of the presence of solute is called the solute potential or osmotic potential (ѱs). The value of the solute potential is always negative. More the solute particles, the solute potential will be more negative ѱs. Pressure potential (ѱp) is the positive pressure developed in a system because of osmotic entry of water into it. For a solution at atmospheric pressure, ѱw is equal to ѱs. Osmosis Osmosis is the diffusion of solvent molecules from a region of higher concentration to a region of lower concentration through a semi-permeable membrane until equilibrium is reached. Osmotic pressure is the pressure required to prevent the passage of pure water into an aqueous solution through a semi-permeable membrane, thereby preventing an increase in the volume of the solution. Osmotic pressure is usually measured in pascals, Pa. www.topperlearning.com 5 BIOLOGY TRANSPORT IN PLANTS During osmosis, water or solvent molecules move as follows: From the region of To the region of Pure solvent Solution Dilute solution Concentrated solution High free energy of water molecules Low free energy of water molecules Higher water potential Lower water potential Higher diffusion pressure of water Lower diffusion pressure of water A solution whose concentration is more than that of the cell sap is known as a hypertonic solution. A solution whose concentration is less than that of the cell sap is known as a hypotonic solution. A solution whose concentration is equal to that of the cell sap is known as an isotonic solution. Turgor pressure (TP) is the pressure developed in an osmotic system because of the entry of water which causes swelling of the system. When a cell is placed in a hypotonic solution, water will enter the cell as the cell sap is more concentrated than the surrounding solution. This makes the cell turgid. When a cell is placed in a hypertonic solution, water will diffuse out of the cell as the cell sap is less concentrated than the surrounding solution. This makes the cell flaccid i.e. the protoplast of the cell shrinks. As the cell wall is rigid and less elastic, it cannot keep pace with the contraction of the plasma membrane. The protoplast separates from the cell wall and assumes a spherical shape. This condition is called plasmolysis. Plasmolysis is the withdrawal of protoplast of a plant cell from its cell wall because of excessive loss of water from the cell. www.topperlearning.com 6 BIOLOGY TRANSPORT IN PLANTS Importance of Osmosis Plants absorb water by osmosis. Movement and distribution of water across cells occur through osmosis. Rigidity of plant organs is maintained through osmosis. Leaves become turgid and expand because of their osmotic pressure. Opening and closing of stomata is affected by osmosis. Imbibition Imbibition is the phenomenon of adsorption of water or any other liquid by solid particles of a substance without forming a solution. The solid particles which adsorb water or any other liquid are called imbibants. The liquid which is imbibed is known as imbibate. The molecules of the imbibate are held in between or over the surface of solid substances through capillarity or by the force of adsorption. Examples of Imbibition A dry piece of wood placed in water swells and increases in volume. Wooden doors and windows adsorb water in the rainy season and increase in their volume hence they are hard to open or close. Importance of Imbibition to Plants Imbibition causes swelling of seeds and results in breaking of the testa. Imbibition is dominant in the initial stage of water absorption by roots. Water enters the ovules which are ripening into seeds by the process of imbibition. Imbibition pressure generated during the germination of seeds and spores is so enormous that it can break asphalt roads and concrete pavements. www.topperlearning.com 7 BIOLOGY TRANSPORT IN PLANTS Transport of Water and Soil Water Relations Bulk Flow System Bulk flow system is a long distance transport system to move distances at faster rates. Water, minerals and food are generally moved by a mass/bulk flow system. A mass flow or bulk flow system is responsible for the movement of substances in bulk or en mass from the sites of production or adsorption to the sites of storage or consumption as a result of pressure differences between the two sites. Bulk flow can be achieved through either a positive hydrostatic pressure gradient or a negative hydrostatic pressure gradient. The bulk movement of substances through the conducting or vascular tissues of plants is called translocation. Xylem is associated with the translocation of mainly water, mineral salts, some organic nitrogen and hormones, from the roots to the aerial parts of plants. The phloem translocates a variety of organic and inorganic solutes, mainly from the leaves to the other parts of plants. www.topperlearning.com 8 BIOLOGY TRANSPORT IN PLANTS Mechanism of Water Absorption The water-absorbing structure of the plant is the root hair zone. A root hair is a unicellular tubular propagation of the outer wall of the epiblema. When water is absorbed by the root hair and other epidermal cells, it moves centripetally across the cortex, endodermis, pericycle and finally enters the xylem. Water moves from cell to cell along the concentration gradient. Two possible pathways for the movement of water along the roots are the apoplast pathway and the symplast pathway. Apoplast Pathway The apoplast system includes interconnecting cell walls, intercellular spaces, cell walls of endodermis excluding Casparian strips, xylem tracheids and vessels. In this pathway, water moves from the root hair to the xylem through the walls of intervening cells without crossing any membrane or cytoplasm.
Recommended publications
  • Kinetics of Photosynthate Translocation Donald Boyd Fisher Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1965 Kinetics of photosynthate translocation Donald Boyd Fisher Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Botany Commons Recommended Citation Fisher, Donald Boyd, "Kinetics of photosynthate translocation" (1965). Retrospective Theses and Dissertations. 4085. https://lib.dr.iastate.edu/rtd/4085 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been micro&hned exactly as received ® ® ® ^ FISHER, Donald Boyd, 1935- KINETICS OF PHOTOSYNTHATE TRANS­ LOCATION. Iowa State University of Science and Technology, Ph.D., 1965 Botany University Microfilms, Inc., Ann Arbor, Michigan KINETICS OF PHOTOSYNTHATE TRANSLOCATION by Donald Boyd Fisher A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Biochemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. fieao. oi I'lajor ueparument Signature was redacted for privacy. D of Graduate College Iowa State University Of Science and Technology Ames, Iowa 1965 il TABLE OF CONTENTS Page I. INTRODUCTION MD LITERATURE REVIE'/J 1 II. ANATOMIC OBSERVATIONS 12 A, Observations on the Leaf Structure 12 B, Observations on the Phloem 18 III. ISOTOPIC EXPERIMENTS 23 A. Materials and Methods 23 1.
    [Show full text]
  • Microfluidics of Sugar Transport in Plant Leaves and in Biomimetic Devices
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Microfluidics of sugar transport in plant leaves and in biomimetic devices Rademaker, Hanna Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Rademaker, H. (2016). Microfluidics of sugar transport in plant leaves and in biomimetic devices. Department of Physics, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Ph.D. thesis Microfluidics of sugar transport in plant leaves and in biomimetic devices Hanna Rademaker 14 September 2016 Supervised by Tomas Bohr and Kaare Hartvig Jensen Cover image: Light microscopy image of a Coleus blumei leaf. The image shows the natural color. Microfluidics of sugar transport in plant leaves and in biomimetic devices Copyright ➞ 2016 Hanna Rademaker. All rights reserved. Typeset using LATEX and TikZ. Abstract The physical mechanisms underlying vital plant functions constitute a research field with many important, unsolved problems.
    [Show full text]
  • Level Biology. Basic and Simplified Revision Notes
    Systematic “A” level Biology. Basic and simplified Revision notes. SYSTEMATIC “A” LEVEL BIOLOGY. Basic and simplified revision notes. STANDARD TEACHING SYLABUS: 1. Cell biology or cytology………………………………………..………………………….2 Definition of cytology/cell biology, definition of the cell. Microscopy. light and electron microscopes their structure, mode of operation and comparison between them, microscope practical techniques. Cell theory, types of organism’s i.e prokaryotes and eukaryotes, comparison between Prokaryotes and eukaryotes, why cells are small? Structures of the cell, cell diversity.. Cell division. Types of cell division, events that occur during each type, comparison between them and the importance of each type. 2.Histology………………………………………………………………………………………..4 Definition, types of tissues, their structures and functions,adaptations of some tissues to suit their function. Levels of organization. ie unicellular level; tissue level; organ level; system level and organism level; advantages and disadvantages of being unicellular and multicelar organism; 3. Classification of living organisms…………………………………………………….65 Common terms used: classification, taxonomy, systematics, binomial nomenclature, dichotomous keys, taxonomic hierarchy, and five kingdom system: Animalia, Plantae, fungi, Protista and monera general characteristic of organismin each kingdom and the examples. 4. Transport of materials in living organisms………………………………………107 5. Chemicals of life………………………………………………………………………….150 DNA structure, RNA structure, DNA replication and protein
    [Show full text]
  • Syllabus Botany
    Written examination to be conducted for the post of Astt. Professor. Syllabus Botany Section A Phycology:- Algae in diversified habitats (terrestrial, freshwater, marine), thallus organization, cell ultra structure, reproduction, {Vegetative, asexual, sexual), criteria for classification of algae: pigments, reserve food, flagella, classification; salient features of Protochlorophyta, , Charophyta, Xenthophyta, Bacillariophyta, Phaeophyta and Rhodophyta: wIth special reference- to Microcystis, Hydroaktyon, DropernaldiopsisCosmarium, algal blooms, algal biofertilizers: algae as food, feed and uses in industry. Mycology: General character of fungi, substrate relationship in fungi, cell ultrastructure, unicellular and multicellular organization, cell wall composition; nutrition. (saprobic, biotrophic symbiotic) reproduction (vegetative, asexual sexual), heterothallism, heterokaryosis, parasexuality recent trends in classification. Phylogeny of fungi, general account of Mastigomycotina,Zygomycotina, Ascomycotina,Basidiomycotina, Deuteromycotina with special reference to PilobolusChaetomium, Morchella, Melampsora, Polyporus,Drechslera&Phomo, fungi in industry, medicine and as food fungal diseases in plants and humans, Mycorrhizae, fungi as blocontrol agents. Bryophyta: Morphology, structures reproduction and life .history,-distribution. Classification, general account of Marchantiales, Junger-maniales, Anthocerotales, Sphagnales, Funariales and Polytrichales with special reference to Piaglochasma, Notothylus and Polytrichurn, economic and ecological
    [Show full text]
  • Unit 4 Plant Physiology
    UNIT 4 PLANT PHYSIOLOGY Chapter 11 The description of structure and variation of living organisms over a Transport in Plants period of time, ended up as two, apparently irreconcilable perspectives on biology. The two perspectives essentially rested on two levels of Chapter 12 organisation of life forms and phenomena. One described at organismic Mineral Nutrition and above level of organisation while the second described at cellular and molecular level of organisation. The first resulted in ecology and Chapter 13 related disciplines. The second resulted in physiology and biochemistry. Photosynthesis in Higher Plants Description of physiological processes, in flowering plants as an example, is what is given in the chapters in this unit. The processes of Chapter 14 mineral nutrition of plants, photosynthesis, transport, respiration and Respiration in Plants ultimately plant growth and development are described in molecular terms but in the context of cellular activities and even at organism Chapter 15 level. Wherever appropriate, the relation of the physiological processes Plant Growth and to environment is also discussed. Development 2020-21 MELVIN CALVIN born in Minnesota in April, 1911, received his Ph.D. in Chemistry from the University of Minnesota. He served as Professor of Chemistry at the University of California, Berkeley. Just after world war II, when the world was under shock after the Hiroshima-Nagasaki bombings, and seeing the ill- effects of radio-activity, Calvin and co-workers put radio- activity to beneficial use. He along with J.A. Bassham studied reactions in green plants forming sugar and other substances from raw materials like carbon dioxide, water and minerals by labelling the carbon dioxide with C14.
    [Show full text]
  • Acyrthosiphon Pisum AQP2: a Multifunctional Insect Aquaglyceroporin
    Biochimica et Biophysica Acta 1818 (2012) 627–635 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Acyrthosiphon pisum AQP2: A multifunctional insect aquaglyceroporin Ian S. Wallace a,1, Ally J. Shakesby b, Jin Ha Hwang a, Won Gyu Choi a, Natália Martínková b,c, Angela E. Douglas b,d, Daniel M. Roberts a,⁎ a Department of Biochemistry & Cellular, and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996–0840, USA b Department of Biology, University of York, York, YO10 5DD, UK c Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic d Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14850, USA article info abstract Article history: Annotation of the recently sequenced genome of the pea aphid (Acyrthosiphon pisum) identified a gene Received 31 August 2011 ApAQP2 (ACYPI009194, Gene ID: 100168499) with homology to the Major Intrinsic Protein/aquaporin super- Received in revised form 19 November 2011 family of membrane channel proteins. Phylogenetic analysis suggests that ApAQP2 is a member of an insect- Accepted 28 November 2011 specific clade of this superfamily. Homology model structures of ApAQP2 showed a novel array of amino acids Available online 8 December 2011 comprising the substrate selectivity-determining “aromatic/arginine” region of the putative transport pore. Keywords: Subsequent characterization of the transport properties of ApAQP2 upon expression in Xenopus oocytes fi Aphid supports an unusual substrate selectivity pro le. Water permeability analyses show that the ApAQP2 pro- Aquaporins tein exhibits a robust mercury-insensitive aquaporin activity.
    [Show full text]
  • The Cell: Basic Unit of Structure and Function
    OUTLINE 2.1 The Study of Cells 24 2.1a Using the Microscope to Study Cells 24 2.1b General Functions of Human Body Cells 25 2 2.2 A Prototypical Cell 27 2.3 Plasma Membrane 30 2.3a Composition and Structure of Membranes 30 2.3b Protein-Specific Functions of the Plasma Membrane 31 The Cell: 2.3c Transport Across the Plasma Membrane 32 2.4 Cytoplasm 36 2.4a Cytosol 36 2.4b Inclusions 36 Basic Unit 2.4c Organelles 36 2.5 Nucleus 44 2.5a Nuclear Envelope 44 2.5b Nucleoli 45 of Structure 2.5c DNA, Chromatin, and Chromosomes 45 2.6 Life Cycle of the Cell 46 2.6a Interphase 47 2.6b Mitotic (M) Phase 47 and 2.7 Aginging and the Cell 50 Function MODULE 2: CELLS & CHEMISTRY mck78097_ch02_023-053.indd 23 2/11/11 2:39 PM 24 Chapter Two The Cell: Basic Unit of Structure and Function ells are the structural and functional units of all organisms, C including humans. An adult human body contains about 75 trillion cells. Most cells are composed of characteristic parts that work together to allow them to perform specific body functions. Size There are approximately 200 different types of cells in the human 10 m body, but all of them share certain common characteristics: Human height ■ All cells perform the general housekeeping functions 1 m Some muscle and necessary to sustain life. Each cell must obtain nutrients and nerve cells other materials essential for survival from its surrounding 0.1 m fluids. Recall from chapter 1 that the total of all the chemical Ostrich egg reactions that occur in cells is called metabolism.
    [Show full text]
  • Topic #4: Angiosperm Anatomy And
    Topic #3: Angiosperm Anatomy and Selected Aspects of Physiology REQUIREMENTS: Powerpoint Presentations. Objectives 1. How do parenchyma cells, collenchyma cells, and sclerenchyma cells differ? (Thickness and chemical properties of cell wall? Cell function? Living at maturity? Location?) 2. What are tracheary elements? In which group of plants are vessel elements found? Which of the two types of tracheary elements is most primitive? How are tracheids distinguished from vessel elements? Distinguish bulk movement of water from diffusive movement of water. Do living plant cells have internal positive pressure? Can liquid water be under negative pressure? . gaseous water? Explain the cohesion theory of sap ascent. Which tracheary element is more specialized for transport? . for support? 3. What is auxin? Name some plant developmental processes that it affects. Where is auxin made? Describe the potential mechanisms for auxin action in cell expansion. 4. What are sieve-tube elements? What is their function? Describe their relationships with companion cells. Describe the structure of a sieve-tube element. Explain in detail the mass flow mechanism for phloem transport. Define apoplast, symplast. 5. Draw a cross-section of a typical dicot leaf. Label the different cell types. Where is the phloem, xylem? 6. What are stomata? Describe the mechanism of opening and closing. What is ABA? How does it function mechanistically? Describe several physiological processes in which it is involved. 7. How do dicots and monocots differ in overall root morphology? (What is a taproot, fibrous root system?) 8. What is (are) the function(s) of a root cap? Where is it? Do stems have an analogous tissue? 9.
    [Show full text]
  • University of Kota
    UNIVERSITY OF KOTA SEMESTER SCHEME (w.e.f. 2018-19) M.Sc. (Botany) MBS Marg, Near Kabir Circle, KOTA (Rajasthan)-324 005 Syllabus of M.Sc. Botany Semester-I Paper I . Biology and Diversity of Lower Plants II. Pteridophyta, Gymnosperms and Paleobotany III. Plant Physiology IV. Microbiology and Plant Pathology V. Practicals Semester-II Paper VI . Plant Ecology VII. Plant Resource Utilization & Conservation VIII. Cell and Molecular Biology IX. Biochemistry X. Practical Semester-III Paper XI. Plant Development and Reproduction XII. Cytogenetics XIII. Taxonomy of Angiosperms XIV. Elective Paper-(a) Adv. Plant Pathology -I (b) Adv.Plant Ecology-I. (Environment Biology) XV. Practicals Semester-IV Paper XVI . Biotechnology and Biometrics XVII. Plant Morphology and Anatomy XVIII. Seed Biology and Plant Breeding XIX. Elective paper-(a) Adv. Plant Pathology-II (b) Adv. Plant Ecology-II (Arid Zone Ecology) XX. Practicals M.Sc. Botany Semester-I Paper I . Biology and Diversity of Lower Plant II. Pteridophyta, Gymnosperm and Paleobotany III. Plant Physiology IV. Microbiology and Plant Pathology V. Practical Paper I-Biology and Diversity of Lower Plants Maximum Marks : 100 Marks Duration of Examination: 3 Hours Semester Assessment : 70 Marks Continuous (Internal) Assessment : 30 Marks Note: The syllabus is divided into five independent units and question paper will be divided into three sections. Section-A will carry 10 marks with 01 compulsory question comprising 10 short answer type questions (maximum 20 words answer) taking two questions from each unit. Each question shall be of one mark. Section-B will carry 25 marks with equally divided into five long answer type questions (answer about in 250 words).
    [Show full text]
  • M.Sc. Botany C.B.C.S
    [- I I JIWAJI I.]NIVERSITY GWALIOR (M.P.) SYLLABUS FOR School of Studies in Botany M. Sc. (Botany) CBCS (Choice Based Credit System) I SESSION 2019 -2021 \\.*k\,r E.ofu.fuir M.Sc. Botany, Choice Based Credit System-2019-21 Course Structure and Scheme of Examination Semester Course Title of Paper(s) Course Credit Code Type L T P Total NIarks FIRST BOT tot Bacteriology, Virology & Geneml Microbiology Core 0 100 BOT 102 Biology and Diversity of Fungi and Plant Pathology Core 0 3 r00 BOT 103 Biology and Diversity ofAlgae, Bryophytes and Lichens Core 3 0 3 100 BOT t 04 Biology and Diversity of Pteridoph)'tes and Gymnosperms Core 3 0 100 BOT t05 Lab Course I Core 0 r00 BOT 106 Lab Course II Core 0 3 r00 BOT-107 Seminar AE&SD I 100 BOT-108 Assi gnment/Personalit) development/Yog, language/ AE&SD I 100 Environmcnti Phvsical Education Total Valid Credits 20 BOT-t 09 Comprehensive viva-voce exam Virtual credit 4 r00 Total Credits for First SeInester (Valid Credits + virtual Credits) 21 900 SECOND BOT 201 Ecoloey-l Climatoloq]. Soil Science and Autecology Core 3 0 100 BOT 202 Anqiosperm anatomy, Embryology and Palynology Core 0 l r00 BOT 203 Water Relations. GroMh and Development Core 0 100 BOT 204 Plant Biochemistry and Metabolism Core 0 3 t00 BOT 205 Lab Course I Core 0 t00 BOT 206 Lab Course II Core 0 100 BOT-207 Seminar AE&SD l 100 BOT-208 Assignment/Personalit) development/Yoga/ lan guage/ AE&SD I 100 Invironmenl/ Ph!sical Education Total Valid Credits 20 BOT-209 Comprehensive viva-voce exam Virtual credit 4 100 Total Credits for Second Semester (Valid Credits + virtual Credits) 24 900 TI{IRD BOT 301 Angiosperm Morphologl & Taxonomy Core 3 0 100 BOT 302 Ecology-ll Synecology, Ecosystematology & Core 0 100 Phytoseography BOT 303 Plant Biotechnology: ln Vitro Culture, Genetic Elective 0 I tto Engineering and IPR lssue BOT 304 Major Elective 1.
    [Show full text]
  • Diffusion and Bulk Flow in Phloem Loading a Theoretical Analysis of the Polymer Trap Mechanism for Sugar Transport in Plants
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Diffusion and bulk flow in phloem loading a theoretical analysis of the polymer trap mechanism for sugar transport in plants Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas Published in: Physical Review E Link to article, DOI: 10.1103/PhysRevE.90.042704 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Dölger, J., Rademaker, H., Liesche, J., Schulz, A., & Bohr, T. (2014). Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants. Physical Review E, 90(4), 042704. https://doi.org/10.1103/PhysRevE.90.042704 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. PHYSICAL REVIEW E 90, 042704 (2014) Diffusion and bulk flow in phloem loading: A theoretical analysis of the polymer trap mechanism for sugar transport in plants Julia Dolger,¨ 1,3 Hanna Rademaker,1 Johannes Liesche,2 Alexander Schulz,2 and Tomas Bohr1 1Department of Physics and Center for Fluid Dynamics, Technical University of Denmark, Kgs.
    [Show full text]
  • Microfluidics of Sugar Transport in Plant Leaves and in Biomimetic Devices
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Microfluidics of sugar transport in plant leaves and in biomimetic devices Rademaker, Hanna Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Rademaker, H. (2016). Microfluidics of sugar transport in plant leaves and in biomimetic devices. Department of Physics, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Ph.D. thesis Microfluidics of sugar transport in plant leaves and in biomimetic devices Hanna Rademaker 14 September 2016 Supervised by Tomas Bohr and Kaare Hartvig Jensen Cover image: Light microscopy image of a Coleus blumei leaf. The image shows the natural color. Microfluidics of sugar transport in plant leaves and in biomimetic devices Copyright ➞ 2016 Hanna Rademaker. All rights reserved. Typeset using LATEX and TikZ. Abstract The physical mechanisms underlying vital plant functions constitute a research field with many important, unsolved problems.
    [Show full text]