Formation of Hybrid Arc Andesites Beneath Thick Continental Crust

Total Page:16

File Type:pdf, Size:1020Kb

Formation of Hybrid Arc Andesites Beneath Thick Continental Crust Earth and Planetary Science Letters 303 (2011) 337–347 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Formation of hybrid arc andesites beneath thick continental crust Susanne M. Straub a,b,⁎, Arturo Gomez-Tuena c, Finlay M. Stuart d, Georg F. Zellmer b, Ramon Espinasa-Perena e, Yue Cai a,f, Yoshiyuki Iizuka b a Lamont Doherty Earth Observatory at the Columbia University, 61 Route 9W, Palisades NY 10964, USA b Institute of Earth Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, ROC c Centro de Geociencias, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico d Isotope Geosciences Unit, Scottish Universities Research and Reactor Centre, East Kilbride G75 0QF, UK e Instituto de Geofisica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F. 04510, Mexico f Department of Earth and Environmental Sciences, Columbia University, 61 Route 9W, Palisades NY 10964, USA article info abstract Article history: Andesite magmatism at convergent margins is essential for the differentiation of silicate Earth, but no Received 7 November 2010 consensus exists as to andesite petrogenesis. Models proposing origin of primary andesite melts from mantle Received in revised form 12 January 2011 and/or slab materials remain in deadlock with the seemingly irrefutable petrographic and chemical evidence Accepted 13 January 2011 for andesite formation through mixing of basaltic mantle melts with silicic components from the overlying crust. Here we use 3He/4He ratios of high-Ni olivines to demonstrate the mantle origin of basaltic to andesitic Editor: R.W. Carlson arc magmas in the central Mexican Volcanic Belt (MVB) that is constructed on ~50 km thick continental crust. N Keywords: We propose that the central MVB arc magmas are hybrids of high-Mg# 70 basaltic and dacitic initial mantle helium isotopes melts which were produced by melting of a peridotite subarc mantle interspersed with silica-deficient and high-Ni olivine silica-excess pyroxenite veins. These veins formed by infiltration of reactive silicic components from the andesite formation subducting slab. Partial melts from pyroxenites, and minor component melts from peridotite, mix in variable Mexican Volcanic Belt proportions to produce high-Mg# basaltic, andesitic and dacitic magmas. Moderate fractional crystallization and recharge melt mixing in the overlying crust produces then the lower-Mg# magmas erupted. Our model accounts for the contrast between the arc-typical SiO2 variability at a given Mg# and the strong correlation between major element oxides SiO2, MgO and FeO which is not reproduced by mantle–crust mixing models. Our data further indicate that viscous high-silica mantle magmas may preferentially be emplaced as intrusive silicic plutonic rocks in the crust rather than erupt. Ultimately, our results imply a stronger turnover of slab and mantle materials in subduction zones with a negligible, or lesser dilution, by materials from the overlying crust. © 2011 Elsevier B.V. All rights reserved. 1. Introduction assimiliation of up half of the mass of the erupted melt (e.g. Eichelberger, 1978; Leeman, 1983; Hildreth and Moorbath, 1988; Andesite magmas at convergent margins are enriched in silica Plank and Langmuir, 1988; Streck et al., 2007; Tatsumi et al., 2008; compared to magmas erupting at mid-ocean ridges and intra-plate Reubi and Blundy, 2009). Other models propose primary andesite volcanoes. Determining the cause(s) of silica enrichment is funda- formation beneath the Moho, which may occur by various mecha- mental for models of continental crust formation, arc growth rates nisms such as hydrous melting of peridotite (Hirose, 1997; Moore and and across-arc mass balances (Plank and Langmuir, 1993; Rudnick, Carmichael, 1998; Blatter and Carmichael, 1998b; Carmichael, 2002), 1995; White et al., 2006). Andesite petrogenesis, however, has long slab melting (Defant and Drummond, 1990) or hybridization of slab been controversial, with no consensus even whether andesitic and mantle materials by melt rock-reaction processes (Kay, 1978; magmas form in the subarc mantle or in the overlying crust (Rudnick, Yogodzinksi et al., 1994; Kelemen, 1995; Yogodzinski et al., 1995; 1995; Rudnick and Gao, 2002). Many models assume a basaltic flux Rapp et al., 1999; Kelemen et al., 2003, 2004; Gomez-Tuena et al., from mantle to arc crust, with silicic magmas evolving subsequently in 2007). These two approaches differ substantially with respect to the the upper plate crust through fractional crystallization and crustal turnover of slab and mantle materials in subduction zones, the rate of crustal growth, and the overall connectivity between arc magmatism and the other geochemical cycles of Earth. ⁎ Corresponding author at: Lamont Doherty Earth Observatory at the Columbia A recent study suggests that ‘high-Ni’ olivines, that have been by University, 61 Route 9W, Palisades NY 10964, USA. Tel.: +1 845 365 8464; fax: +1 845 365 8155. now reported from several arcs, e.g. Mexico, Cascades, Setouchi, E-mail address: [email protected] (S.M. Straub). Kamchatka and the Aleutians (e.g., GeoROC, 2009) may provide 0012-821X/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.epsl.2011.01.013 338 S.M. Straub et al. / Earth and Planetary Science Letters 303 (2011) 337–347 important insights into the origin of arc andesites (Straub et al., high-Ni olivines may also crystallize in magmas produced through 2008b). High-Ni olivines are characterized by Ni contents of ~2200– mixing of basaltic mantle melts with larger portions of silicic crustal 5400 ppm at low olivine forsterite contents of Fo80 to Fo89 [where melts. In order to test conclusively for the mantle origin of the olivine- Fo=molar ratio of Mg/(Mg+Fe2+)]. In Fo–Ni space, they plot well bearing central MVB magmas, we analyzed He isotope ratios of high- above the field of olivines from mid-ocean-ridge basalts (MORB) Ni olivines. Here, we present the results, together with a first (Sobolev et al., 2005). Experiment and theory rule out that such high- systematic study of olivine zoning patterns. Ni olivines crystallize from partial melts of peridotite mantle where olivine is residual during melting and buffers melt SiO2 (~49–50 wt. 2. Geological setting and samples %), MgO (~10–15 wt.%), Mg# (~71–73) [where Mg#=molar ratio of Mg/(Mg+Fe2+) in bulk rock] and Ni of equilibrium melts (numbers Quaternary volcanism of the central MVB is related to subduction exemplify moderate extents of melting b10–15% of fertile mantle) of the Cocos plate at the Middle American Trench (Fig. 1). Despite the (Langmuir et al., 1992; Sobolev et al., 2005; Straub et al., 2008b). The ca. 50 km thick Paleozoic to Precambrian continental arc crustal melt Ni is limited, because the amount of Ni in mantle olivines is basement (Perez-Campos et al., 2008), basaltic and basaltic andesite limited to ~2000–3000 ppm (Blatter and Carmichael, 1998a; GeoROC, magmas are common next to the ubiquitous andesitic and dacitic 2009). The experimentally well-constrained mineral/melt partition series along the broad arc front (Siebe et al., 2004a; Schaaf et al., 2005; coefficient KdNi of 10–11 (Hart and Davis, 1978; Beattie et al., 1991; Gómez-Tuena et al., 2007). Many basaltic and andesitic magmas of the Wang and Gaetani, 2008) then predicts that melt Ni will not exceed composite volcano Popocatepetl and the adjacent monogenetic Sierra 200–300 ppm in a melt of MgO with 10–12 wt.% (Langmuir et al., Chichinautzin Volcanic Field (Fig. 1) contain olivines as single or 1992; Straub et al., 2008b). Consequently, the maximum Ni content of principal phenocrysts. We selected 25 olivine-rich volcanic rocks with early crystallizing magmatic olivine of ≥Fo89.5, controlled by the same SiO2 =50.0–61.2 wt.%, MgO=3.2–9.7 wt.% and Mg#=50–72 from KdNi, cannot exceed 2000–3000 ppm Ni either. As olivine crystalliza- monogenetic volcanoes Guespalapa (7 samples), Chichinautzin (5), tion rapidly depletes melt Ni, any derivative melt (=melt derived by Texcal Flow (4), Suchiooc (4), Cuatepel (2), and one sample each from fractional crystallization) can only crystallize low-Fo olivines with less Tuxtepec, Yecahuazac and Popocateptl volcanoes (Table 1). The Ni (Straub et al., 2008b). sample set includes high-Nb arc basalts and basaltic andesites (18– High-Ni olivines observed in intraplate basalts (Sobolev et al., 16 ppm Nb, Nb/La~0.7–1.2) next to the volumetrically dominant low- 2005) have been suggested to indicate the presence of secondary Nb (4–14 ppm Nb; Nb/Lab0.1–0.8) calc-alkaline basalts to andesites veins of olivine-free ‘reaction pyroxenites’ in a peridotite mantle with the typical high ratios of fluid mobile large-ion lithophile source. Such veins may form following the infiltration of the silicic element to high-field strengths elements (Table 1). We report bulk melts from subducted eclogite into the surrounding peridotite mantle rock analyses for selected major and trace elements, measured by DCP that would locally transform mantle olivines into reaction pyroxenes and ICP-MS methods, respectively, major element oxides and Ni at sub-solidus conditions (Sobolev et al., 2005). Because reaction abundances in olivines measured by electron microprobe, 3He/4He pyroxenes inherit ca. 80–86% of the Ni content of the original olivine isotope analyses on olivine separates as well as Nd isotopic (as being diluted by the addition of silica, Sobolev et al., 2005), but compositions of bulk rock measured by thermal ionization mass have a three times lower KdNi than olivine (Beattie et al., 1991), their spectrometry. Analytical details are given in the Appendix. The new partial melts are Ni-rich and precipitate high-Ni olivines at shallow data are presented in Tables 1 and 2, and Appendix Table 3. pressures, give or take additional dilution by partial melts from peridotite (Sobolev et al., 2005, 2007).
Recommended publications
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Characteristics of Cr-Spinel and Whole Rock Geochemistry of the Nuasahi Igneous Complex, Orissa, India
    Characteristics of Cr-Spinel and Whole Rock Geochemistry of the Nuasahi Igneous Complex, Orissa, India Sisir K. Mondal1, Michael D. Glascock2 and Edward. M. Ripley1 1Department of Geological Sciences, Indiana University, Bloomington, Indiana 47405 2Research Reactor Center, University of Missouri, Columbia, Missouri 65211 e-mail: [email protected], ripley@indiana@edu, [email protected] The Precambrian Nuasahi Igneous and contain minor interstitial phases such as Complex (NIC) is located in the southern part of serpentine, chlorite, talc, magnesite and sulfides. the Singhbhum North Orissa Province in Eastern Disseminated Cr-spinels occur as both cumulus and India and contains one of the largest and richest intercumulus phase in ultramafic cumulates and are chromite deposits in India. The NIC occurs in a commonly altered to ferritchromite/magnetite, terrain of the Archaean Iron Ore Group (IOG) of particularly in highly serpentinized rocks. The rocks of 3.1-3.3Ga age. The NIC consists of three ferrianchromite grains are irregularly distributed in principal components (1) chromiferous ultramfic the sulfide-rich assemblages of the breccia zone and rocks with four chromitite lodes; (2) massive in the matrix of the breccia. gabbroic rocks with titaniferous magnetite bands; (3) later intrusives of diabases and pyroxenite Chemical Composition (Fig.1). The field relations of these three The composition of olivine from both components define the following stratigraphic dunite and olivine-orthopyroxenite/harzburgite sequence: units is similar, with Fo and NiO contents ranging from 92 to 94 and 0.21 to 0.40wt%, respectively. Laterite The composition of orthopyroxene from enstatitite (3) Dykes and sills of diabase and pyroxenite and olivine-orthopyroxenite/harzburgite is En ~91- (2) Gabbroic rocks with titaniferous Ultramafic- magnetite bands 94 and from orthopyroxenite in the middle part of mafic (1) Chromiferous ultramafic rocks – the ultramafic sequence the composition is En ~84- complex interlayered sequence of enstatitite, olivine- 91.
    [Show full text]
  • Reflectance Spectral Features and Significant Minerals in Kaishantun
    minerals Article Reflectance Spectral Features and Significant Minerals in Kaishantun Ophiolite Suite, Jilin Province, NE China Chenglong Shi 1 ID , Xiaozhong Ding 1,*, Yanxue Liu 1 and Xiaodong Zhou 2 1 Institute of Geology, Chinese Academy of Geological Sciences, No. 26 Baiwanzhuang Street, Beijing 100037, China; [email protected] (C.S.); [email protected] (Y.L.) 2 Survey of Regional Geological and Mineral Resource of Jilin Province, No.4177 Chaoda Road, Changchun 130022, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6899-9675 Received: 28 January 2018; Accepted: 28 February 2018; Published: 5 March 2018 Abstract: This study used spectrometry to determine the spectral absorption of five types of mafic-ultramafic rocks from the Kaishantun ophiolite suite in Northeast China. Absorption peak wavelengths were determined for peridotite, diabase, basalt, pyroxenite, and gabbro. Glaucophane, actinolite, zoisite, and epidote absorption peaks were also measured, and these were used to distinguish such minerals from other associated minerals in ophiolite suite samples. Combined with their chemical compositions, the blueschist facies (glaucophane + epidote + chlorite) and greenschist facies (actinolite + epidote + chlorite) mineral assemblage was distinct based on its spectral signature. Based on the regional tectonic setting, the Kaishantun ophiolite suite probably experienced the blueschist facies metamorphic peak during subduction and greenschist facies retrograde metamorphism during later slab rollback. Keywords: reflectance spectrum; ophiolite suite; mineral classification; Kaishantun; NE China 1. Introduction Ophiolites are segments of oceanic crust that have been residually accreted in convergent boundaries [1–3]. The principal focus of recent studies related to ophiolites has been on the spatial and temporal patterns of felsic to mafic-ultramafic rock suites.
    [Show full text]
  • Melt-PX, a Melting Parameterization for Mantle Pyroxenites Between 0.9
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE The role of pyroxenite in basalt genesis: Melt-PX, a melting 10.1002/2015JB012762 parameterization for mantle pyroxenites between Key Points: 0.9 and 5GPa • Melt-PX predicts the melting behavior of pyroxenites as a function of P, T, Sarah Lambart1,2, Michael B. Baker1, and Edward M. Stolper1 and X • > At P ~3.5 GPa, a large fraction 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Department (>20%) of natural pyroxenites have near-solidus temperatures greater of Earth and Planetary Sciences, University of California, Davis, California, USA than those of fertile peridotite • Crustal thickness depends on the mass fraction and composition of Abstract Geochemical and isotopic data suggest that the source regions of oceanic basalts may contain pyroxenite in the mantle as well as pyroxenite in addition to peridotite. In order to incorporate the wide range of compositions and melting mantle potential temperature behaviors of pyroxenites into mantle melting models, we have developed a new parameterization, Melt-PX, which predicts near-solidus temperatures and extents of melting as a function of temperature and pressure Supporting Information: for mantle pyroxenites. We used 183 high-pressure experiments (25 compositions; 0.9–5 GPa; 1150–1675°C) • Supporting Information S1 • Table S1 to constrain a model of melt fraction versus temperature from 5% melting up to the disappearance of • Melt-PX spreadsheet clinopyroxene for pyroxenites as a function of pressure, temperature, and bulk composition. When applied to the global set of experimental data, our model reproduces the experimental F values with a standard error of Correspondence to: estimate of 13% absolute; temperatures at which the pyroxenite is 5% molten are reproduced with a S.
    [Show full text]
  • 3.18 Oneviewofthegeochemistryof Subduction-Related Magmatic Arcs
    3.18 OneView of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust P. B. Ke l e m e n Columbia University, Palisades, NY, USA K. HanghÖj Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY,USA and A. R. Greene University of British Columbia,Vancouver, BC, Canada 3.18.1 INTRODUCTION 2 3.18.1.1 Definition of Terms Used in This Chapter 2 3.18.2 ARC LAVA COMPILATION 3 3.18.3 CHARACTERISTICS OF ARC MAGMAS 7 3.18.3.1 Comparison with MORBs 7 3.18.3.1.1 Major elements 7 3.18.3.1.2 We are cautious about fractionation correction of major elements 9 3.18.3.1.3 Distinctive, primitive andesites 11 3.18.3.1.4 Major elements in calc-alkaline batholiths 11 3.18.3.2 Major and Trace-Element Characteristics of Primitive Arc Magmas 18 3.18.3.2.1 Primitive basalts predominate 18 3.18.3.2.2 Are some low Mgx basalts primary melts? Perhaps not 22 3.18.3.2.3 Boninites, briefly 22 3.18.3.2.4 Primitive andesites: a select group 23 3.18.3.2.5 Three recipes for primitive andesite 23 3.18.3.3 Trace Elements, Isotopes, and Source Components in Primitive Magmas 29 3.18.3.3.1 Incompatible trace-element enrichment 29 3.18.3.3.2 Tantalum and niobium depletion 36 3.18.3.3.3 U-series isotopes 37 3.18.3.3.4 Geodynamic considerations 40 3.18.4 ARC LOWER CRUST 43 3.18.4.1 Talkeetna Arc Section 43 3.18.4.1.1 Geochemical data from the Talkeetna section 45 3.18.4.1.2 Composition, fractionation, and primary melts in the Talkeetna section 49 3.18.4.2 Missing Primitive Cumulates: Due to Delamination 52 3.18.4.3
    [Show full text]
  • Episodic Nature of Continental Arc Activity Since 750 Ma: a Global Compilation ∗ Wenrong Cao A, , Cin-Ty A
    Earth and Planetary Science Letters 461 (2017) 85–95 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Episodic nature of continental arc activity since 750 Ma: A global compilation ∗ Wenrong Cao a, , Cin-Ty A. Lee a, Jade Star Lackey b a Department of Earth Science, Rice University, 6100 Main Street, MS-126, Houston, TX 77005, United States b Geology Department, Pomona College, 185 East 6th Street, Claremont, CA 91711, United States a r t i c l e i n f o a b s t r a c t Article history: Continental arcs have been recently hypothesized to outflux large amounts of CO2 compared to island Received 15 October 2016 arcs so that global flare-ups in continental arc magmatism might drive long-term greenhouse events. Received in revised form 3 December 2016 Quantitative testing of this hypothesis, however, has been limited by the lack of detailed studies on Accepted 27 December 2016 the spatial distribution of continental arcs through time. Here, we compile a worldwide database of Available online xxxx geological maps and associated literature to delineate the surface exposure of granitoid plutons, allowing Editor: A. Yin reconstruction of how the surface area addition rate of granitoids and the length of continental arcs have Keywords: varied since 750 Ma. These results were integrated into an ArcGIS framework and plate reconstruction continental arcs models. We find that the spatial extent of continental arcs is episodic with time and broadly matches episodicity the detrital zircon age record. Most vigorous arc magmatism occurred during the 670–480 Ma and the plate tectonics 250–50 Ma when major greenhouse events are recognized.
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • LAKE ELLEN KIMBERLITE, MICHIGAN, U.S.A. by E
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY LAKE ELLEN KIMBERLITE, MICHIGAN, U.S.A. by E. S. McGee and B. C. Hearn, Jr. U. S. Geological Survey OPEN-FILE REPORT 83-156 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S.G.S. 1983 CONTENTS Page -- . -. I.*. _. .»._._-.,_, ._... ._. .l->l-)>l-) ±1 J»Tn-f- I I W IpnHii w\JU Wri~ w iI VInn I _______ ________ ............ _, _. X1 Megacryst-xenocryst suite -- 2 iT 1I flfWilmon iI *t"w tPC *J _-_- _, _-_- _. _- -.__..____ _. ^*5 "i\ i V/Pnmnnc v/ 1 1 1 W v/ -> i1~AI wC LI Vll Iv III'-* I U^ I Wl I ^ Garnet pyroxenite 6 Spinel pyroxenite-peridotite 7 Temperature and pressure considerations 7 V/v/llwlulOlv/lloJPnnp lucinnc ____ ^ ^ ^ _._, _> -._ Q^ fl^lXAP!^ nIIV/V*I^VdMIl|vllwO nu/1 pHnmPnl" Q _-.___ __-.____ _ _ ___.._ __ __ «. __ « mm mm mm m _> .__ __ . i... __ . __ . v Qj References 10 ILLUSTRATIONS Figure 1. Location map for the Lake Ellen kimberlite 12 2. Magnetic map of the Lake Ellen kimberlite, showing outcrops UI|VJWIv/<_>W^wli*Wlv»OP nrl npncnppl" n*it"c _. _- .- « « _ Aw1 ^ 3. Fe203-MgTi03-FeTi03 composition of ilmenites A. Megacrysts and xenocrysts, Lake Ellen kimberlite 14 B.
    [Show full text]
  • Arc-Continent Collision and the Formation of Continental Crust: a New Geochemical and Isotopic Record from the Ordovician Tyrone Igneous Complex, Ireland
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Woods Hole Open Access Server Arc-Continent Collision and the Formation of Continental Crust: A New Geochemical and Isotopic Record from the Ordovician Tyrone Igneous Complex, Ireland Amy E. Draut U.S. Geological Survey, Santa Cruz, CA 95060, U.S.A. [email protected] Peter D. Clift School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom Jeffrey M. Amato Department of Geological Sciences, New Mexico State University, Las Cruces, NM 88003, U.S.A. Jerzy Blusztajn and Hans Schouten Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A. Abstract Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth’s history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic Orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U– Pb zircon dating yields ages of 493 ± 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 ± 10 Ma from a light-rare-earth- element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Draut et al. page 1 of 27 Complex exceeds that of average Dalradian (Laurentian) continental material which would have been thrust under the colliding forearc and potentially recycled into arc magmatism.
    [Show full text]
  • Rock and Mineral Identification for Engineers
    Rock and Mineral Identification for Engineers November 1991 r~ u.s. Department of Transportation Federal Highway Administration acid bottle 8 granite ~~_k_nife _) v / muscovite 8 magnify~in_g . lens~ 0 09<2) Some common rocks, minerals, and identification aids (see text). Rock And Mineral Identification for Engineers TABLE OF CONTENTS Introduction ................................................................................ 1 Minerals ...................................................................................... 2 Rocks ........................................................................................... 6 Mineral Identification Procedure ............................................ 8 Rock Identification Procedure ............................................... 22 Engineering Properties of Rock Types ................................. 42 Summary ................................................................................... 49 Appendix: References ............................................................. 50 FIGURES 1. Moh's Hardness Scale ......................................................... 10 2. The Mineral Chert ............................................................... 16 3. The Mineral Quartz ............................................................. 16 4. The Mineral Plagioclase ...................................................... 17 5. The Minerals Orthoclase ..................................................... 17 6. The Mineral Hornblende ...................................................
    [Show full text]
  • Mafic-Ultramafic Igneous Rocks and Associated Carbonatites of the Gem Park Complex, Custer and Fremont Counties, Colorado
    Mafic-Ultramafic Igneous Rocks And Associated Carbonatites of the Gem Park Complex, Custer and Fremont Counties, Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 649 MAFIG-ULTRAMAFIC IGNEOUS ROCKS AND ASSOCIATED CARBONATITES OF THE GEM PARK COMPLEX, CUSTER AND FREMONT COUNTIES, COLORADO S a wa tc h C r i s t o Range S a n g r e d a Range rh p I e x * '*w 5 tp" *,. ' j^.*f\ A- j*s'j»- ' ^«K*£ DEMOB R^TjC MQ^NTAIN. \3 1 /T* :S>- * >." " '"' _J^ ^: '-V*^ Bdj^|*°C,j^B^*' * X* -H'c;"",.,,,,'*^ ,,' -aCr* Gem Park, Colo. View northwestward from Democratic Mounta GEM MOUNTAIN Sawatch Range ark -Cbtrfplex -« "*» +** 4ifa. ving pyroxenite and gabbro of the Gem Park Complex. Mafic-Ultramafic Igneous Rocks And Associated Carbonatites of the Gem Park Complex, Custer and Fremont Counties, Colorado By RAYMOND L. PARKER and WILLIAM N. SHARP GEOLOGICAL SURVEY PROFESSIONAL PAPER 649 The Gem Park Complex its geology and mineralogy, and its niobium distribution UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 79-608291 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, B.C. 20402 (Paper cover) CONTENTS Pag-e Abstract __ _-_---__---__-_--..---__-_____-_______-____ Gem Park Complex Continued Introduction __________________________________________ 1 Carbonatite dikes_--______---------_--__-__-___-__- 7 General geology-______________________________________ 1 Attitude, orientation, and distribution of dikes.___ 7 Precambrian rocks.________________________________ 3 Composition of dikes.-______..______..__-_____-__ P Cambrian rocks.__________________________________ 3 Carbonatite in rocks that enclose the complex.
    [Show full text]