Final Programme the Programme Is Correct at the Time of Going to Press (28 May 1999) and Is Subject to Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Mathematical Society
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF MARTIN RAUSSEN Department of Mathematical Sciences, Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg, Denmark e-mail: [email protected] ASSOCIATE EDITORS VASILE BERINDE Department of Mathematics, University of Baia Mare, Romania NEWSLETTER No. 52 e-mail: [email protected] KRZYSZTOF CIESIELSKI Mathematics Institute June 2004 Jagiellonian University Reymonta 4, 30-059 Kraków, Poland EMS Agenda ........................................................................................................... 2 e-mail: [email protected] STEEN MARKVORSEN Editorial by Ari Laptev ........................................................................................... 3 Department of Mathematics, Technical University of Denmark, Building 303 EMS Summer Schools.............................................................................................. 6 DK-2800 Kgs. Lyngby, Denmark EC Meeting in Helsinki ........................................................................................... 6 e-mail: [email protected] ROBIN WILSON On powers of 2 by Pawel Strzelecki ........................................................................ 7 Department of Pure Mathematics The Open University A forgotten mathematician by Robert Fokkink ..................................................... 9 Milton Keynes MK7 6AA, UK e-mail: [email protected] Quantum Cryptography by Nuno Crato ............................................................ 15 COPY EDITOR: KELLY -
The Bibliography
Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies]. -
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT, and BIT Numerical Mathematics
A Complete Bibliography of Publications in Nordisk Tidskrift for Informationsbehandling, BIT,andBIT Numerical Mathematics Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 3.54 Title word cross-reference [3105, 328, 469, 655, 896, 524, 873, 455, 779, 946, 2944, 297, 1752, 670, 2582, 1409, 1987, 915, 808, 761, 916, 2071, 2198, 1449, 780, 959, 1105, 1021, 497, 2589]. A(α) #24873 [1089]. [896, 2594, 333]. A∗ [2013]. A∗Ax = b [2369]. n A [1640, 566, 947, 1580, 1460]. A = a2 +1 − 0 n (3) [2450]. (A λB) [1414]. 0=1 [1242]. 1 [334]. α [824, 1580]. AN [1622]. A(#) [3439]. − 12 [3037, 2711]. 1 2 [1097]. 1:0 [3043]. 10 AX − XB = C [2195, 2006]. [838]. 11 [1311]. 2 AXD − BXC = E [1101]. B [2144, 1953, 2291, 2162, 3047, 886, 2551, 957, [2187, 1575, 1267, 1409, 1489, 1991, 1191, 2007, 2552, 1832, 949, 3024, 3219, 2194]. 2; 3 979, 1819, 1597, 1823, 1773]. β [824]. BN n − p − − [1490]. 2 1 [320]. 2 1 [100]. 2m 4 [1181]. BS [1773]. BSI [1446]. C0 [2906]. C1 [1105]. 3 [2119, 1953, 2531, 1351, 2551, 1292, [3202]. C2 [3108, 2422, 3000, 2036]. χ2 1793, 949, 1356, 2711, 2227, 570]. [30, 31]. Cln(θ); (n ≥ 2) [2929]. cos [228]. D 3; 000; 000; 000 [575, 637]. -
Society Reports USNC/TAM
Appendix J 2008 Society Reports USNC/TAM Table of Contents J.1 AAM: Ravi-Chandar.............................................................................................. 1 J.2 AIAA: Chen............................................................................................................. 2 J.3 AIChE: Higdon ....................................................................................................... 3 J.4 AMS: Kinderlehrer................................................................................................. 5 J.5 APS: Foss................................................................................................................. 5 J.6 ASA: Norris............................................................................................................. 6 J.7 ASCE: Iwan............................................................................................................. 7 J.8 ASME: Kyriakides.................................................................................................. 8 J.9 ASTM: Chona ......................................................................................................... 9 J.10 SEM: Shukla ....................................................................................................... 11 J.11 SES: Jasiuk.......................................................................................................... 13 J.12 SIAM: Healey...................................................................................................... 14 J.13 SNAME: Karr.................................................................................................... -
Calculus Redux
THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 6 NUMBER 2 MARCH-APRIL 1986 Calculus Redux Paul Zorn hould calculus be taught differently? Can it? Common labus to match, little or no feedback on regular assignments, wisdom says "no"-which topics are taught, and when, and worst of all, a rich and powerful subject reduced to Sare dictated by the logic of the subject and by client mechanical drills. departments. The surprising answer from a four-day Sloan Client department's demands are sometimes blamed for Foundation-sponsored conference on calculus instruction, calculus's overcrowded and rigid syllabus. The conference's chaired by Ronald Douglas, SUNY at Stony Brook, is that first surprise was a general agreement that there is room for significant change is possible, desirable, and necessary. change. What is needed, for further mathematics as well as Meeting at Tulane University in New Orleans in January, a for client disciplines, is a deep and sure understanding of diverse and sometimes contentious group of twenty-five fac the central ideas and uses of calculus. Mac Van Valkenberg, ulty, university and foundation administrators, and scientists Dean of Engineering at the University of Illinois, James Ste from client departments, put aside their differences to call venson, a physicist from Georgia Tech, and Robert van der for a leaner, livelier, more contemporary course, more sharply Vaart, in biomathematics at North Carolina State, all stressed focused on calculus's central ideas and on its role as the that while their departments want to be consulted, they are language of science. less concerned that all the standard topics be covered than That calculus instruction was found to be ailing came as that students learn to use concepts to attack problems in a no surprise. -
The Peak-And-End Rule and Differential Equations with Maxima: a View On
The peak-and-end rule and differential equations with maxima: a view on the unpredictability of happiness Elena Trofimchuka, Eduardo Lizb, Sergei Trofimchukc,∗ aDepartment of Differential Equations, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine bDepartamento de Matem´atica Aplicada II, Universidade de Vigo, 36310 Vigo, Spain cInstituto de Matem´atica, Universidad de Talca, Casilla 747, Talca, Chile Abstract In the 1990s, after a series of experiments, the behavioral psychologist and economist Daniel Kahneman and his colleagues formulated the following Peak-End evaluation rule: the remembered utility of pleasant or unpleasant episodes is accurately predicted by aver- aging the Peak (most intense value) of instant utility (or disutility) recorded during an episode and the instant utility recorded near the end of the experience (D. Kahneman et al., 1997, QJE, p. 381). Hence, the simplest mathematical model for time evolution of the experienced utility function u = u(t) can be given by the scalar differential equation u0(t) = au(t) + b max u(s): s [t h; t] + f(t)( ); where f represents exogenous f 2 − g ∗ stimuli, h is the maximal duration of the experience, and a; b R are some averaging weights. In this work, we study equation ( ) and show that, for2 a range of parameters a; b; h and a periodic sine-like term f, the dynamics∗ of ( ) can be completely described in terms of an associated one-dimensional dynamical system∗ generated by a piece-wise continuous map from a finite interval into itself. We illustrate our approach with two examples. In particular, we show that the hedonic utility u(t) (`happiness') can exhibit chaotic behavior. -
An Interview with Martin Davis
Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required. -
Saul Abarbanel SIAM Oral History
An interview with SAUL ABARBANEL Conducted by Philip Davis on 29 July, 2003, at the Department of Applied Mathematics, Brown University Interview conducted by the Society for Industrial and Applied Mathematics, as part of grant # DE-FG02-01ER25547 awarded by the US Department of Energy. Transcript and original tapes donated to the Computer History Museum by the Society for Industrial and Applied Mathematics © Computer History Museum Mountain View, California ABSTRACT: ABARBANEL describes his work in numerical analysis, his use of early computers, and his work with a variety of colleagues in applied mathematics. Abarbanel was born and did his early schooling in Tel Aviv, Israel, and in high school developed an interest in mathematics. After serving in the Israeli army, Abarbanel entered MIT in 1950 as an as an engineering major and took courses with Adolf Hurwitz, Francis Begnaud Hildebrand, and Philip Franklin. He found himself increasing drawn to applied mathematics, however, and by the time he began work on his Ph.D. at MIT he had switched from aeronautics to applied mathematics under the tutelage of Norman Levinson. Abarbanel recalls the frustration of dropping the punch cards for his program for the IBM 1604 that MIT was using in 1958 when he was working on his dissertation, but also notes that this work convinced him of the importance of computers. Abarbanel also relates a humorous story about Norbert Weiner, his famed linguistic aptitude, and his lesser-known interest in chess. Three years after receiving his Ph.D., Abarbanel returned to Israel, where he spent the rest of his career at Tel Aviv University. -
Table of Contents
TABLE OF CONTENTS Chapter 1 Introduction . 2 Chapter 2 Organization and Establishment . 3 Chapter 3 Early Years . 5 Chapter 4 Operation, Expansion and Emergence . 8 Chapter 5 Meetings, Conferences and Workshops . 13 Chapter 6 SIAM’s Journals Fulfill a Mission . 15 Chapter 7 The Book Publishing Program . 19 Chapter 8 Commitment to Education . 22 Chapter 9 Recognizing Excellence . 25 Chapter 10 Leadership . 29 2 CHAPTER 1 INTRODUCTION One of the most significant factors affecting the increasing demand for mathematicians during the early 1950s was the development of the electronic digital computer. The ENIAC was developed in Philadelphia in 1946. Origins A Need Arises Mathematicians In the years during and especially One of the most significant eventually began following the Second World War, the factors affecting this increas- working with engi- nation experienced a surge in industri- ing demand for mathemati- neers and scientists al and military research and the devel- cians during the early 1950s more frequently, in opment of related technology, thus was the development of the a wider variety of creating a need for improved mathe- electronic digital computer. areas, including matical and computational methods. One of the first, the ENIAC, software develop- To illustrate, in 1938, there were about was completed in 1946. As An ad that appeared in the ment, trajectory 850 mathematicians and statisticians early as 1933, scientists, engi- SIAM NEWSLETTER May, 1956 simulations, com- employed by the federal government. neers and mathematicians at puter design, vibra- By 1954, however, that number nearly the Moore School of Electrical tion studies, structural and mechanical quadrupled to 3200. -
Von Neumann 1903-1957 Peter Lax ≈1926- 1940 – 1970 Floating Point Arithmetic
Nick Trefethen Oxford Computing Lab Who invented the great numerical algorithms? Slides available at my web site: www.comlab.ox.ac.uk/nick.trefethen A discussion over coffee. Ivory tower or coal face? SOME MAJOR DEVELOPMENTS IN SCIENTIFIC COMPUTING (29 of them) Before 1940 Newton's method least-squares fitting orthogonal linear algebra Gaussian elimination QR algorithm Gauss quadrature Fast Fourier Transform Adams formulae quasi-Newton iterations Runge-Kutta formulae finite differences 1970-2000 preconditioning 1940-1970 spectral methods floating-point arithmetic MATLAB splines multigrid methods Monte Carlo methods IEEE arithmetic simplex algorithm nonsymmetric Krylov iterations conjugate gradients & Lanczos interior point methods Fortran fast multipole methods stiff ODE solvers wavelets finite elements automatic differentiation Before 1940 Newton’s Method for nonlinear eqs. Heron, al-Tusi 12c, Al Kashi 15c, Viète 1600, Briggs 1633… Isaac Newton 1642-1727 Mathematician and physicist Trinity College, Cambridge, 1661-1696 (BA 1665, Fellow 1667, Lucasian Professor of Mathematics 1669) De analysi per aequationes numero terminorum infinitas 1669 (published 1711) After 1696, Master of the Mint Joseph Raphson 1648-1715 Mathematician at Jesus College, Cambridge Analysis Aequationum universalis 1690 Raphson’s formulation was better than Newton’s (“plus simple” - Lagrange 1798) FRS 1691, M.A. 1692 Supporter of Newton in the calculus wars—History of Fluxions, 1715 Thomas Simpson 1710-1761 1740: Essays on Several Curious and Useful Subjects… 1743-1761: -
Bulletin De La Societ´ E´ Des Sciences Et Des Lettres Del Od´ Z´
BULLETIN DE LA SOCIET´ E´ DES SCIENCES ET DES LETTRES DEL OD´ Z´ SERIE:´ RECHERCHES SUR LES DEFORMATIONS´ Volume LXVIII, no. 2 BULLETIN DE LA SOCIET´ E´ DES SCIENCES ET DES LETTRES DEL OD´ Z´ SERIE:´ RECHERCHES SUR LES DEFORMATIONS´ Volume LXVIII, no. 2 R´edacteuren chef et de la S´erie: JULIANLAWRYNOWICZ Comit´ede R´edactionde la S´erie R. ABLAMOWICZ (Cookeville, TN), Aleksandra BASZCZYNSKA´ (L´od´z) O. MARTIO (Helsinki), B. SENDOV (Sofia), D. SHOIKHET (Karmiel) O. SUZUKI (Tokyo), M. VACCARO (Salerno), E. VESENTINI (Torino) L. WOJTCZAK (L´od´z),Ilona ZASADA (L´od´z) Secr´etairede la S´erie: EWELINA FRA¸TCZAK L OD´ Z´ 2018 L ODZKIE´ TOWARZYSTWO NAUKOWE PL-90-505L´od´z,ul. M. Curie-Sk lodowskiej 11 tel. (42) 66-55-459, fax (42) 66 55 464 sprzeda˙zwydawnictw: tel. (42) 66 55 448, http://sklep.ltn.lodz.pl e-mail: [email protected]; http://www.ltn.lodz.pl/ REDAKCJA NACZELNA WYDAWNICTW L ODZKIEGO´ TOWARZYSTWA NAUKOWEGO Krystyna Czy˙zewska, Wanda M. Krajewska (redaktor naczelny) Edward Karasi´nski,Henryk Piekarski, Jan Szymczak ”Bulletin de la Soci´et´edes sciences et des lettres deL´od´z,S´erie:Recherches sur les d´eformations”– zadanie finansowane w ramach umowy 597/P-DUN/2017 ze ´srodk´owMinistra Nauki i Szkolnictwa Wy˙zszegoprzeznaczonych na dzia lalno´s´c upowszechniaj¸ac¸anauk¸e ”Bulletin de la Soci´et´edes sciences et des lettres deL´od´z,S´erie:Recherches sur les d´eformations”– task financed under the agreement 597/P-DUN/2017 by the Minister of Science and Higher Education from the funds for science dissemination c Copyright byL´odzkieTowarzystwo Naukowe, 2018 PL ISSN 0459-6854; e-ISSN 2450-9329 DOI: 10.26485/0459-6854; DOI: 10.26485/0459-6854/2018/68.2 Wydanie 1 Nak lad80 egz. -
Notices of the American Mathematical Society ABCD Springer.Com
ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Visit Springer at the of the American Mathematical Society 2010 Joint Mathematics December 2009 Volume 56, Number 11 Remembering John Stallings Meeting! page 1410 The Quest for Universal Spaces in Dimension Theory page 1418 A Trio of Institutes page 1426 7 Stop by the Springer booths and browse over 200 print books and over 1,000 ebooks! Our new touch-screen technology lets you browse titles with a single touch. It not only lets you view an entire book online, it also lets you order it as well. It’s as easy as 1-2-3. Volume 56, Number 11, Pages 1401–1520, December 2009 7 Sign up for 6 weeks free trial access to any of our over 100 journals, and enter to win a Kindle! 7 Find out about our new, revolutionary LaTeX product. Curious? Stop by to find out more. 2010 JMM 014494x Adrien-Marie Legendre and Joseph Fourier (see page 1455) Trim: 8.25" x 10.75" 120 pages on 40 lb Velocity • Spine: 1/8" • Print Cover on 9pt Carolina ,!4%8 ,!4%8 ,!4%8 AMERICAN MATHEMATICAL SOCIETY For the Avid Reader 1001 Problems in Mathematics under the Classical Number Theory Microscope Jean-Marie De Koninck, Université Notes on Cognitive Aspects of Laval, Quebec, QC, Canada, and Mathematical Practice Armel Mercier, Université du Québec à Chicoutimi, QC, Canada Alexandre V. Borovik, University of Manchester, United Kingdom 2007; 336 pages; Hardcover; ISBN: 978-0- 2010; approximately 331 pages; Hardcover; ISBN: 8218-4224-9; List US$49; AMS members 978-0-8218-4761-9; List US$59; AMS members US$47; Order US$39; Order code PINT code MBK/71 Bourbaki Making TEXTBOOK A Secret Society of Mathematics Mathematicians Come to Life Maurice Mashaal, Pour la Science, Paris, France A Guide for Teachers and Students 2006; 168 pages; Softcover; ISBN: 978-0- O.