Comparative Assessment of Protein Kinase Inhibitors in Public Databases and in PKIDB

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Assessment of Protein Kinase Inhibitors in Public Databases and in PKIDB molecules Article Comparative Assessment of Protein Kinase Inhibitors in Public Databases and in PKIDB Colin Bournez 1, Fabrice Carles 1, Gautier Peyrat 1, Samia Aci-Sèche 1 , Stéphane Bourg 1 , Christophe Meyer 2 and Pascal Bonnet 1,* 1 Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans BP 6759, 45067 Orléans CEDEX 2, France; [email protected] (C.B.); [email protected] (F.C.); [email protected] (G.P.); [email protected] (S.A.-S.); [email protected] (S.B.) 2 Janssen-Cilag, Centre de Recherche Pharma, CS10615-Chaussée du Vexin, 27106 Val-de-Reuil, France; [email protected] * Correspondence: [email protected]; Tel.: +33-238-417-254 Academic Editor: Christian Peifer Received: 17 June 2020; Accepted: 10 July 2020; Published: 15 July 2020 Abstract: Since the first approval of a protein kinase inhibitor (PKI) by the Food and Drug Administration (FDA) in 2001, 55 new PKIs have reached the market, and many inhibitors are currently being evaluated in clinical trials. This is a clear indication that protein kinases still represent major drug targets for the pharmaceutical industry. In a previous work, we have introduced PKIDB, a publicly available database, gathering PKIs that have already been approved (Phase 4), as well as those currently in clinical trials (Phases 0 to 3). This database is updated frequently, and an analysis of the new data is presented here. In addition, we compared the set of PKIs present in PKIDB with the PKIs in early preclinical studies found in ChEMBL, the largest publicly available chemical database. For each dataset, the distribution of physicochemical descriptors related to drug-likeness is presented. From these results, updated guidelines to prioritize compounds for targeting protein kinases are proposed. The results of a principal component analysis (PCA) show that the PKIDB dataset is fully encompassed within all PKIs found in the public database. This observation is reinforced by a principal moments of inertia (PMI) analysis of all molecules. Interestingly, we notice that PKIs in clinical trials tend to explore new 3D chemical space. While a great majority of PKIs is located on the area of “flatland”, we find few compounds exploring the 3D structural space. Finally, a scaffold diversity analysis of the two datasets, based on frequency counts was performed. The results give insight into the chemical space of PKIs, and can guide researchers to reach out new unexplored areas. PKIDB is freely accessible from the following website: http://www.icoa.fr/pkidb. Keywords: protein kinase inhibitors; clinical trials; approved drugs; database; chemometrics analysis; kinome; molecular scaffolds; rings system 1. Introduction The reversible phosphorylation of proteins plays a preeminent role in cell cycle regulation. 2 This process, which consists in the transfer of a phosphoryl group PO3 − to the target substrate, is catalyzed by enzymes pertaining to the protein kinase family. Protein kinases constitute one of the largest protein families encoded by the human genome and counts 518 members (or 538 members when atypical kinases are included) [1–3]. Numerous studies have shown that deregulation or mutation of kinases is responsible for a variety of cancers [4], as well as for other diseases in the immune or neurological area [5,6]. The majority of protein kinases, however, have not yet been fully explored [7], and there is still a high potential for innovation in targeting the protein kinome for the treatment of cancer. Molecules 2020, 25, 3226; doi:10.3390/molecules25143226 www.mdpi.com/journal/molecules Molecules 2020, 25, x 2 of 17 Molecules 2020, 25, 3226 2 of 17 [7], and there is still a high potential for innovation in targeting the protein kinome for the treatment of cancer. The Food and Drug Administration (FDA) approved 55 small-molecule protein kinase inhibitorsThe Food and(PKIs) Drug by Administration end of 2019, whereas (FDA) approved the Chinese 55 small-molecule and European protein regulatory kinase authorities inhibitors (PKIs)have grantedby end ofmarket 2019, whereasaccess to the five Chinese more andcompounds, European namely regulatory anlotinib, authorities apatinib, have grantedicotinib, marketfasudil access, and tivozanibto five more (Figure compounds, 1). It is worth namely mentioni anlotinib,ng that apatinib, higher icotinib, molecular fasudil, weight and inhibitors tivozanib like (Figure macrocyclic1). It is lactonesworth mentioning, such as sirolimus that higher and molecular temsirolimus weight, or inhibitors kinase-targeted like macrocyclic antibodies lactones,, such as such cetuximab as sirolimus and trastuzumaband temsirolimus,, have orbeen kinase-targeted approved for antibodies,the treatment such of ascolorectal, cetuximab head/neck and trastuzumab,, and breast have cancers been, rapprovedespectively for [8 the–10] treatment. These large of colorectal, molecules head were/neck, excluded and breast from cancers, this study respectively, which [focuses8–10]. These on small large- moleculemolecules PKIs were targeting excluded the from kinase this domain. study, which The first focuses PKI onapproved small-molecule by the FDA PKIs was targeting imatinib the in kinase 2001. Imatinibdomain. Theis a firstsmall PKI-molecule approved type by the-II inhibitor FDA was containing imatinib in 2001.a phenylamino Imatinib is-pyrimidine a small-molecule scaffold. type-II It targetsinhibitor the containing inactive conformation a phenylamino-pyrimidine of ABL1 kinase sca andffold. is used It targets against the chronic inactive myelogenous conformation leukemia of ABL1 (CML)kinase and[11]. is Since used againstthen, at chronic least one myelogenous new PKI leukemiareaches the (CML) market [11]. every Since then,year, at with least a one significant new PKI accelerationreaches the marketsince 2011. every The year, exceptions with a significant to this rule acceleration are 2002, 2008, since 2010 2011., and The 2016 exceptions, with no to thiscompound rule are approved2002, 2008, in 2010, these and years. 2016, with no compound approved in these years. Figure 1. Progression of Food and Drug Administration (FDA)-approved protein kinase inhibitors Figure 1. Progression of Food and Drug Administration (FDA)-approved protein kinase inhibitors (2001–2019) and their type of inhibition [12]. As of 11th December 2019, 55 kinase inhibitors were (2001–2019) and their type of inhibition [12]. As of 11th December 2019, 55 kinase inhibitors were approved by the FDA. Not shown here: tivozanib, approved by European Medicines Agency (EMA) approved by the FDA. Not shown here: tivozanib, approved by European Medicines Agency (EMA) in 2017; anlotinib, apatinib, and icotinib, approved by the China Food and Drug Administration in 2017; anlotinib, apatinib, and icotinib, approved by the China Food and Drug Administration (CFDA) in 2018, 2014, and 2011, respectively; and fasudil, approved in China and in Japan in 1995. (CFDA) in 2018, 2014, and 2011, respectively; and fasudil, approved in China and in Japan in 1995. ND: not defined. ND: not defined. In addition to approved PKIs, many novel compounds are currently being evaluated in clinical trialsIn throughout addition to the approved pharmaceutical PKIs, many industry. novel Taken compounds collectively, are currently these compounds being evaluated show new in clinical trends trialsin terms throughout of structures, the physicochemicalpharmaceutical industry. properties, Taken and biological collectively, activities these that compounds foreshadows show changes new trendsin the PKIin terms landscape. of structures, To collect physicochemical and organize this properties data as well, and as biological keep up toactivities date with that their foreshadows evolution, changeswe developed in the PKIDBPKI landscape. [12], a curated, To collect annotated and organize and updated this data database as well of as PKIs keep in clinicalup to date trials. with In ordertheir evolution,to enter the we PKIDB, developed compounds PKIDB [1 should2], a curated, be currently annotated in one and development updated database phase of (from PKIs Phasein clinical 0 to trials.Phase In 4), order have to a enter disclosed the PKIDB, chemical compounds structure, should as well be ascurrently an International in one development Nonproprietary phase Name(from Phase(INN) 0 [13 to]. Phase Each compound4), have a disclosed is provided chemical with comprehensive structure, as well descriptive as an International data, as well Nonpropri as with linksetary to Nameexternal (INN) databases [13]. Each such compound as ChEMBL is provided [14], PDB with [15], comprehensive PubChem [16], descriptive and others. data The, typeas well of bindingas with linksmode to specified external indatabases PKIDB has such been as ChEMBL manually [1 entered4], PDB and [15 comply], PubChem with [1 Roskoski’s6], and others. classification The type [12 of]. bindingThe database mode is specified freely accessible in PKID onB ahas dedicated been manually website ( http:entered//www.icoa.fr and comply/pkidb with). As Roskoski’s of 11th of classificationDecember 2019, [1 it2 contains]. The 218 database inhibitors: 60is approvedfreely andaccessible 158 in various on stagesa dedicated of clinical trialswebsite (from (http://www.icoa.fr/pkidb). As of 11th of December 2019, it contains 218 inhibitors: 60 approved and Phase 0 to Phase 3). 158 inIn various this study, stages we of comparedclinical trials PKIDB
Recommended publications
  • Nick-Thomas.Pdf
    Innovating Pre-Clinical Drug Development Towards an Integrated Approach to Investigative Toxicology in Human Cell Models Nick Thomas PhD Principal Scientist Cell Technologies GE Healthcare ELRIG Pharmaceutical Flow Cytometry & Imaging 2012 10-11th October 2012, AstraZeneca, Alderley Park Drug Toxicology Current issues – problems & solutions Using animal models to reflect Quality and robustness of Testing multiple endpoints human responses toxicity cell models leading to false-positives • animals ≠ humans • scarcity of primary cells/tissues • multiple testing increases • animal ≠ animal • source variability sensitivity at cost of specificity • cross species testing may • more abundant models • different assay combinations increase sensitivity but (immortalized/genetically yield varying predictivity decrease specificity engineered cells) may have • testing multiple endpoints leads • metabolism & MOA ? reduced predictivity to false positives Sensitivity Specificity Assay Combinations Integrate range of predictive Integrate robust human stem Integrate and standardize human cell models cell derived models most predictive parameters Cytiva™ Cardiomyocytes H7 hESC Cardiomyocytes 109 Expansion Differentiation 0 5 10 15 20 25 30 Media 1 Media 2 Growth Factors Feed Cytiva Cardiomyocytes DNA Troponin I DNA Connexin 43 Troponin I HCA Biochemical Assays Patch Clamp Impedance Multi-Electrode Arrays Respiration HCA Biochemical Assays Patch Clamp Impedance Multi-Electrode Arrays Respiration Cardiotoxicity Profiling of Anticancer Drugs Cytiva Cardiomyocytes & IN Cell Analyzer Cardiotoxicity & Anticancer Drugs Drug Pipelines Toxicity in Drug Development Hepatotoxicity Nephrotoxicity Cardiotoxicity Rhabdomyolysis Other Data from: Drug pipeline: Q411. Mak H.C. 2012 Data from; Wilke RA et al. Nature Reviews Drug Discovery Nature Biotechnol. 30,15 2007 6, 904-916 Cardiotoxicity of Anticancer Drugs Off Target On Target : Off Therapy DOX GATA4 ROS Bcl2 Cell Death Adapted from; Kobayashi S.
    [Show full text]
  • Signal Transduction Guide
    Signal Transduction Product Guide | 2007 NEW! Selective T-type Ca2+ channel blockers, NNC 55-0396 and Mibefradil ZM 447439 – Novel Aurora Kinase Inhibitor NEW! Antibodies for Cancer Research EGFR-Kinase Selective Inhibitors – BIBX 1382 and BIBU 1361 DRIVING RESEARCH FURTHER Calcium Signaling Agents ...................................2 G Protein Reagents ...........................................12 Cell Cycle and Apoptosis Reagents .....................3 Ion Channel Modulators ...................................13 Cyclic Nucleotide Related Tools ...........................7 Lipid Signaling Agents ......................................17 Cytokine Signaling Agents ..................................9 Nitric Oxide Tools .............................................19 Enzyme Inhibitors/Substrates/Activators ..............9 Protein Kinase Reagents....................................22 Glycobiology Agents .........................................12 Protein Phosphatase Reagents ..........................33 Neurochemicals | Signal Transduction Agents | Peptides | Biochemicals Signal Transduction Product Guide Calcium Signaling Agents ......................................................................................................................2 Calcium Binding Protein Modulators ...................................................................................................2 Calcium ATPase Modulators .................................................................................................................2 Calcium Sensitive Protease
    [Show full text]
  • Identification of Candidate Repurposable Drugs to Combat COVID-19 Using a Signature-Based Approach
    www.nature.com/scientificreports OPEN Identifcation of candidate repurposable drugs to combat COVID‑19 using a signature‑based approach Sinead M. O’Donovan1,10, Ali Imami1,10, Hunter Eby1, Nicholas D. Henkel1, Justin Fortune Creeden1, Sophie Asah1, Xiaolu Zhang1, Xiaojun Wu1, Rawan Alnafsah1, R. Travis Taylor2, James Reigle3,4, Alexander Thorman6, Behrouz Shamsaei4, Jarek Meller4,5,6,7,8 & Robert E. McCullumsmith1,9* The COVID‑19 pandemic caused by the novel SARS‑CoV‑2 is more contagious than other coronaviruses and has higher rates of mortality than infuenza. Identifcation of efective therapeutics is a crucial tool to treat those infected with SARS‑CoV‑2 and limit the spread of this novel disease globally. We deployed a bioinformatics workfow to identify candidate drugs for the treatment of COVID‑19. Using an “omics” repository, the Library of Integrated Network‑Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID‑19 drugs and publicly available SARS‑CoV‑2 infected cell lines to identify novel therapeutics. We identifed a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID‑19, the remaining 12 have antiviral properties and 6 have antiviral efcacy against coronaviruses specifcally, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug fndings are discordant with (i.e., reverse) SARS‑CoV‑2 transcriptome signatures generated in vitro, and a subset are also identifed in transcriptome signatures generated from COVID‑19 patient samples, like the MEK inhibitor selumetinib. Overall, our fndings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID‑19 and identify promising novel targets that are worthy of further investigation.
    [Show full text]
  • Related Kinases (VRK) Bound to Small-Molecule Inhibitors Identifies Different P-Loop Conformations
    Structural characterization of human Vaccinia- Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations Rafael M. Couñago1,2*, Charles K. Allerston3, Pavel Savitsky3, Hatylas Azevedo4, Paulo H Godoi1,5, Carrow I. Wells6, Alessandra Mascarello4, Fernando H. de Souza Gama4, Katlin B. Massirer1,2, William J. Zuercher6, Cristiano R.W. Guimarães4 and Opher Gileadi1,3 1. Structural Genomics Consortium, Universidade Estadual de Campinas — UNICAMP, Campinas, SP, Brazil. 2. Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil. 3. Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, UK. 4. Aché Laboratórios Farmacêuticos SA, Guarulhos, SP, Brazil. 5. Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil. 6. Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA. *Correspondence to Rafael M. Couñago: [email protected] (RMC) Supplementary information 1 SUPPLEMENTARY METHODS PKIS results analyses - hierarchical cluster analysis (HCL) A hierarchical clustering (HCL) analysis was performed to group kinases based on their inhibition patterns across the compounds. The average distance clustering method was employed, using sample tree selection and sample leaf order optimization. The distance metric used was the Pearson correlation and the HCL analysis was performed in the TmeV software 1. SUPPLEMENTARY REFERENCES 1 Saeed, A. I. et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34, 374-378, (2003). SUPPLEMENTARY FIGURES LEGENDS Supplementary Figure S1: Hierarchical clustering analysis of PKIS data. Hierarchical clustering analysis of PKIS data.
    [Show full text]
  • Protein Kinase Inhibitors
    Protein Kinase Inhibitors Protein kinases are key regulators in cell signaling pathways in eukaryotes. They act by chemically modifying other proteins with phosphate groups, a process called phosphorylation. These enzymes are known to regulate the majority of cellular pathways, especially those involved in signal transduction. The human genome codes for more than 500 protein kinases. Misregulation of these proteins has been linked to several diseases, including cancer, psoriasis and chronic inflammation. For this reason, small molecule protein kinase inhibitors have become important research tools for the elucidation of the varied roles of kinases and their mechanisms of action. These molecules have been key developments in drug pipelines of the pharmaceutical and biotechnology industries and also in the growing need to treat cancer and inflammation. Item Description Application Sizes J63983 Wortmannin, Penicillium A specific and irreversible inhibitor of phosphatidyl inositol 10mg, 25mg, 50mg funiculosum, 99+% 3-kinase (IC 2-5nM) 50 J63525 Fasudil, 98+% A potent rho-kinase inhibitor with antivasospastic properties 10mg, 50mg J60594 Fasudil dihydrochloride, A potent rho-kinase inhibitor with antivasospastic properties 250mg, 500mg, 1g 99+% J60751 Fasudil monohydrochloride A potent rho-kinase inhibitor with antivasospastic properties 100mg, 200mg, 1g 99+% J60308 Tyrphostin A23, 99% An inhibitor of EGF receptor kinase with an IC50 value of 35 5mg, 10mg, 25mg µM in the human epidermoid carcinoma cell line A431 J63090 K252c Inhibits protein kinase c with IC50 of 214 nM. Inhibits CaM 1mg, 5mg kinase with IC50 of 297 µM for the brain enzyme. J61687 Protein Kinase inhibitor Also called K252a. An alkaloid isolated from Nocardiopisis sp. 1mg, 5mg, 25mg soil fungi.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • Targeting the Function of the HER2 Oncogene in Human Cancer Therapeutics
    Oncogene (2007) 26, 6577–6592 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Targeting the function of the HER2 oncogene in human cancer therapeutics MM Moasser Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, CA, USA The year 2007 marks exactly two decades since human HER3 (erbB3) and HER4 (erbB4). The importance of epidermal growth factor receptor-2 (HER2) was func- HER2 in cancer was realized in the early 1980s when a tionally implicated in the pathogenesis of human breast mutationally activated form of its rodent homolog neu cancer (Slamon et al., 1987). This finding established the was identified in a search for oncogenes in a carcinogen- HER2 oncogene hypothesis for the development of some induced rat tumorigenesis model(Shih et al., 1981). Its human cancers. An abundance of experimental evidence human homologue, HER2 was simultaneously cloned compiled over the past two decades now solidly supports and found to be amplified in a breast cancer cell line the HER2 oncogene hypothesis. A direct consequence (King et al., 1985). The relevance of HER2 to human of this hypothesis was the promise that inhibitors of cancer was established when it was discovered that oncogenic HER2 would be highly effective treatments for approximately 25–30% of breast cancers have amplifi- HER2-driven cancers. This treatment hypothesis has led cation and overexpression of HER2 and these cancers to the development and widespread use of anti-HER2 have worse biologic behavior and prognosis (Slamon antibodies (trastuzumab) in clinical management resulting et al., 1989).
    [Show full text]
  • Access to Cancer Medicines in Australia
    Access to cancer medicines in Australia Medicines Australia Oncology Industry Taskforce July 2013 Contents Glossary ..................................................................................................................................... i Executive summary .................................................................................................................... i 1 Background ..................................................................................................................... 1 1.1 Purpose of this report ....................................................................................................... 2 1.2 Methods ........................................................................................................................... 3 1.3 Report structure ............................................................................................................... 9 2 Cancer in Australia and other countries ......................................................................... 10 2.1 Population statistics on cancer ........................................................................................ 10 2.2 Population impacts of cancer in Australia ........................................................................ 24 2.3 Summary ........................................................................................................................ 33 3 Current and future cancer medicines ............................................................................ 34 3.1 Current
    [Show full text]
  • Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in Vitro and in Vivo
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Genetik Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in vitro and in vivo - Towards Response Prediction in Cancer Therapy with Kinase Inhibitors Michaela Bairlein Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. -Prof. Dr. K. Schneitz Prüfer der Dissertation: 1. Univ.-Prof. Dr. A. Gierl 2. Hon.-Prof. Dr. h.c. A. Ullrich (Eberhard-Karls-Universität Tübingen) 3. Univ.-Prof. A. Schnieke, Ph.D. Die Dissertation wurde am 07.01.2010 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 19.04.2010 angenommen. FOR MY PARENTS 1 Contents 2 Summary ................................................................................................................................................................... 5 3 Zusammenfassung .................................................................................................................................................... 6 4 Introduction .............................................................................................................................................................. 8 4.1 Cancer ..............................................................................................................................................................
    [Show full text]
  • 1477-1502 Page 1477 Vijay
    Vijay. K * et al. /International Journal Of Pharmacy&Technology ISSN: 0975-766X CODEN: IJPTFI Available Online through Review Article www.ijptonline.com PROTEIN KINASES: TARGETS FOR DRUG DISCOVERY Sri Harika. K, Rama lakshmi. K, Vijay. K* University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur. Email:[email protected] Received on 25-08-2011 Accepted on 14-09-2011 Abstract Protein kinases are enzymes that covalently modify proteins by attaching phosphate groups (from ATP) to serine, threonine, and/or tyrosine residues. In so doing, the functional properties of the protein kinase’s substrates are modified. Protein kinases transduce signals from the cell membrane into the interior of the cell. Such signals include not only those arising from ligand-receptor interactions but also environmental perturbations (ie, cell stretch or shear stress). Ultimately, the activation of signaling pathways results in the reprogramming of gene expression through the direct regulation of transcription factors or protein translation. Protein kinases regulate most aspects of normal cellular function. The pathophysiological dysfunction of protein kinase signaling pathways underlies the molecular basis of many cancers and of several manifestations of cardiovascular disease, such as hypertrophy, ischemia/reperfusion injury, angiogenesis. Given their roles in such a wide variety of disease states, protein kinases are rapidly becoming extremely attractive targets for drug discovery. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Key words: protein kinase, signaling pathway, cell function. Introduction: Targets: Generally, the "target" is the naturally existing cellular or molecular structure involved in the pathology of interest that the drug-in-development is meant to act on.
    [Show full text]
  • Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions Khushwant S
    Bhullar et al. Molecular Cancer (2018) 17:48 https://doi.org/10.1186/s12943-018-0804-2 REVIEW Open Access Kinase-targeted cancer therapies: progress, challenges and future directions Khushwant S. Bhullar1, Naiara Orrego Lagarón2, Eileen M. McGowan3, Indu Parmar4, Amitabh Jha5, Basil P. Hubbard1 and H. P. Vasantha Rupasinghe6,7* Abstract The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein- coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies. Keywords: Kinases, Kinase inhibition, Small-molecule drugs, Cancer, Oncology Background Recent advances in our understanding of the fundamen- Kinases are enzymes that transfer a phosphate group to a tal molecular mechanisms underlying cancer cell signaling protein while phosphatases remove a phosphate group have elucidated a crucial role for kinases in the carcino- from protein.
    [Show full text]
  • Elife-55845-Figures.Pdf
    RESEARCH ARTICLE Figures and figure supplements Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I Zoe A Stephenson et al Stephenson et al. eLife 2020;9:e55845. DOI: https://doi.org/10.7554/eLife.55845 1 of 20 Research article Biochemistry and Chemical Biology Cancer Biology A) B) Mubritinib (µM) pHER2 (Y1221/1222) - HER2 p-HER2 (Y1221/1222) p-ACC (S-79) HER2 ACC ȕ-tubulin p-RPS6 (S-240/244) RPS6 ȕ-tubulin C) D) E) Untreated Mubritinib 120 125125 140 100 120 100100 80 100 7575 60 80 5050 40 60 HER2 activity HER2activity HER2 activity HER2activity Kinase activity Kinase activity 40 2525 20 (% relative to untreated) 20 (% relative to untreated) *** 00 0 (% relative to untreated) 0 Mubritinib (µM) F) G) Glucose Galactose 120 100 Glucose UntreatedUntreated 100 ns Galactose UntreatedUntreated 75 **** 80 Glucose Mubritinib (2 µ M ) 60 *** *** 50 Galactose MubritinibMubritinib (2 µ M ) **** 40 Live (%) cells Cellular ATP Cellular 25 **** **** 20 **** (% relative to untreated) 0 0 0 1 2 4 6 24 0 24 48 72 Mubritinib (hours) Time (hours) H) I i) I ii) Glucose Galactose Glucose Galactose DMSO Mubritinib Antimycin A Rotenone DMSO Mubritinib Antimycin A Rotenone ns **** **** **** **** 150 150 * ** 100 * *** 0 125 0 125 ** 80 100 100 60 75 75 40 50 50 BPM BPM relative to t BPM relative to t Cellular ATP Cellular 20 25 25 (% relative to untreated) 0 0 0 0 10 30 60 120 0 10 30 60 120 Time (minutes) Time (minutes) Figure 1. Mubritinib does not inhibit HER2, but inhibits ATP production and beat rate of cardiomyocytes.
    [Show full text]