The Newport Forest Bulletin Jl97/18 Citizen Science & Monitoring Nature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whiteflies ; 37 Other Insects and Related Organisms 42
Identification of Insects and Related Pests of Horticultural Plants Authors Richard K. Lindquist OHP Inc. Bozeman, Montana Raymond A. Cloyd University of Illinois Urbana, Illinois Editors Cheryl Cuthbert Steve Carver OFA - an Association of Floriculture Professionals Columbus, Ohio Copyright® 2005 O.F.A. Services, Inc. An affiliate of OFA - an Association of Floriculture Professionals O.F.A. Services, Inc. 2130 Stella Court Columbus, OH 43215-1033 USA Phone: 614-487-1117 Fax: 614-487-1216 [email protected] www.ofa.org The information presented in this publication was confirmed as accurate at the time of printing. The authors, editors, O.F.A. Services, Inc., and OFA assume no liability resulting from the use of information printed in this publication. PREFACE Richard K. Lindquist Raymond A. Cloyd OHP Inc. University of Illinois 4050 W. Babcock St. #34 Department of Natural Resources Bozeman, MT 59718 & Environmental Sciences [email protected] 384 National Soybean Research Lab 1101 W. Peabody Dr. Urbana, IL 61801 217-244-7218 Fax: 217-244-3469 [email protected] The purpose of this book is to help you identify and manage the major insect, mite, and associated pests of greenhouse crops. In addition to photos of the pests, there are photos of some beneficial insects and mites as well. This is to help determine if the insect or mite you see is a friend or foe. The photos show pests and beneficials in different views and magnifications. Sometimes, plant injury symptoms are good ways to identify particular pest problems. Where appropriate, photos of plant injury are included. Line drawings of life cycles, common species within each pest group, and brief descriptions of pest biology are included. -
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate -
Universidade Federal De Santa Catarina Centro De Ciências Agrárias Departamento De Fitotecnia
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA Controle biológico com Coleoptera: Coccinellidae das cochonilhas (Homoptera: Diaspididae, Dactylopiidae), pragas da “palma forrageira”. Ícaro Daniel Petter FLORIANÓPOLIS, SANTA CATARINA NOVEMBRO DE 2010 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA Controle biológico com Coleoptera: Coccinellidae das cochonilhas (Homoptera: Diaspididae, Dactylopiidae), pragas da “palma forrageira”. Relatório do Estágio de Conclusão do Curso de Agronomia Graduando: Ícaro Daniel Petter Orientador: César Assis Butignol FLORIANÓPOLIS, SANTA CATARINA NOVEMBRO DE 2010 ii Aos meus pais, por tudo, minha mais profunda gratidão e consideração. iii AGRADECIMENTOS À UFSC e à Embrapa (CPATSA) pelo apoio na realização do estágio. Ao Professor César Assis Butignol pela orientação. A todos que, de alguma forma, contribuíram positivamente na minha graduação, meus sinceros agradecimentos. iv RESUMO Neste trabalho relata-se o programa de controle biológico das cochonilhas, Diaspis echinocacti Bouché, 1833 (Homoptera: Diaspididae) e Dactylopius opuntiae Cockerell, 1896 (Homoptera: Dactylopiidae), pragas da “palma forrageira” (Opuntia ficus-indica (Linnaeus) Mill, e Nopalea cochenillifera Salm- Dyck) (Cactaceae), no semi-árido nordestino, atualmente desenvolvido pela Embrapa Semi-Árido (CPATSA) em Petrolina (PE). Os principais trabalhos foram com duas espécies de coccinelídeos predadores, a exótica Cryptolaemus montrouzieri Mulsant, -
4 Reproductive Biology of Cerambycids
4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments ................................................................................................................................. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Insects of Larose Forest (Excluding Lepidoptera and Odonates)
Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata -
Genomics of Systemic Induced Defense Responses to Insect Herbivory in Hybrid Poplar
GENOMICS OF SYSTEMIC INDUCED DEFENSE RESPONSES TO INSECT HERBIVORY IN HYBRID POPLAR by RYAN NICHOLAS PHILIPPE B.Sc. (Hon.), the University of British Columbia, 2003 A THESIS SUBMITTED 1N PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Botany) THE UNIVERSITY OF BRITISH COLUMBIA September 2008 © Ryan Nicholas Philippe, 2008 Abstract The availability of a poplar (Populus trichocarpa Torr & A. Gray, bLack cottonwood) genome sequence is enabling new research approaches in angiosperm tree biology. Much of the recent genomics research in popLars has been on wood formation, growth and deveLopment, and abiotic stress tolerance, motivated, at Least in part, by the fact that popLars provide an important system for Large scale, short-rotation pLantation forestry in the Northern Hemisphere. Given their widespread distribution and long lifespan, poplar trees are threatened by a Large variety of insect herbivore pests, and must deal with their attacks with a successfuL defense response. To sustain productivity and ecosystem health of natural and planted poplar forests, it is of critical importance to develop a better understanding of the molecular mechanisms of defense and resistance of poplars against insect pests. Previous research has established a soLid foundation of the chemical ecology of poplar defense against base with Large-scaLe profiling of transcriptome responses of insects. In this study, I buiLd on this popLar trees to insect herbivory. A 15,496-clone cDNA microarray was developed and used to anaLyse transcriptome responses through time to a variety of insect, mechanicaL, and chemicaL eLicitor treatments in treated source leaves, as well as in undamaged systemic source and sink leaves of hybrid poplar (Populus trichocarpa x deltoides). -
Moths of Ohio Guide
MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1. -
Entomological Society of America
ENTOMOLOGICAL SOCIETY OF AMERICA 10001 Derekwood Lane, Suite 100, Lanham, MD 20706-4876 Phone: (301) 731-4535 • Fax: (301) 731-4538 E-mail: [email protected] • http://www.entsoc.org Proposal Form for new Common Name or Change of ESA-Approved Common Name Complete this form and send or e-mail to the above address. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website and with the discussion by A.B. Gurney, 1953, Journal of Economic Entomology 46:207-211. 1. Proposed new common name: European paper wasp 2. Previously approved common name (if any): None 3. Scientific name (genus, species, author): Polistes dominula (Christ) Order: Hymenoptera Family: Vespidae Supporting Information 4. Reasons supporting the need for the proposed common name: Since its introduction into North America (ca. 1968 New Jersey, ca. 1976 Boston area), this vespid has become widespread throughout the northern half of the United States and southern Canada. It some locations it has become the dominant Polistes species and a very visible insect in yards and gardens. 5. Stage or characteristic to which the proposed common name refers: “Paper wasp” refers to its habit of constructing a multi-celled umbrella-form nest. This is typical of Polistes spp., including those currently recognized as “paper wasps” in the ESA Common Names listing (e.g., Polistes aurifer/golden paper wasp, Polistes olivaceous/Macao paper wasp). This insect is native to Europe and a recent colonizer of North America. -
Spineless Spineless Rachael Kemp and Jonathan E
Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world. -
(Hemiptera: Heteroptera) from Wisconsin, Supplement
The Great Lakes Entomologist Volume 48 Numbers 3/4 -- Fall/Winter 2015 Numbers 3/4 -- Article 13 Fall/Winter 2015 October 2015 Feeding Records of True Bugs (Hemiptera: Heteroptera) from Wisconsin, Supplement Andrew H. Williams Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Williams, Andrew H. 2015. "Feeding Records of True Bugs (Hemiptera: Heteroptera) from Wisconsin, Supplement," The Great Lakes Entomologist, vol 48 (3) Available at: https://scholar.valpo.edu/tgle/vol48/iss3/13 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Williams: Feeding Records of True Bugs (Hemiptera: Heteroptera) from Wiscon 192 THE GREAT LAKES ENTOMOLOGIST Vol. 48, Nos. 3 - 4 Feeding Records of True Bugs (Hemiptera: Heteroptera) from Wisconsin, Supplement Andrew H. Williams Abstract In order to understand any animal and its habitat requirements, we must know what it eats. Reported here are observations of feeding by 27 species of true bugs (Hemiptera: Heteroptera) encountered in various habitats in Wisconsin over the years 2003–2014. This is the first report ofAnasa repetita Heidemann (Coreidae) from Wisconsin. ____________________ Knowing what an animal eats is essential to our understanding of that animal and its habitat requirements. Over the years 2003–2014, I accumulated many observations of insects feeding in Wisconsin. These data are vouchered by hand-collected specimens given to the Insect Research Collection of the Entomology Department at University of Wisconsin - Madison. -
Fourlined Plant Bug Poecilocapsus Lineatus Order Hemiptera, Family Miridae; Plant Or Leaf Bugs Native Pest
Pests of Trees and Shrubs Fourlined plant bug Poecilocapsus lineatus Order Hemiptera, Family Miridae; plant or leaf bugs Native pest Host plants: Amur maple, azalea, dogwood, forsythia, rose, viburnum, and approximately 250 other plant species, especially in the mint family. Description: Adult bugs usually have yellow forewings but these may change to bright green. There are four black stripes down the back. Adults are approximately 7 mm long. Larvae vary from red to yellow with black stripes only on the wing buds. Fourlined plant bug adult. (130) Life history: Eggs hatch in late April to May. The nymphal Photo: David Laughlin developmental stage lasts about 30 days. Adults feed on the upper surface of leaves. There is one generation a year. Overwintering: Eggs inserted into a slit near the top of shoots. Damage symptoms: Feeding by both adults and nymphs may cause stippling on leaves—spots of discoloration that may turn from yellow to brown to black. Holes may develop in leaves when heavy infestations occur. Plants are not killed by this insect. Feeding activity ends in early summer. Monitoring: The fourlined plant bug hides under leaves and may be difficult to detect. Look in May and June for signs of stippling on leaves. Net sweeps of foliage may confirm the presence of this insect. Cultural control: Prune perennial plants at ground level to dispose of nymphs. Chemical control: Spray in May and June if feeding damage reaches unacceptable levels. Horticultural oils are effective against nymphs. Biological control: No report of natural enemies. Plant mortality risk: Low Biorational pesticides: azadirachtin, insecticidal soap, pyrethrins Conventional pesticides: acephate, bifenthrin, carbaryl, chlorpyrifos (nursery only), cyfluthrin, deltamethrin, fluvalinate, imidacloprid, lambda-cyhalothrin, malathion, permethrin IPM of Midwest Landscapes 140.