Analysis of Large-Scale Metabolic Networks: Organization Theory, Phenotype Prediction and Elementary Flux Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Large-Scale Metabolic Networks: Organization Theory, Phenotype Prediction and Elementary Flux Patterns Analysis of Large-Scale Metabolic Networks: Organization Theory, Phenotype Prediction and Elementary Flux Patterns Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakult¨at der Friedrich-Schiller-Universit¨atJena von Diplom-Bioinformatiker Christoph Kaleta geboren am 16. Mai 1983 in Weimar, Deutschland Gutachter: 1. Prof. Dr. Stefan Schuster (Universit¨atJena) 2. PD Dr. Peter Dittrich (Universit¨atJena) 3. Prof. Dr. Joachim Selbig (Universit¨atPotsdam) Tag der ¨offentlichen Verteidigung: 22.3.2010 Die vorliegende Arbeit wurde am Lehrstuhl f¨urBioinformatik der Biologisch- Pharmazeutischen Fakult¨atder Friedrich-Schiller-Universit¨atJena unter der Leitung von Prof. Dr. Stefan Schuster und in der Biosystemanalysegruppe unter der Leitung von PD Dr. Peter Dittrich angefertigt. 1 Abstract Understanding the function and control of metabolic networks is one of the cen- tral topics in systems biology. The metabolic network allows an organism to recreate all of its components from molecules that can be found in its environ- ment. Due to the inherent complexity of such networks different methods aimed at analysing their structure have been proposed. The methods used here can be broadly divided into two types. The first type comprises flux-centered approaches like elementary mode analysis, the closely related extreme pathway analysis and flux balance analysis. These approaches have in common that they concentrate on possible fluxes through reactions at steady state. The second type, represented by chemical organization theory, additionally explicitly takes into account metabo- lites. Thus, not only a specific set of reactions but all possible reactions that can be performed by a given set of metabolites is considered. All these methods differ in the size of the networks to which they can be applied and in the type of results that can be obtained. The major focus of this work is the integration of several of these concepts in order to allow a more comprehensive analysis of metabolic networks. Indeed, elementary mode analysis and chemical organization theory can complement each other in two ways. First, the set of chemical orga- nizations of a reaction network allows for a meaningful clustering of elementary modes and helps to identify elementary modes that cannot be operative at steady state. Second, the set of elementary modes can be used as a base for an algorithm to compute chemical organizations. Furthermore, a comparison shows that taking into account the compounds present in a reaction network is of importance since Abstract 2 chemical organization theory allows for more accurate predictions concerning the viability of an organism after a perturbation of its metabolic network. In another direction, the combination of concepts from flux balance analysis and elementary mode analysis helps to overcome the problem that the entire set of elementary modes can only be computed in small or medium size metabolic networks. The framework behind this integration, elementary flux pattern analysis, allows one to identify all possible routes through a subsystem that are part of a pathway in a genome-scale metabolic network. A first important benefit of this concept is that many approaches building on elementary mode analysis can now be ap- plied to genome-scale metabolic networks. Furthermore, using elementary flux patterns, we were able to identify several elementary modes in a subsystem of a metabolic model of Escherichia coli reported in a previous work that are not part of a steady-state flux if the entire network is considered. Additionally, we dis- covered several alternative routes to common metabolic pathways in the central metabolism of E. coli. Using elementary flux pattern analysis in a genome-scale metabolic model of humans we found several pathways that contradict a widely held assumption in biochemistry saying that the conversion of even-chain fatty acids into glucose is infeasible in humans. 3 Zusammenfassung Die Untersuchung und Aufkl¨arung von Zusammenh¨angen in metabolischen Netz- werken ist eines der zentralen Aufgabengebiete der Systembiologie. Ein metabo- lisches Netzwerk erlaubt es dem Organismus, alle seine Bestandteile aus Stoffen in seiner Umgebung herzustellen. Aufgrund der Komplexit¨at dieser Netzwerke wurden verschiedene Methoden zur Untersuchung ihrer Struktur vorgeschlagen. Die Methoden, die in dieser Arbeit zur Anwendung kommen, k¨onnen grob in zwei Richtungen unterteilt werden. Einerseits gibt es Methoden die sich auf die Flusse¨ in einem metabolischen Netzwerk konzentrieren. Beispiele fur¨ solche Me- thoden sind die Elementarmodenanalyse, die sehr ¨ahnliche Analyse von Extreme Pathways und die Flussbilanzanalyse (Flux Balance Analysis). Andererseits gibt es Methoden, wie die Theorie der chemischen Organisationen, die zudem die Me- tabolite in einem Netzwerk in die Analyse mit einbeziehen. Dabei werden nicht nur Mengen an Reaktionen, sondern grunds¨atzlich alle Reaktionen die zwischen einer bestimmten Menge an Metaboliten m¨oglich sind, betrachtet. Alle diese Methoden unterscheiden sich in der Gr¨oße der Netzwerke, auf die sie angewendet werden k¨onnen und in den Ergebnissen, die sie liefern. Das zentrale Ziel dieser Arbeit ist es diese Methoden miteinander in Beziehung zu setzen und zu kombinieren, um eine umfassendere Analyse von Reaktionsnetzwerken zu erm¨oglichen. So k¨onnen sich die Elementarmodenanalyse und die Theorie Chemischer Organisationen in zwei- erlei Hinsicht erg¨anzen. Einerseits erlauben es die chemischen Organisationen eines Reaktionsnetzwerks dessen Elementarmoden zu gruppieren und solche zu identifi- zieren, die nicht im station¨aren Zustand des Reaktionsnetzwerks auftreten k¨onnen. Zusammenfassung 4 Andererseits k¨onnen Elementarmoden verwendet werden, um chemische Organisa- tionen zu berechnen. Weiterhin kann gezeigt werden, dass die explizite Beachtung von Metaboliten die Genauigkeit der Vorhersage bezuglich¨ der Lebensf¨ahigkeit ei- nes Organismus nach der St¨orung seines metabolischen Netzwerks verbessert. Ein weiterer zentraler Punkt dieser Arbeit ist die Kombination von Flussbilanzanaly- se mit Elementarmodenanalyse, die es erlaubt, die Problematik zu umgehen, dass Elementarmoden nur in metabolischen Netzwerken kleinerer und mittlerer Gr¨oße vollst¨andig berechnet werden k¨onnen. Das Konzept der Elementary Flux Pat- terns, das dieser Integration zu Grunde liegt, erlaubt es alle m¨oglichen Wege von station¨aren Flussen¨ durch ein Teilnetwerk eines Ganzzellmodells (genome-scale model) zu bestimmen. Ein erster Vorteil dieses Konzepts liegt darin, dass viele Methoden, die auf Elementarmodenanalyse aufbauen, jetzt auch auf Ganzzellm- odelle angewendet werden k¨onnen. Weiterhin konnten wir in einem Teilsystem eines Ganzzellmodells des Metabolismus von Escherichia coli mehrere Elemen- tarmoden identifizieren, die die Stationarit¨atsbedingung zwar in dem Teilmodell erfullen,¨ aber nicht Teil eines station¨aren Flusses durch das Gesamtmodell sein k¨onnen. In demselben Modell fanden wir außerdem mehrere Reaktionswege, die als Alternativrouten fur¨ Stoffwechselwege im zentralen Metabolismus von E. coli verwendet werden k¨onnen. In einem Modell des menschlichen Metabolismus iden- tifizierten wir zudem mehrere Reaktionswege, die der weit verbreiteten Annahme widersprechen, dass die Umwandlung von geradzahligen Fetts¨auren in Glucose im Menschen nicht m¨oglich ist. 5 Danksagung Nach nur einem Jahr neigt sich meine Arbeit als Doktorand schon dem Ende zu. Dass ich meine Doktorarbeit in dieser kurzen Zeit fertigstellen konnte, habe ich Peter Dittrich und Stefan Schuster zu verdanken. Durch meine Arbeit in der Biosystemanalysegruppe von Peter Dittrich in den Jahren 2005 – 2008 konnte ich erste wertvolle Erfahrungen in der wissenschaftlichen Praxis sammeln. Mein be- sonderer Dank gilt Stefan Schuster, da er es mir erm¨oglicht hat einen Teil dieser Arbeit und andere Arbeiten, die schon w¨ahrend meiner Zeit bei der Biosystem- analysegruppe, begonnen haben in seiner Gruppe fortzusetzen. Dem messe ich besondere Bedeutung bei, da ich so meine zuvor gewonnenen Erfahrungen weiter vertiefen konnte. Weiterhin gilt mein Dank auch Reinhard Guthke, bei dem ich im Rahmen meiner Diplomarbeit lernte, wie schwierig es ist Modelle von biologischen Systemen zu konstruieren. Es ist schwer einer Danksagung eine Reihenfolge auf- zuerlegen. Gerade deshalb m¨ochte ich genauso meiner Familie und ganz besonders meiner Freundin Claudia danken, die mich w¨ahrend dieser ganzen Zeit tatkr¨aftig unterstutzt¨ und, wenn notwendig, auch mal abgelenkt haben. Hier m¨ochte ich naturlich¨ auch meinen Mitarbeitern danken, mit denen die Zusammenarbeit im- mer eine sehr große Freude war und sicherlich auch noch sein wird. Dabei m¨ochte ich ganz besonders Lu´ıs,J¨orn, Ines, Frank, Florian und Pietro danken. 6 Contents Abstract1 Zusammenfassung3 Danksagung5 1 Introduction8 2 From Metabolic Pathways to Chemical Organizations 18 Analyzing molecular reaction networks: From pathways to chemical or- ganizations. C. Kaleta, F. Centler, and P. Dittrich. Mol. Biotech- nol., 34(2):117-123, Oct 2006. .................... 19 Computing chemical organizations in biological networks. F. Centler, C. Kaleta, P. S. di Fenizio, and P. Dittrich. Bioinformatics, 24(14):1611- 1618, Jul 2008. ............................ 26 3 Predicting Phenotypes of Metabolic Networks 34 Phenotype prediction in regulated metabolic networks. C. Kaleta, F. Centler, P. S. di Fenizio, and P. Dittrich. BMC Syst.
Recommended publications
  • Metabolic Network Structure Determines Key Aspects of Functionality and Regulation
    letters to nature .............................................................. representative substrates feeding into different parts of metabolism (Table 1). The total number of elementary modes for given Metabolic network structure conditions is here used as a quantitative measure of the degrees of determines key aspects of freedom11, that is, of flexibility. Glucose, for example, can be used in approximately 45 times more different ways than acetate, corre- functionality and regulation sponding to biological intuition. Flux mode number thus directly relates network structure to function. An empty set implies that no Jo¨rg Stelling*, Steffen Klamt*, Katja Bettenbrock*, Stefan Schuster† steady-state flux distribution fulfilling the specifications exists, & Ernst Dieter Gilles* hence predicting an inviable phenotype. For instance, anaerobic use of any of the four substrates except glucose is impossible without * Max Planck Institute for Dynamics of Complex Technical Systems, additional terminal electron acceptors. D-39106 Magdeburg, Germany In particular, we analyse the ability to grow or not to grow of † Max Delbru¨ck Center for Molecular Medicine, D-13092 Berlin, Germany mutants carrying deletions in single genes. For this purpose, the ............................................................................................................................................................................. number of flux modes for a mutant Di using substrate S is The relationship between structure, function and regulation in k 1–3 determined
    [Show full text]
  • DISSERTATION PROTEOMIC PROFILING of the RAT RENAL PROXIMAL CONVOLUTED TUBULE in RESPONSE to CHRONIC METABOLIC ACIDOSIS Submitted
    DISSERTATION PROTEOMIC PROFILING OF THE RAT RENAL PROXIMAL CONVOLUTED TUBULE IN RESPONSE TO CHRONIC METABOLIC ACIDOSIS Submitted by Dana Marie Freund Department of Biochemistry and Molecular Biology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2013 Doctoral Committee: Advisor: Norman Curthoys Co-Advisor: Jessica Prenni Jennifer Nyborg Olve Peersen Karen Dobos ABSTRACT PROTEOMIC PROFILING OF THE RAT RENAL PROXIMAL CONVOLUTED TUBULE IN RESPONSE TO CHRONIC METABOLIC ACIDOSIS The human kidneys contain more than one million glomeruli which filter nearly 200 liters of plasma per day. The proximal tubule is the segment of the nephron that immediately follows the glomeruli. This portion of the nephron contributes to fluid, electrolyte and nutrient homeostasis by reabsorbing 60-70% of the filtered water and NaCl and an even greater proportion of NaHCO3. The initial or convoluted portion of the proximal tubule reabsorbs nearly all of the nutrients in the glomerular filtrate and is the site of active secretion and many of the metabolic functions of the kidney. For example, the proximal convoluted tubule is the primary site of renal ammoniagenesis and gluconeogenesis, processes that are significantly activated during metabolic acidosis. Metabolic acidosis is a common clinical condition that is characterized by a decrease in blood pH and bicarbonate concentration. Metabolic acidosis also occurs frequently as a secondary complication, which adversely affects the outcome of patients with various life- threatening conditions. This type of acidosis can occur acutely, lasting for a few hours to a day, or as a chronic condition where acid-base balance is not fully restored.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Grhpr Gene, Full Gene Analysis
    TEST ID: GRHPZ GRHPR GENE, FULL GENE ANALYSIS CLINICAL INFORMATION MOBILE APPS FROM MAYO MEDICAL LABORATORIES Primary hyperoxaluria type 2 (PH2) is a hereditary disorder of glyoxylate metabolism caused by deficiency of the hepatic enzyme glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Lab Catalog for iPad and Absence of GRHPR activity results in excess oxalate and usually L-glycerate excreted in the Lab Reference for iPhone urine leading to nephrolithiasis (kidney stones) and sometimes renal failure. and iPod Touch Onset of PH2 is typically in childhood or adolescence with symptoms related to kidney stones. In some cases, kidney failure may be the initial presenting feature. Nephrocalcinosis, as seen by renal ultrasound, is observed less frequently in individuals with PH2 than primary Requires iOS 5.1+ hyperoxaluria type 1 (PH1). End-stage renal disease (ESRD) is also less common and of later onset than PH1; however, once ESRD develops, oxalate deposition in other organs such as REFERENCE VALUES bone, retina, and myocardium can occur. An interpretive report will be While the exact prevalence and incidence of PH2 are not known, it is thought that PH2 is less provided. common than PH1, which has an estimated prevalence rate of 1 to 3 per million population and an incidence of 0.1 per million/year. ANALYTIC TIME Biochemical testing is indicated in patients with possible primary hyperoxaluria. Measurement 14 days of urinary oxalate in a timed, 24-hour urine collection is strongly preferred, with correction to adult body surface area in pediatric patients (HYOX / Hyperoxaluria Panel, Urine; OXU / Oxalate, Urine). In very young children (incapable of performing a timed collection), random urine oxalate to creatinine ratios may be used for determination of oxalate excretion.
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Computational Modeling of Genetic and Biochemical Networks. Edited by James M. Bower and Hamid Bolouri Computational Molecular Biology, a Bradford Book, the MIT Press, Cambridge
    BRIEFINGS IN BIOINFORMATICS. VOL 7. NO 2. 204 ^206 doi:10.1093/bib/bbl001 Advance Access publication March 9, 2006 Book Review Computational Modeling of Genetic stochastic modelling are inevitable due to the small and Biochemical Networks number of molecules in a cell [1]. These intrinsic Edited by James M. Bower and noise effects have been measured in gene expression Hamid Bolouri using fluorescent probes [2, 3]. Chapter 3, ‘A Logical Model of cis-Regulatory Control in Eukaryotic Computational Molecular Biology, Downloaded from https://academic.oup.com/bib/article/7/2/204/304421 by guest on 23 September 2021 A Bradford Book, The MIT Press, Systems’ by Chiou-Hwa Yuh and others, builds Cambridge, Massachusetts; 2004; up on the theoretical framework introduced in ISBN: 0 262 52423 6; Paperback; 390pp.; Chapter 1 and presents a detailed characterization of £22.95/$35.00. a developmental biology gene network with a large number of regulatory factors. Chapters 1–3 deal with individual gene regulations. Eric Mjolsness intro- ‘Computational Modeling of Genetic and duces and reviews computational techniques, such as Biochemical Networks’ arose from a graduate neural network approaches, to study gene networks course taught by the editors in the California in Chapter 4 ‘Trainable Gene Regulation Networks Institute of Technology in 1998. The aim of the with Application to Drosophila Pattern Formation’. book is to provide instruction in the application of Special emphasis is made in the activity patterns modelling techniques in molecular and cell biology during the fruit-fly development. High-throughput to graduate students and postdoctoral researchers. experimental assays play a major role in the current It is also intended as a primer in the subject for shift from reductionist to systems biology approa- both theoretical and experimental biologists.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Methods
    Supplementary methods Human lung tissues and tissue microarray (TMA) All human tissues were obtained from the Lung Cancer Specialized Program of Research Excellence (SPORE) Tissue Bank at the M.D. Anderson Cancer Center (Houston, TX). A collection of 26 lung adenocarcinomas and 24 non-tumoral paired tissues were snap-frozen and preserved in liquid nitrogen for total RNA extraction. For each tissue sample, the percentage of malignant tissue was calculated and the cellular composition of specimens was determined by histological examination (I.I.W.) following Hematoxylin-Eosin (H&E) staining. All malignant samples retained contained more than 50% tumor cells. Specimens resected from NSCLC stages I-IV patients who had no prior chemotherapy or radiotherapy were used for TMA analysis by immunohistochemistry. Patients who had smoked at least 100 cigarettes in their lifetime were defined as smokers. Samples were fixed in formalin, embedded in paraffin, stained with H&E, and reviewed by an experienced pathologist (I.I.W.). The 413 tissue specimens collected from 283 patients included 62 normal bronchial epithelia, 61 bronchial hyperplasias (Hyp), 15 squamous metaplasias (SqM), 9 squamous dysplasias (Dys), 26 carcinomas in situ (CIS), as well as 98 squamous cell carcinomas (SCC) and 141 adenocarcinomas. Normal bronchial epithelia, hyperplasia, squamous metaplasia, dysplasia, CIS, and SCC were considered to represent different steps in the development of SCCs. All tumors and lesions were classified according to the World Health Organization (WHO) 2004 criteria. The TMAs were prepared with a manual tissue arrayer (Advanced Tissue Arrayer ATA100, Chemicon International, Temecula, CA) using 1-mm-diameter cores in triplicate for tumors and 1.5 to 2-mm cores for normal epithelial and premalignant lesions.
    [Show full text]
  • Mathematical Models for Explaining the Warburg Effect: a Review Focussed on ATP and Biomass Production
    Metabolic pathways analysis 2015 1187 Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production Stefan Schuster*1, Daniel Boley†, Philip Moller*,¨ Heiko Stark*‡ and Christoph Kaleta§ *Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany †Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A. ‡Institute of Systematic Zoology and Evolutionary Biology, Friedrich Schiller University Jena, Erbertstraße 1, 07737 Jena, Germany §Research Group Medical Systems Biology, Christian-Albrechts-University Kiel, Brunswiker Straße 10, Kiel 24105, Germany Abstract For producing ATP, tumour cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, the ATP synthesis flux from glycolysis is considerably higher than in the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto H. Warburg) and also applies to striated muscle cells, activated lymphocytes, microglia, endothelial cells and several other cell types. For similar phenomena in several yeasts and many bacteria, the terms Crabtree effect and overflow metabolism respectively, are used. The Warburg effect is paradoxical at first sight because the molar ATP yield of glycolysis is much lower than that of respiration. Although a straightforward explanation is that glycolysis allows a higher ATP production rate, the question arises why cells do not re-allocate protein to the high-yield pathway of respiration. Mathematical modelling can help explain this phenomenon. Here, we review several models at various scales proposed in the literature for explaining the Warburg effect. These models support the hypothesis that glycolysis allows for a higher proliferation rate due to increased ATP production and precursor supply rates.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • VIEW Open Access the Role of Ubiquitination and Deubiquitination in Cancer Metabolism Tianshui Sun1, Zhuonan Liu2 and Qing Yang1*
    Sun et al. Molecular Cancer (2020) 19:146 https://doi.org/10.1186/s12943-020-01262-x REVIEW Open Access The role of ubiquitination and deubiquitination in cancer metabolism Tianshui Sun1, Zhuonan Liu2 and Qing Yang1* Abstract Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment. Keywords: Ubiquitination, Deubiquitination, Cancer, Metabolic reprogramming Background cells have aroused increasing attention and interest [3]. Metabolic pathways are of vital importance in proliferat- Because of the generality of metabolic alterations in can- ing cells to meet their demands of various macromole- cer cells, metabolic reprogramming is thought as hall- cules and energy [1]. Compared with normal cells, mark of cancer, providing basis for tumor diagnosis and cancer cells own malignant properties, such as increased treatment [1]. For instance, the application of 18F- proliferation rate, and reside in environments short of deoxyglucose positron emission tomography is based on oxygen and nutrient.
    [Show full text]