SIPRI Yearbook 2004: Armaments, Disarmament and International
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix a Tables of Fermat Numbers and Their Prime Factors
Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard -
Andrew S. Burrows, Robert S. Norris William M
0?1' ¥t Andrew S. Burrows, Robert S. Norris William M. Arkin, and Thomas B. Cochran GREENPKACZ Damocles 28 rue des Petites Ecuries B.P. 1027 75010 Paris 6920 1 Lyon Cedex 01 Tel. (1) 47 70 46 89 TO. 78 36 93 03 no 3 - septembre 1989 no 3809 - maWaoOt 1989 Directeur de publication, Philippe Lequenne CCP lyon 3305 96 S CPPAP no en cours Directeur de publication, Palrtee Bouveret CPPAP no6701 0 Composition/Maquette : P. Bouverei Imprime sur papier blanchi sans chlore par Atelier 26 / Tel. 75 85 51 00 Depot legal S date de parution Avant-propos a ['edition fran~aise La traduction fran~aisede cette etude sur les essais nucleaires fran~aisentre dans Ie cadre d'une carnpagne mondiale de GREENPEACEpour la denuclearisation du Pacifique. Les chercheurs americains du NRDC sont parvenus a percer Ie secret qui couvre en France tout ce qui touche au nucleaire militaire. Ainsi, la France : - a effectub 172 essais nucleaires de 1960 a 1988. soil environ 10 % du nornbre total d'essais effectues depuis 1945 ; - doit effectuer 20 essais pour la rnise au point d'une t6te d'ame nuclhaire ; - effectual! 8 essais annuels depuis quelques annees et ces essais ont permis la mise au point de la bombe a neutrons des 1985 ; - a produit, depuis 1963, environ 800 tetes nuclbaires et pres de 500 sont actusllement deployees ; - a effectue pks de 110 essais souterrains a Mururoa. Les degats causes a I'atatI sont tres importants. La rbcente decision oflicielle du regroupement des essais en une seule carnpagne de tirs annuelle n'a probablement pas ete prise uniquernent pour des imperatifs econamiques ou de conjoncture internationale. -
KA-6D Intruder - 1971
KA-6D Intruder - 1971 United States Type: Tanker (Air Refueling) Min Speed: 300 kt Max Speed: 570 kt Commissioned: 1971 Length: 16.7 m Wingspan: 16.2 m Height: 4.8 m Crew: 2 Empty Weight: 12070 kg Max Weight: 27500 kg Max Payload: 15870 kg Propulsion: 2x J52-P-409 Weapons / Loadouts: - 300 USG Drop Tank - Drop Tank. OVERVIEW: The Grumman A-6 Intruder was an American, twin jet-engine, mid-wing all-weather attack aircraft built by Grumman Aerospace. In service with the U.S. Navy and U.S. Marine Corps between 1963 and 1997, the Intruder was designed as an all-weather medium attack aircraft to replace the piston-engined Douglas A-1 Skyraider. As the A-6E was slated for retirement, its precision strike mission was taken over by the Grumman F-14 Tomcat equipped with a LANTIRN pod. From the A-6, a specialized electronic warfare derivative, the EA-6 was developed. DETAILS: The A-6's design team was led by Lawrence Mead, Jr. He later played a lead role in the design of the Grumman F-14 Tomcat and the Lunar Excursion Module. The jet nozzles were originally designed to swivel downwards for shorter takeoffs and landings. This feature was initially included on prototype aircraft, but was removed from the design during flight testing. The cockpit used an unusual double pane windscreen and side-by-side seating arrangement in which the pilot sat in the left seat, while the bombardier/navigator sat to the right and slightly below. The incorporation of an additional crew member with separate responsibilities, along with a unique cathode ray tube (CRT) display that provided a synthetic display of terrain ahead, enabled low-level attack in all weather conditions. -
A-6E Intruder - 1987
A-6E Intruder - 1987 United States Type: Attack Min Speed: 300 kt Max Speed: 570 kt Commissioned: 1987 Length: 16.7 m Wingspan: 16.2 m Height: 4.8 m Crew: 2 Empty Weight: 12070 kg Max Weight: 27500 kg Max Payload: 15870 kg Propulsion: 2x J52-P-409 Sensors / EW: - AN/APQ-148 - (A-6E) Radar, Radar, Surface Search, Medium-Range, Max range: 277.8 km - AN/ALQ-126A - (A-6E) ECM, DECM, Defensive ECM, Max range: 0 km - AN/ALR-50 Charger Blue - (Navy) ESM, RWR, Radar Warning Receiver, Max range: 222.2 km - AN/ALR-45 Compass Tie - (Navy) ESM, RWR, Radar Warning Receiver, Max range: 222.2 km - Generic Laser Designator - (Surface Only) Laser Designator, Laser Target Designator & Ranger (LTD/R), Max range: 18.5 km - AN/AAS-33 TRAM - (Surface Only) Infrared, Infrared, Navigation / Attack FLIR, Max range: 55.6 km Weapons / Loadouts: - Mk83 1000lb LDGP - (1954) Bomb. Surface Max: 1.9 km. Land Max: 1.9 km. - 300 USG Drop Tank - Drop Tank. - Mk82 500lb LDGP - (1954) Bomb. Surface Max: 1.9 km. Land Max: 1.9 km. - Mk20 Rockeye II CB [247 x Mk118 Dual Purpose Bomblets] - (1969, Mk7 Dispenser) Bomb. Surface Max: 1.9 km. Land Max: 1.9 km. - AGM-84D Harpoon IC - (1986) Guided Weapon. Surface Max: 138.9 km. - GBU-10E/B Paveway II LGB [Mk84] - (USAF) Guided Weapon. Surface Max: 7.4 km. Land Max: 7.4 km. - GBU-12D/B Paveway II LGB [Mk82] - Guided Weapon. Surface Max: 7.4 km. Land Max: 7.4 km. - GBU-16B/B Paveway II LGB [Mk83] - (USN) Guided Weapon. -
Appendix 15A. World Nuclear Forces
Appendix 15A. World nuclear forces HANS M. KRISTENSEN and SHANNON N. KILE* I. Introduction Despite the efforts over the past half-century to reduce and eliminate nuclear weap- ons, and commitments under the 1968 Non-Proliferation Treaty (NPT)1 to achieve this goal, the five states defined by the NPT as nuclear weapon states—China, France, Russia, the United Kingdom and the United States—continue to deploy more than 16 500 operational nuclear weapons (see table 15A.1). If all warheads are counted— deployed, spares, those in both active and inactive storage, and ‘pits’ (plutonium cores) held in reserve—the five nuclear-weapon states possess an estimated total of 36 500 warheads. This means that they possess over 98 per cent of the world nuclear weapon stockpile. The US 2001 Nuclear Posture Review (NPR) and implementation of the 2002 US–Russian Strategic Offensive Reductions Treaty (SORT) will move thousands of US and Russian ‘operationally deployed strategic warheads’ out of declared opera- tional status into various ‘unaccountable’ categories of reserve weapons.2 Thousands of other weapons are also held in reserve. The result is that the US and Russian nuclear weapon arsenals are becoming increasingly opaque and difficult to monitor.3 In the USA, the 2001 NPR and subsequent defence budgets revealed plans for new ballistic missiles, strategic submarines, long-range bombers, nuclear weapons, and nuclear command and control systems. Substantial modernization is under way for virtually all parts of the US nuclear infrastructure. Similarly, Russia is modernizing its strategic nuclear forces by deploying new intercontinental ballistic missiles (ICBMs) and additional strategic bombers and developing a new generation of nuclear-powered ballistic-missile submarines (SSBNs). -
UCRL-LR-107454: Assessment of the Safety of US Nuclear Weapons And
Fvl+- UCRL-LR-I07454I Report to Congress: Assessment of the Safety of u.S. Nuclear Weapons and Related .c\ Nuclear Test Requirements ,.., R. E. Kidder July 26, 199'::1 '1 Contents Abstract 1 Introduction 1 Principal Meansof Providing NuclearWarhead Safety 2 One-PointSafety : 3 NuclearPlutonium SafetyDispersal Safety 3 SafetyStandards for NuclearWeapons 3 ComparativeSafety of U.S. NuclearWeapons 3 The Minuteman Missiles 5 The Trident Missiles 5 Fire-ResistantPits 5 SeparableComponents 6 Responseto Congressmens'Questions 6 Summaryand Conclusions 10 Recommendations 12 References 12 AbbreviationsUsed 13 Appendix A. Letter from Edward M. Kennedyto JohnNuckolls A-l Appendix B. Letter from Les Aspin to the HonorableJames D. Watkins B-l Appendix C. Nuclear SafetyCriteria C-l Appendix D. SafetyStandards for NuclearWeapons D-l Appendix E. A Summaryof AccidentsInvolving U.S. NuclearWeapons and Nuclear WeaponsSystems E-l AppendixF. Biography F-l iii Report to Congress: Assessment of the Safety of U.S. ~ Nuclear Weapons and Related Nuclear Test Requirements Abstract.The principal safety features included in the design of modern nuclear weapons are described briefly, and each nuclear weapon currently in the stockpile or under development is given a comparative safetyI rating from "A" through "D," indicating the extent to which these safety features are included in its design. The list is then narrowed by deleting weapons currently scheduled for retirement and short-range, surface-to-surface tactical nuclear weapons that will likely be returned to the U.S. and placed in storage. With the exception of the Minuteman and Trident ballistic missile warheads, all warheads in this projected future stockpile will have both of the most important design features that contribute to nuclear weapon safety: enhanced electrical isolation (EEl) and insensitive high explosive (IHE). -
LLNL 65 Th Anniversary Book, 2017
Scientific Editor Paul Chrzanowski Production Editor Arnie Heller Pamela MacGregor (first edition) Graphic Designer George Kitrinos Proofreader Caryn Meissner About the Cover Since its inception in 1952, the Laboratory has transformed from a deactivated U.S. Naval Air Station to a campus-like setting (top) with outstanding research facilities through U.S. government investments in our important missions and the efforts of generations of exceptional people dedicated to national service. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, About the Laboratory nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or Lawrence Livermore National Laboratory (LLNL) was founded in 1952 to enhance process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to the security of the United States by advancing nuclear weapons science and any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise technology and ensuring a safe, secure, and effective nuclear deterrent. With does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States a talented and dedicated workforce and world-class research capabilities, the government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed Laboratory strengthens national security with a tradition of science and technology herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. -
The Case Against New Nuclear Weapons
AP PHOTO AP The Case Against New Nuclear Weapons By Adam Mount May 2017 WWW.AMERICANPROGRESS.ORG The Case Against New Nuclear Weapons By Adam Mount May 2017 Contents 1 Introduction and summary 3 U.S. policy on new nuclear capabilities 12 Recent calls for new nuclear weapons 18 What is a new capability? 21 The case against new nuclear options 35 Recommendations 43 Conclusion 45 About the author and acknowledgments 46 Endnotes Introduction and summary Since the size of the U.S. nuclear arsenal peaked in the 1980s, American presi- dents—Democrat and Republican alike—have limited the development of new nuclear weapons. Whether the restriction was written into law, was included in U.S. nuclear policy, or was the result of specific decisions not to pursue new pro- curement projects, the United States has not built a new nuclear warhead since the late 1980s. This policy decision has generated significant cost savings, restrained strategic competition, and helped to support other stabilizing policies. With Republicans now in control of Congress and the White House, this policy is at risk. As Russia and China expand their territorial claims as well as their own nuclear arsenals, a growing chorus of U.S. politicians and strategists argue that it is not sufficient to simply replace nuclear systems as they wear out. Instead, they insist that the United States must procure new systems with qualitatively new capabilities. In some cases, appeals for new nuclear weapons are motivated by a sophisticated but mistaken argument about their necessity for deterring potential adversaries from employing nuclear weapons in limited conflicts. -
Nuclear Weapon
Nuclear weapon “A-bomb” redirects here. For other uses, see A-bomb fare, both times by the United States against Japan near (disambiguation). the end of World War II. On August 6, 1945, the U.S. Army Air Forces detonated a uranium gun-type fission bomb nicknamed “Little Boy” over the Japanese city of Hiroshima; three days later, on August 9, the U.S. Army Air Forces detonated a plutonium implosion-type fission bomb codenamed "Fat Man" over the Japanese city of Nagasaki. The bombings resulted in the deaths of approximately 200,000 civilians and military personnel from acute injuries sustained from the explosions.[3] The ethics of the bombings and their role in Japan’s surrender remain the subject of scholarly and popular debate. Since the atomic bombings of Hiroshima and Nagasaki, nuclear weapons have been detonated on over two thou- sand occasions for the purposes of testing and demon- stration. Only a few nations possess such weapons or are suspected of seeking them. The only countries known to have detonated nuclear weapons—and acknowledge pos- sessing them—are (chronologically by date of first test) the United States, the Soviet Union (succeeded as a nu- clear power by Russia), the United Kingdom, France, the People’s Republic of China, India, Pakistan, and North Korea. Israel is also believed to possess nuclear weapons, though in a policy of deliberate ambiguity, it does not acknowledge having them. Germany, Italy, Turkey, The mushroom cloud of the atomic bombing of the Japanese city Belgium and the Netherlands are nuclear weapons sharing [4][5][6] of Nagasaki on August 9, 1945 rose some 11 miles (18 km) above states. -
Nuclear Weapons Surety
UNCLASSIFIED Document No: DP-20.1/ 9-21·89 Document Consists of 72 Pages Cy No . ....L, of ..5_ Cys. Series B SEPTEMBER1~ Joint Report by the U.S. Department of Defense and the U.S. Department of Energy :. Nuclear Weapons Surety Annual Report to the President(u.) 1988 NOT FOR PUBLIC DISSEMINATION This document contains information that may be subject to the provisions of Section 148 of the Atomic Energy Act of 1954, as amended (42 USC 2158). Review prior to release is required. CLASSIFIED BY: CG-W-5, Jan 84 ,,.. ·".( ·-y (" • . ·;L'f.- ,- .\,!. .Ji. -~ .... : UNCLASSIFIED F { "THIS PAGE INTENTIONALLY LEFT BLANK." .It - UNCLASSIFIED SEPTEMBER 1989 Joint Report by the U.S. Department of Defense and the U.S. Department of Energy Nuclear Weapons S~rety Annual Report to the President 1988 Prepared by: The Associate Director for Weapons Program Safety Defense Programs Department of Energy U CLASSIFIED l "THIS PAGE INTENTIONALLY LEFT BLANK." .. SSIFIED JOINT DEPARTMENT OF DEFENSE/DEPARTMENT OF ENERGY ANNUAL REPORT TO THE PRESIDENT ON NUCLEAR WEAPONS SURETY, 1988 EXECUTIVE SUMMARY At the request of the President, the Department of Defense (DoD) and the Department of Energy (DOE) report annually on the status of nuclear weapons surety. · This report responds to guidance in National Security Decision Directive (NSDD) 309 and summarizes surety progress made during 1988 in the areas of: nuclear weapons safety, security, use control; personnel reliability and assurance programs; emergency preparedness and response; and, inspection and evaluation programs. Budget constraints are also discussed. As part of its preparation, this report was reviewed by the Nuclear Weapons Council. -
B83 Nuclear Bomb from Wikipedia, the Free Encyclopedia
B83 nuclear bomb From Wikipedia, the free encyclopedia The B83 thermonuclear weapon is a variable-yield gravity bomb developed by the United States in the late 1970s, entering service in 1983. With a maximum yield of 1.2 megatonnes of TNT (5.0 PJ) (75 times the yield of the atomic bomb B83 "Little Boy" dropped on Hiroshima on 6 August 1945, which had a yield of 16 kilotonnes of TNT (67 TJ)), it is the most powerful nuclear free-fall weapon in the United States arsenal.[1] It was designed at Lawrence Livermore National Laboratory, and the first underground test detonation of the production B83 took place on 15 December 1984.[2] Contents 1 History 2 Design Type Unguided bomb 3 Aircraft capable of carrying the B83 Service history 4 Novel uses In service 1983–present Used by United States 5 In popular culture Production history 6 See also Designer Lawrence Livermore National Laboratory 7 References Number built 650 8 External links Specifications Weight 1,100 kilograms (2,400 lb) History Length 3.7 meters (12 ft) Diameter 46 centimeters (18 in) The B83 was based partly on the earlier B77 program, which was terminated because of cost overruns. The B77 was designed with an active altitude control and lifting parachute system for supersonic low-altitude delivery from the B-1A Blast yield 1.2 megatonnes of TNT bomber. B77 nuclear component test firings were attributed to the Operation Anvil (Nuclear test) series in 1975 and (5.0 PJ) (maximum) 1976, specifically the "Cheese" test shots in Anvil: Anvil Kasseri – 28 October 1975, 1,200 kilotonnes of TNT (5,000 TJ) (B77/B83 full yield) Anvil Muenster – 3 January 1976, 800 kilotonnes of TNT (3,300 TJ) Anvil Fontina – 12 February 1976, 900 kilotonnes of TNT (3,800 TJ) Anvil Colby – 14 May 1976, 800 kilotonnes of TNT (3,300 TJ)[2] The B83 nuclear components have been attributed as the same as the earlier B77. -
(CEA/DAM) Au Cœur De La Dissuasion Nucléaire Française
La Direction des Applications Militaires (CEA/DAM) au cœur de la dissuasion au cœur de la dissuasion nucléaire française nucléaire dissuasion la de cœur au nucléaire française De l’ère des pionniers Direction des applications militaires au programme Simulation www-dam.cea.fr ISBN : 978-2-9574210-0-8 http://www.barcode-generator.de La Direction des Applications Militaires (CEA/DAM) (CEA/DAM) Militaires Applications des Direction La La Direction des Applications Militaires (CEA/DAM) au cœur de la dissuasion nucléaire française De l’ère des pionniers au programme Simulation SOMMAIRE CHAPITRE 1 5 DE BECQUEREL À GERBOISE BLEUE (1896 - 1960) Les premières découvertes scientifiques 12 Les atomiciens français dans la résistance à l’occupation nazie 14 La création du CEA 18 La planification industrielle de l’effort nucléaire français 21 Vers le premier essai nucléaire français 38 CHAPITR E 2 49 DE LA BOMBE ATOMIQUE À L’ARME THERMONUCLÉAIRE (1960 - 1968) Nucléaire de défense et programmation 54 L’émergence de la stratégie nucléaire française 58 La montée en puissance de la DAM 62 L’accès à la bombe H et le rôle clé des essais 66 CHAPITRE 3 71 LA CONSOLIDATION DU NUCLÉAIRE DE DÉFENSE FRANÇAIS (1969 - 1981) Le développement de la triade stratégique 76 Le développement de l’arme nucléaire tactique 80 La stratégie des essais 84 CHAPITRE 4 89 ENTRE RUPTURES ET CONTINUITÉ (1981 - 1996) Modernisation des forces et fin de la guerre froide 94 La politique française de désarmement 98 Du moratoire à l’arrêt définitif des essais 104 CHAPITRE 5 107 LA SIMULATION, OUTIL ULTIME DE GARANTIE DES ARMES NUCLÉAIRES FRANÇAISES (DEPUIS 1996) Le développement du programme Simulation 118 La politique d’ouverture du CEA/DAM 126 La DAM, acteur incontournable de l’appareil de défense français 130 DE BECQUEREL À GERBOISE BLEUE 18961 - 1960 Cette première partie est centrée sur les débuts la France Libre a poursuivi cette activité dans le plus de l’énergie nucléaire en France.