Current Awareness in Clinical Toxicology Editors: Damian Ballam Msc and Allister Vale MD

Total Page:16

File Type:pdf, Size:1020Kb

Current Awareness in Clinical Toxicology Editors: Damian Ballam Msc and Allister Vale MD Current Awareness in Clinical Toxicology Editors: Damian Ballam MSc and Allister Vale MD May 2015 CONTENTS General Toxicology 7 Metals 33 Management 16 Pesticides 34 Drugs 18 Chemical Warfare 35 Chemical Incidents & 28 Plants 36 Pollution Chemicals 29 Animals 36 CURRENT AWARENESS PAPERS OF THE MONTH Tramadol overdose causes seizures and respiratory depression but serotonin toxicity appears unlikely Ryan NM, Isbister GK. Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1036279: Context Tramadol is a commonly used centrally acting analgesic associated with seizures and suspected to cause serotonin toxicity in overdose. Objective This study sought to investigate the effects of tramadol overdose, and included evaluation for serotonin toxicity based on the Hunter Serotonin Toxicity Criteria where the seven clinical features of spontaneous clonus, inducible clonus, ocular clonus, agitation, diaphoresis, tremor and hyperreflexia are examined for in all patients taking serotonergic medications; seizures and central nervous system depression. Materials and methods This was an observational cases series based on a retrospective review of tramadol overdoses (> 400 mg) admitted to a tertiary toxicology unit from November 2000 to June 2013. Demographic details, information on ingestion (dose and co-ingestants), clinical effects, Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units. The NPIS is commissioned by Public Health England 2 complications (seizures, serotonin toxicity and cardiovascular effects) and intensive care unit (ICU) admission were extracted from a clinical database. Results There were 71 cases of tramadol overdose (median age: 41 years, range: 17–69 years; and median ingested dose: 1000 mg, interquartile range [IQR]: 800–2000 mg). Seizures were dose related and occurred in 8 patients, one of them co-ingested a benzodiazepine compared with 16 patients without seizures. There were no cases of serotonin toxicity meeting the Hunter Serotonin Toxicity Criteria. Tachycardia occurred in 27 and mild hypertension occurred in 32. The Glasgow Coma Score was < 15 in 29 and < 9 in 5 patients; three co-ingested tricyclic antidepressants and two tramadol alone (3000 mg and 900 mg). Respiratory depression occurred in 13, median dose: 2500 (IQR: 1600–3000) mg which was significantly different (p = 0.003) to patients without respiratory depression, median dose: 1000 (IQR: 750–1475) mg. Eight patients were admitted to ICU, five due to co-ingestant toxicity and three for respiratory depression. Discussion Tramadol overdose was associated with a significant risk of seizures and respiratory depression in more severe cases, both which appear to be related to the ingested dose. There were no cases of serotonin toxicity, while opioid-like effects and adrenergic effects were prominent. Conclusion. Tramadol overdose is associated with seizures and respiratory depression, but is unlikely to cause serotonin toxicity. Full text available from: http://dx.doi.org/10.3109/15563650.2015.1036279 Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup Ghannoum M, Laliberté M, Nolin TD, MacTier R, Lavergne V, Hoffman RS, Gosselin S. Clin Toxicol 2015; 53: 454-65. Background The EXtracorporeal TReatments In Poisoning (EXTRIP) workgroup presents its systematic review and clinical recommendations on the use of extracorporeal treatment (ECTR) in valproic acid (VPA) poisoning. Methods The lead authors reviewed all of the articles from a systematic literature search, extracted the data, summarized the key findings, and proposed structured voting statements following a predetermined format. A two-round modified Delphi method was chosen to reach a consensus on voting statements and the RAND/UCLA Appropriateness Method was used to quantify disagreement. Anonymous votes were compiled, returned, and discussed in person. A second vote was conducted to determine the final workgroup recommendations. Results The latest literature search conducted in November 2014 retrieved a total of 79 articles for final qualitative analysis, including one observational study, one uncontrolled cohort study with aggregate analysis, 70 case reports and case series, and 7 pharmacokinetic studies, yielding a very low quality of evidence for all recommendations. Clinical data were reported for 82 overdose patients while pharmaco/toxicokinetic grading was performed in 55 patients. The workgroup concluded that VPA is moderately dialyzable (level of evidence = B) and made the following recommendations: ECTR is recommended in severe VPA poisoning (1D); recommendations for ECTR include a VPA concentration > 1300 mg/L (9000 µmol/L)(1D), the presence of cerebral edema (1D) or shock (1D); suggestions for ECTR include a VPA concentration > 900 mg/L (6250 µmol/L)(2D), coma or respiratory depression requiring mechanical ventilation (2D), acute hyperammonemia (2D), or pH = 7.10 (2D). 3 Cessation of ECTR is indicated when clinical improvement is apparent (1D) or the serum VPA concentration is between 50 and 100 mg/L (350–700 µmol/L)(2D). Intermittent hemodialysis is the preferred ECTR in VPA poisoning (1D). If hemodialysis is not available, then intermittent hemoperfusion (1D) or continuous renal replacement therapy (2D) is an acceptable alternative. Conclusions VPA is moderately dialyzable in the setting of overdose. ECTR is indicated for VPA poisoning if at least one of the above criteria is present. Intermittent hemodialysis is the preferred ECTR modality in VPA poisoning. Full text available from: http://dx.doi.org/10.3109/15563650.2015.1035441 The effects of intravenous lipid emulsion on prolongation of survival in a rat model of calcium channel blocker toxicity Kang C, Kim DH, Kim SC, Lee SH, Jeong JH, Kang T-S, Shin I-W, Kim RB, Lee DH. Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1045979: Context Intravenous lipid emulsion (ILE) has been shown to ameliorate the toxicity of lipid-soluble agents in animal studies and clinical cases. Objectives To investigate the therapeutic effects of ILE in a rat model of toxicity from calcium channel blockers (CCBs), including diltiazem and nicardipine. Methods Two sets of experiments of CCB poisoning were conducted. In the first set, 14 male Sprague-Dawley rats were sedated and treated with ILE or normal saline (NS), followed by continuous intravenous infusion of diltiazem (20 mg/kg/h). In the second experiment, the study protocol was the same except the infusion of nicardipine (20 mg/kg/h). The total dose of infused drug and the duration of survival were measured. In addition, mean arterial pressure and heart rate were monitored. Results Survival was prolonged in the ILE group (48.4 ± 11.3 vs. 25.0 ± 3.7 min; p = 0.002). Furthermore, the cumulative mean lethal dose of diltiazem was higher in the ILE group (16.1 ± 3.8 mg/kg) than in the NS group (8.3 ± 1.1 mg/kg) (p = 0.002). With nicardipine poisoning, survival was also prolonged in the ILE group (71.0 ± 8.3 min vs. 30.6 ± 6.1 min; p = 0.002). The cumulative mean lethal dose was higher in the ILE group than in the NS group (23.7 ± 2.8 mg/kg vs. 10.2 ± 2.0 mg/kg; p = 0.002). Conclusions ILE pretreatment prolonged survival and increased the lethal dose in a rat model of CCB poisoning using diltiazem and nicardipine. Full text available from: http://dx.doi.org/10.3109/15563650.2015.1045979 Intoxications by the dissociative new psychoactive substances diphenidine and methoxphenidine Helander A, Beck O, Bäckberg M. Clin Toxicol 2015; 53: 446-53. Background Diphenidine (1-(1,2-diphenylethyl)piperidine) and its 2-methoxylated derivative methoxphenidine (MXP, 2-MeO-diphenidine) are substances with dissociative effects that 4 were recently introduced for "recreational" purpose through the online-based sale of new psychoactive substances (NPS). A number of analytically confirmed non-fatal intoxications associated with diphenidine or MXP have occurred in Sweden and were included in the STRIDA project. Study design Observational case series of consecutive patients with admitted or suspected intake of NPS and requiring intensive treatment in an emergency room and hospitalization in Sweden. Patients and methods Blood and urine samples were collected from intoxicated patients presenting at emergency departments all over the country. NPS analysis was performed by multi-component liquid chromatography-mass spectrometry methods. Data on clinical features were collected during telephone consultations with the Poisons Information Centre and retrieved from medical records. Information was also obtained from online drug discussion forums. Case series Over a 12-month period from January to December 2014, 750 cases of suspected NPS intoxication originating from emergency departments were enrolled in the STRIDA project of which 14 (1.9%) tested positive for diphenidine and 3 (0.4%) tested positive for MXP. Co- exposure to several other NPS (e.g., 5-/6-(2-aminopropyl)benzofuran, 2-4-bromo- methcathinone, butylone, 3,4-dichloromethylphenidate, 5-methoxy-N-isopropyltryptamine, methiopropamine, and alpha-pyrrolidinopentiothiophenone), also including other dissociative substances (3-/4-methoxyphencyclidine), and classical drugs of abuse (e.g., cannabis and ethanol) was documented in 87% of these cases. The 17 patients were aged 20-48 (median: 32) years, and
Recommended publications
  • FSI-D-16-00226R1 Title
    Elsevier Editorial System(tm) for Forensic Science International Manuscript Draft Manuscript Number: FSI-D-16-00226R1 Title: An overview of Emerging and New Psychoactive Substances in the United Kingdom Article Type: Review Article Keywords: New Psychoactive Substances Psychostimulants Lefetamine Hallucinogens LSD Derivatives Benzodiazepines Corresponding Author: Prof. Simon Gibbons, Corresponding Author's Institution: UCL School of Pharmacy First Author: Simon Gibbons Order of Authors: Simon Gibbons; Shruti Beharry Abstract: The purpose of this review is to identify emerging or new psychoactive substances (NPS) by undertaking an online survey of the UK NPS market and to gather any data from online drug fora and published literature. Drugs from four main classes of NPS were identified: psychostimulants, dissociative anaesthetics, hallucinogens (phenylalkylamine-based and lysergamide-based materials) and finally benzodiazepines. For inclusion in the review the 'user reviews' on drugs fora were selected based on whether or not the particular NPS of interest was used alone or in combination. NPS that were use alone were considered. Each of the classes contained drugs that are modelled on existing illegal materials and are now covered by the UK New Psychoactive Substances Bill in 2016. Suggested Reviewers: Title Page (with authors and addresses) An overview of Emerging and New Psychoactive Substances in the United Kingdom Shruti Beharry and Simon Gibbons1 Research Department of Pharmaceutical and Biological Chemistry UCL School of Pharmacy
    [Show full text]
  • Manual of Bacteriology
    m 4-1 /fo3 L CORNELL UNIVERSITY. THE THE GIFT OF ROSWELL P. FLOWER FOR THE USE OF THE N. Y. STATE VETERINARY COLLEGE ,,,. ^ 1897 8394-1 v3 Cornell University Library OR 41.M95 1903 Manual of bacteriology, 3 1924 000 225 965 Cornell University Library The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924000225965 MANUAL OF BACTERIOLOGY \ > rhe?yi><^- MANUAL OF BACTERIOLOGY BY ROBERT MUIR; M.A., M.D., F.R.C.P.Ed. PROFESSOR OF PATHOLOGY, UNIVERSITY OF GLASGOW, AND JAMES RITCHIE, M.A., M.D., B.Sc. T READER IN PATHOLOGY, UNIVERSITY OF OXFORD, AMERICAN EDITION (WITH ADDITIONS), REVISED AND EDITED FROM THE THIRD ENGLISH EDITION BY NORMAN MAC LEOD HARRIS, M.B. (Tor.) ASSOCIATE IN BACTERIOLOGY, THE JOHNS HOPKINS UNIVERSITY, BALTIMQRE. WITH ONE HUND/t^D &= i^ENlPC^LLUSTRATIONS. LIBRARY. THE MACMILLAN COMPANY. LONDON: MACMILLAN & CO., Ltd. 1903 T Jill rights reserved. -7 . "^ '%C; No. X5 G^ Copyright, 1903, By the macmillan company. Set up and electrotyped February, 1903. Norivood Press J. S. Cushing & Co. — Berwick & Smith Norwood, Mass., U.S.A. PREFACE TO THE AMERICAN EDITION. In presenting this the American edition of the well-known and appreciated work of Doctors Muir and Ritchie, the en- deavour has been made to add to the value of the book by giving adequate expression to the best in American laboratory methods and research, and, at the same time, to augment the general scope of the work -without eliminating the personal impress of the authors.
    [Show full text]
  • Ethylene Glycol
    NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Ethylene Glycol January 2004 NIH Publication No. 04-4481 Table of Contents Preface .............................................................................................................................................v Introduction .................................................................................................................................... vi NTP Brief on Ethylene Glycol .........................................................................................................1 References ........................................................................................................................................4 Appendix I. NTP-CERHR Ethylene Glycol / Propylene Glycol Expert Panel Preface ..............................................................................................................................I-1 Expert Panel ......................................................................................................................I-2 Appendix II. Expert Panel Report on Ethylene Glycol ............................................................... II-i Table of Contents ........................................................................................................... II-iii Abbreviations ...................................................................................................................II-v List of Tables ...............................................................................................................
    [Show full text]
  • Cyanobacterial Toxins: Saxitoxins
    WHO/SDE/WSH/xxxxx English only Cyanobacterial toxins: Saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments Version for Public Review Nov 2019 © World Health Organization 20XX Preface Information on cyanobacterial toxins, including saxitoxins, is comprehensively reviewed in a recent volume to be published by the World Health Organization, “Toxic Cyanobacteria in Water” (TCiW; Chorus & Welker, in press). This covers chemical properties of the toxins and information on the cyanobacteria producing them as well as guidance on assessing the risks of their occurrence, monitoring and management. In contrast, this background document focuses on reviewing the toxicological information available for guideline value derivation and the considerations for deriving the guideline values for saxitoxin in water. Sections 1-3 and 8 are largely summaries of respective chapters in TCiW and references to original studies can be found therein. To be written by WHO Secretariat Acknowledgements To be written by WHO Secretariat 5 Abbreviations used in text ARfD Acute Reference Dose bw body weight C Volume of drinking water assumed to be consumed daily by an adult GTX Gonyautoxin i.p. intraperitoneal i.v. intravenous LOAEL Lowest Observed Adverse Effect Level neoSTX Neosaxitoxin NOAEL No Observed Adverse Effect Level P Proportion of exposure assumed to be due to drinking water PSP Paralytic Shellfish Poisoning PST paralytic shellfish toxin STX saxitoxin STXOL saxitoxinol
    [Show full text]
  • Poisoning by Medical Plants
    ARCHIVES OF ArchiveArch Iran Med.of SID February 2020;23(2):117-127 IRANIAN http www.aimjournal.ir MEDICINE Open Systematic Review Access Poisoning by Medical Plants Mohammad Hosein Farzaei, PhD1; Zahra Bayrami, PhD2; Fatemeh Farzaei, PhD1; Ina Aneva, PhD3; Swagat Kumar Das, PhD4; Jayanta Kumar Patra, PhD5; Gitishree Das, PhD5; Mohammad Abdollahi, PhD2* 1Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran 2Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran 3Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria, Bulgaria 4Department of Biotechnology, College of Engineering and Technology, BPUT, Bhubaneswar 751003, Odisha, India 5Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea Abstract Background: Herbal medications are becoming increasingly popular with the impression that they cause fewer side effects in comparison with synthetic drugs; however, they may considerably contribute to acute or chronic poisoning incidents. Poison centers receive more than 100 000 patients exposed to toxic plants. Most of these cases are inconsiderable toxicities involving pediatric ingestions of medicinal plants in low quantity. In most cases of serious poisonings, patients are adults who have either mistakenly consumed a poisonous plant as edible or ingested the plant regarding to its medicinal properties for therapy or toxic properties for illegal aims. Methods: In this article, we review the main human toxic plants causing mortality or the ones which account for emergency medical visits. Articles addressing “plant poisoning” in online databases were listed in order to establish the already reported human toxic cases.
    [Show full text]
  • Acute Toxicity Associated with the Recreational Use of the Novel Dissociative Psychoactive Substance Methoxphenidine
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Acute toxicity associated with the recreational use of the novel dissociative psychoactive substance methoxphenidine Hofer, K E ; Degrandi, C ; Müller, D M ; Zürrer-Härdi, U ; Wahl, S ; Rauber-Lüthy, C ; Ceschi, A Abstract: INTRODUCTION: Methoxphenidine is a novel dissociative designer drug of the diarylethy- lamine class which shares structural features with phencyclidine (PCP), and is not at present subject to restrictive regulations. There is very limited information about the acute toxicity profile of methoxpheni- dine and the only sources are anonymous internet sites and a 1989 patent of the Searle Company. We report a case of analytically confirmed oral methoxphenidine toxicity. CASE DETAILS: A 53-year-old man was found on the street in a somnolent and confusional state. Observed signs and symptoms such as tachycardia (112 bpm), hypertension (220/125 mmHg), echolalia, confusion, agitation, opisthotonus, nys- tagmus and amnesia were consistent with phencyclidine-induced adverse effects. Temperature (99.1°F (37.3°C)) and peripheral oxygen saturation while breathing room air (99%) were normal. Laboratory analysis revealed an increase of creatine kinase (max 865 U/L), alanine aminotransferase (72 U/L) and gamma-glutamyl transpeptidase (123 U/L). Methoxphenidine was identified by a liquid chromatogra- phy tandem mass spectrometry toxicological screening method using turbulent flow online extraction in plasma and urine samples collected on admission. The clinical course was favourable and signs and symptoms resolved with symptomatic treatment. CONCLUSION: Based on this case report and users’ web reports, and compatible with the chemical structure, methoxphenidine produces effects similar to those of the arylcyclohexylamines, as PCP.
    [Show full text]
  • Clinical Laboratory Preparedness and Response Guide
    TABLE OF CONTENTS Table of Contents ...................................................................................................................................................................................... 2 State Information ....................................................................................................................................................................................... 7 Introduction .............................................................................................................................................................................................. 10 Laboratory Response Network (LRN) .......................................................................................................................................... 15 Other Emergency Preparedness Response Information: .................................................................................................... 19 Radiological Threats ......................................................................................................................................................................... 21 Food Safety Threats .......................................................................................................................................................................... 25 BioWatch Program ............................................................................................................................................................................ 27 Bio Detection Systems
    [Show full text]
  • TOXICOLOGY and EXPOSURE GUIDELINES ______(For Assistance, Please Contact EHS at (402) 472-4925, Or Visit Our Web Site At
    (Revised 1/03) TOXICOLOGY AND EXPOSURE GUIDELINES ______________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) "All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy." This early observation concerning the toxicity of chemicals was made by Paracelsus (1493- 1541). The classic connotation of toxicology was "the science of poisons." Since that time, the science has expanded to encompass several disciplines. Toxicology is the study of the interaction between chemical agents and biological systems. While the subject of toxicology is quite complex, it is necessary to understand the basic concepts in order to make logical decisions concerning the protection of personnel from toxic injuries. Toxicity can be defined as the relative ability of a substance to cause adverse effects in living organisms. This "relative ability is dependent upon several conditions. As Paracelsus suggests, the quantity or the dose of the substance determines whether the effects of the chemical are toxic, nontoxic or beneficial. In addition to dose, other factors may also influence the toxicity of the compound such as the route of entry, duration and frequency of exposure, variations between different species (interspecies) and variations among members of the same species (intraspecies). To apply these principles to hazardous materials response, the routes by which chemicals enter the human body will be considered first. Knowledge of these routes will support the selection of personal protective equipment and the development of safety plans. The second section deals with dose-response relationships.
    [Show full text]
  • Oleandrin-Mediated Inhibition of Human Tumor Cell Proliferation: Importance of Na,K-Atpase Α Subunits As Drug Targets
    Published OnlineFirst August 11, 2009; DOI: 10.1158/1535-7163.MCT-08-1085 2319 Oleandrin-mediated inhibition of human tumor cell proliferation: Importance of Na,K-ATPase α subunits as drug targets Peiying Yang,1 David G. Menter,2 relatively higher expression of α3 with the limited expres- Carrie Cartwright,1 Diana Chan,1 Susan Dixon,1 sion of α1 may help predict which human tumors are likely Milind Suraokar,2 Gabriela Mendoza,2 to be responsive to treatment with potent lipid-soluble car- Norma Llansa,2 and Robert A. Newman1 diac glycosides such as oleandrin. [Mol Cancer Ther 2009;8(8):2319–28] Departments of 1Experimental Therapeutics and 2Thoracic/Head and Neck Medical Oncology and Clinical Cancer Prevention, The University of Texas, M. D. Anderson Cancer, Houston, Texas Introduction Cardiac glycosides are a class of compounds used to treat Abstract congestive heart failure by increasing myocardial contractile Cardiac glycosides such as oleandrin are known to inhibit force (1). Oleandrin is a cardiac glycoside derived from the Na,K-ATPase pump, resulting in a consequent increase Nerium oleander, which has been used for many years in in calcium influx in heart muscle. Here, we investigated Russia and China for this purpose. In contrast to its use the effect of oleandrin on the growth of human and mouse for the treatment of heart failure, preclinical and retrospec- cancer cells in relation to Na,K-ATPase subunits. Olean- tive patient data suggest that cardiac glycosides (e.g., digox- drin treatment resulted in selective inhibition of human in, digitoxin, ouabain, and oleandrin), may reduce the cancer cell growth but not rodent cell proliferation, which growth of various cancers including breast, lung, prostate, corresponded to the relative level of Na,K-ATPase α3 sub- and leukemia (2–7).
    [Show full text]
  • Chapter 26 BIOSAFETY Appendix B. Pathogen and Toxin Lists B.1
    Chapter 26 BIOSAFETY ____________________ Appendix B. Pathogen and Toxin Lists B.1 Introduction and Scope Pathogens and toxins are discussed in detail in Work Process B.3.d, Pathogenic Agents and Toxins, of this manual. This appendix lists the following biological agents and toxins presented in Work Process B.3.d: Human etiologic agents (pathogens) from Appendix B of the NIH Guidelines Select agents and toxins from the National Select Agent Registry (NSAR) Plant pathogens previously identified by U.S. Department of Agriculture (USDA) These lists are provided for convenience in this manual, but may not reflect the actual regulatory list or applicable agents or materials. Regulatory sources, standards, and Web links noted in this appendix and Work Process B.3.d should be consulted to confirm applicable agents or toxins. B.2 NIH Guidelines Human Etiologic Agents This section provides a list of human pathogens and their Risk Group (RG) 2, RG3, and RG4 designations as excerpted from Appendix B, Classification of Human Etiologic Agents on the Basis of Hazard, of the NIH Guidelines, amendment effective November 6, 2013. B.2.1 Risk Group 1 Agents RG1 agents are not associated with disease in healthy adult humans. Examples of RG1 agents include asporogenic Bacillus subtilis or Bacillus licheniformis (see NIH Guidelines, Appendix C-IV-A, Bacillus subtilis or Bacillus licheniformis Host-Vector Systems, Exceptions); adeno-associated virus (AAV, all serotypes); and recombinant or synthetic AAV constructs, in which the transgene does not encode either a potentially tumorigenic gene product or a toxin molecule and which are produced in the absence of a helper virus.
    [Show full text]
  • Development and Validation of a Novel Approach for the Analysis of Marine Biotoxins
    DEVELOPMENT AND VALIDATION OF A NOVEL APPROACH FOR THE ANALYSIS OF MARINE BIOTOXINS Bing Cheng Chai College of Engineering and Science Victoria University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy June 2017 ABSTRACT Harmful algal blooms (HABs) which can produce a variety of marine biotoxins are a prevalent and growing risk to public safety. The aim of this research was to investigate, evaluate, develop and validate an analytical method for the detection and quantitation of five important groups of marine biotoxins in shellfish tissue. These groups included paralytic shellfish toxins (PST), amnesic shellfish toxins (AST), diarrheic shellfish toxins (DST), azaspiracids (AZA) and neurotoxic shellfish toxins (NST). A novel tandem liquid chromatographic (LC) approach using hydrophilic interaction chromatography (HILIC), aqueous normal phase (ANP), reversed phase (RP) chromatography, tandem mass spectrometry (MSMS) and fluorescence spectroscopic detection (FLD) was designed and tested. During method development of the tandem LC setup, it was found that HILIC and ANP columns were unsuitable for the PSTs because of the lack of chromatographic separation power, precluding them from being used with MSMS detection. In addition, sensitivity for the PSTs at regulatory limits could not be achieved with MSMS detection, which led to a RP-FLD combination. The technique of RP-MSMS was found to be suitable for the remaining four groups of biotoxins. The final method was a combination of two RP columns coupled with FLD and MSMS detectors, with a valve switching program and injection program. A novel sample preparation method was also developed for the extraction and clean-up of biotoxins from mussels.
    [Show full text]
  • SAXITOXIN ELISA a Competitive Enzyme Immunoassay For
    SAXITOXIN ELISA (5191SAXI[5]04.20) A competitive enzyme immunoassay for screening and quantitative analysis of Saxitoxin in various matrices EUROPROXIMA SAXITOXIN ELISA A competitive enzyme immunoassay for screening and quantitative analysis of Saxitoxin in various matrices TABLE OF CONTENTS PAGE: Brief Information .............................................................. 2 1. Introduction ...................................................................... 2 2. Principle of Saxitoxin ELISA ............................................ 3 3. Specificity and Sensitivity ................................................ 4 4. Handling and Storage ...................................................... 5 5. Kit contents ...................................................................... 6 6. Equipment required but not provided .............................. 7 7. Precautions ...................................................................... 7 8. Sample preparation ......................................................... 8 9. Preparation of reagents ................................................... 8 10. Assay Procedure ............................................................. 10 11. Interpretation of results .................................................... 12 12. Literature .......................................................................... 13 13. Ordering information ........................................................ 13 14. Revision history ...............................................................
    [Show full text]