Integrative Transcriptomic Analysis Reveals the Immune

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Transcriptomic Analysis Reveals the Immune bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.375915; this version posted March 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. [在此处键入] Integrative Transcriptomic Analysis Reveals the Immune Mechanism for A CyHV-3-Resistant Common Carp Strain 1 Zhiying Jia1,2,7†, Nan Wu3,4†, Xiaona Jiang1,7, Heng Li3,4, Jiaxin Sun1,7, Mijuan Shi3, 2 Chitao Li1,7, Xuesong Hu1,7, Yanlong Ge1,7, Weidong Ye3,4, Ying Tang3, Junwei Shan3, 5, 3 Yingyin Cheng3, Xiao-Qin Xia3,4,6*, Lianyu Shi1,7* 4 1Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery 5 Sciences, Harbin, China 6 2Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of 7 Fishery Sciences, Beijing, China 8 3Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China 9 4University of Chinese Academy of Sciences, Beijing, China 10 5 College of Fisheries and Life Science, Dalian Ocean University, Dalian, China 11 6The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 12 China 13 7 National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, 14 Harbin, China 15 16 † Co-first author. 17 * Correspondence: 18 Lianyu Shi 19 [email protected] 20 Xiao-Qin Xia 21 [email protected] 22 Word count: 5652 23 Number of figures: 7 24 Keywords: transcriptome, lncRNA, CyHV-3, resistant immune mechanism, common 25 carp 26 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.375915; this version posted March 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CyHV-3 Resistant Immune Mechanism 27 ABSTRACT 28 Anti-disease breeding is becoming the most promising solution to cyprinid 29 herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. 30 Virus challenging studies suggested that a breeding strain of common carp is resistant 31 to this disease. This study illustrates the immune mechanisms involved in anti-CyHV- 32 3 ability. An integrative analysis of the protein-coding genes and long non-coding 33 RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head 34 kidney of common carp were extracted at day 0 (the healthy control) and day 7 after 35 CyHV-3 infection (the survivors), and used to analyze the transcriptome through both 36 Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG 37 pathways involved, the immune-related terms and pathways were merged. In order to 38 dig out details in the immune aspect, The DEGs were filtered using the current 39 common carp immune gene library. Immune gene categories and their corresponding 40 genes in different comparison groups were revealed. Also, the immunological Gene 41 Ontology terms for lncRNA modulation were retained. The weighted gene co- 42 expression network analysis was used to reveal the regulation of immune genes by 43 lncRNA. The results demonstrated that the breeding carp strain develops marked 44 resistance to CyHV-3 through a specific innate immune mechanism. The featured 45 biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage 46 by lectins and MUC3. Moreover, the immune suppressive signals, such as suppression 47 of IL21R on STAT3, PI3K mediated inhibition on inflammation by dopamine upon 48 infection, as well as the inhibition of NLRC3 on STING during a steady state. 49 Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were 50 also revealed from the non-breeding strain. The results of this study also suggested 51 that Nramp and PAI regulated by LncRNA could facilitate virus infection and 52 proliferation for infected cells respectively, while T cell leukemia homeobox 3 53 (TLX3) as well as galectin 3 function by lncRNA may play a role in the resistance 54 mechanism. Therefore, immune factors that are immunogenetically insensitive or 55 susceptible to CyHV-3 infection have been revealed. 56 57 INTRODUCTION 58 Cyprinid herpesvirus-3 (CyHV-3) infection is a major threat to common carp 59 aquaculture (1), leading to widespread mortality and substantial economic loss. 60 CyHV-3 is thought to cause death by weakening the host’s immune system, resulting 61 in susceptibility to pathogenic microbes (1). In common carp, clinical signs of the 62 disease develop rapidly and may induce morbidity and mortality within a period of 6 63 to 10 days following infection (2). 64 65 Carp that survive a primary infection with CyHV-3 can be resistant to future infection 66 with this virus. Since latency and persistent carrying of CyHV-3 exist in carp (2-4), 67 genetic backgrounds are crucial in developing an understanding resistance against the 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.375915; this version posted March 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CyHV-3 Resistant Immune Mechanism 68 virus. Experimental infections of carp from pure lines or crosses have indicated the 69 existence of genetic background of resistance by divergent survival rates (2). For 70 example, a markedly higher expression of immune-related genes involved in pathogen 71 recognition, complement activation, major histocompatibility complex class I (MHC 72 I)-restricted antigen presentation, and the development of adaptive mucosal immunity 73 was noted in the more resistant R3 line. Higher activation of CD8+ T cells was also 74 observed (5). The diallelic cross of four European carp lines, including Polish ‘K’ and 75 ‘R6’, Hungarian ‘R7’ and French ‘F’ also has been down in order to select the 76 resistant fish, and then found that MH class II B genes of carp can have an effect on 77 immunity against CyHV-3 infection (6).Additionally, carp strains of Asian origin, 78 particularly Amur wild carp, were shown to be more resistant to CyHV-3 than strains 79 originating from Europe, such as the Prerov scale carp or koi carp from a breed in the 80 Czech Republic (7). 81 82 The immune response of carp to CyHV-3 involves both innate and adaptive aspects 83 with the outcome of the disease largely depending on whether the balance is tipped in 84 favor of the host’s immune response or virus’s evasion strategy (2). In general, 85 transcriptomic analysis has revealed that three immune-related pathways, namely the 86 mitogen-activated protein kinase (MAPK) signaling pathway, the innate immune 87 response, and the cytokine-mediated signaling pathway, were highly involved in the 88 infection with CyHV-3 (8). In red common carp × koi, the expression of interleukin 89 12 (IL12) p35, interferon (IFN) ɑβ, and toll-like receptor 9 (TLR9) may provide 90 potential genes related to resistance against KHV (another term for CyHV-3) (9). 91 However, the magnitude of type I IFN response did not correlate with a higher 92 resistance in CyHV-3-infected carp, during the challenge test among different strains, 93 although CyHV-3 infection can induce type I IFNs (7, 10). Regarding the innate 94 resistance in carp, the mapped CyHV-3 survival quantitative trait loci have been 95 reported mainly in IL10 and MHC II (11). Recently, by quantitative trait locus 96 mapping and genome-wide association study, tumor necrosis factor-alpha (TNFA), 97 hypoxia inducible factor 1 subunit alpha (HIF1A), galectin-8 (LGALS8), rootletin, 98 and paladin, have also been related to resistance against CyHV-3 (12). Adaptive 99 immunity through both cytotoxicity and immunoglobulin (Ig) secretion may be 100 involved in resistance. Matthew et al. revealed that, in the anterior kidney, Ig secretion 101 plays an important role in the resistance during the persistent infection or reactivation 102 phases of CyHV-3 (1). In addition, CyHV-3 profoundly influences the expression of 103 host miRNA, although the regulation of immune processes by miRNA in the clinical 104 and latent phases differs (4). This suggests an important role of non-coding RNAs in 105 anti-CyHV-3 immunity. 106 107 The first transcriptional analysis of carp anterior kidney mainly pointed out the 108 important role of humoral immune responses, especially those related to 109 immunoglobulin (1). Spleen transcriptomic analyses comparing the susceptible and 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.375915; this version posted March 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CyHV-3 Resistant Immune Mechanism 110 resistant common carp revealed that the susceptible fish elicited a typical anti-viral 111 interferon response, while the upregulated IL-8 attracted innate immune cells and 112 related response may play an essential role in resistant fish (13). 113 114 German mirror carp selection G4 is a strain of common carp cultivated widely in 115 China, yet with a high mortality caused by CyHV-3 virus. Based on our previous 116 study, a strain of common carp from German mirror carp selection G4 has already 117 shown a higher survival rate after breeding for three generations. Among fish from the 118 G3 generation, 1000 individuals were genotyped by four SNP loci, including 119 carp065309, carp070076, carp183811 and carp160380, and then four main groups, 120 with genotypes of GG/GT/GG/AA, GG/TT/TT/AA, AG/TT/AG/AT and 121 GG/GG/GG/AA, whose survival rates were 89.9%, 94.7%, 88.0% and 92.7% 122 respectively, were propagated (14). While the unselected mirror carp were 62.6%.
Recommended publications
  • Cyprinus Carpio
    Académie Universitaire Wallonie - Europe Université de Liège Faculté de Médecine Vétérinaire Département des Maladies Infectieuses et Parasitaires Service d’Immunologie et de Vaccinologie Etude des portes d’entrée de l’Herpèsvirus cyprin 3 chez Cyprinus carpio Study of the portals of entry of Cyprinid herpesvirus 3 in Cyprinus carpio Guillaume FOURNIER Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Vétérinaires Année académique 2011-2012 Académie Universitaire Wallonie - Europe Université de Liège Faculté de Médecine Vétérinaire Département des Maladies Infectieuses et Parasitaires Service d’Immunologie et de Vaccinologie Etude des portes d’entrée de l’Herpèsvirus cyprin 3 chez Cyprinus carpio Study of the portals of entry of Cyprinid herpesvirus 3 in Cyprinus carpio Promoteur : Prof. Alain Vanderplasschen Guillaume FOURNIER Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Vétérinaires Année académique 2011-2012 « La science progresse en indiquant l'immensité de l'ignoré. » Louis Pauwels Remerciements Liège, le 15 février 2012 L’accomplissement d’une thèse est un long et palpitant voyage en océan où se mélangent la curiosité, le doute, la persévérance, et la confiance… en soi bien sûr, mais surtout envers toutes les personnes qui, par leurs conseils, leur aide, leur soutien m’ont permis de mener cette thèse à bien. Je tiens ici à remercier mes collègues, amis et famille qui ont été tantôt les phares, tantôt les boussoles, toujours les fidèles compagnons de cette aventure. Je commencerais par adresser mes plus sincères remerciements à mon promoteur, le Professeur Alain Vanderplasschen, qui m’avait déjà remarqué en amphithéâtre pour ma curiosité, à moins que ce ne soit pour mon irrésistible coiffure..
    [Show full text]
  • Cyprinid Herpesvirus 3 Genesig Advanced
    Primerdesign TM Ltd Cyprinid herpesvirus 3 Pol gene for DNA polymerase genesig® Advanced Kit 150 tests For general laboratory and research use only Quantification of Cyprinid herpesvirus 3 genomes. 1 genesig Advanced kit handbook HB10.03.11 Published Date: 09/11/2018 Introduction to Cyprinid herpesvirus 3 Cyprinid herpesvirus 3 (CyHV3) is the causative agent of a lethal disease in common (Cyprinus carpio carpio) and Koi carp (Cyprnius carpio koi). It was discovered in the late 1990s and has rapidly spread worldwide among cultured common carp and ornamental koi. Previously known as koi herpesvirus, it has caused severe economic losses in the global carp industry with its spread being attributed to international trade. The virus is a member of the order Herepesvirales and family Alloherpesviridae. It has a linear, double stranded genome of approximately 295 kb in length consisting of a large central portion flanked by two 22 kb repeat regions. The genome encodes 156 open reading frames (ORFs) including 8 ORFs encoded by the repeat regions. The genome is packaged in an icosahedral capsid that is contained within viral glycoproteins and then a host derived lipid envelope, giving an overall virion of 170-200nm in diameter. At present, common and koi carp are the only species known to be affected by the virus. The viral particles are transmitted through faeces, sloughing of mucous and inflammatory cells, and secretions that are released into the water. The skin pores are the main source of entry and site of replication but the disease also spreads to the organs, particularly the kidneys. The viral particles are further spread when the carp come into contact with each other during grazing, spawning or when uninfected fish pick at the skin lesions of dead infected fish.
    [Show full text]
  • View • Inclusion in Pubmed and All Major Indexing Services • Maximum Visibility for Your Research
    Monaghan et al. Vet Res (2016) 47:8 DOI 10.1186/s13567-015-0297-6 Veterinary Research RESEARCH ARTICLE Open Access Expression of immunogenic structural proteins of cyprinid herpesvirus 3 in vitro assessed using immunofluorescence Sean J. Monaghan1* , Kim D. Thompson1,2, James E. Bron1, Sven M. Bergmann3, Tae S. Jung4, Takashi Aoki5, K. Fiona Muir1, Malte Dauber3, Sven Reiche3, Diana Chee1,6, Shin M. Chong6, Jing Chen7 and Alexandra Adams1 Abstract Cyprinid herpesvirus 3 (CyHV-3), also called koi herpesvirus (KHV), is the aetiological agent of a fatal disease in carp and koi (Cyprinus carpio L.), referred to as koi herpesvirus disease. The virus contains at least 40 structural proteins, of which few have been characterised with respect to their immunogenicity. Indirect immunofluorescence assays (IFAs) using two epitope-specific monoclonal antibodies (MAbs) were used to examine the expression kinetics of two potentially immunogenic and diagnostically relevant viral antigens, an envelope glycoprotein and a capsid-associated protein. The rate of expression of these antigens was determined following a time-course of infection in two CyHV-3 susceptible cell lines. The results were quantified using an IFA, performed in microtitre plates, and image analysis was used to analyse confocal micrographs, enabling measurement of differential virus-associated fluorescence and nucleus-associated fluorescence from stacks of captured scans. An 8-tenfold increase in capsid-associated protein expression was observed during the first 5 days post-infection compared to a 2-fold increase in glycoprotein expres- sion. A dominant protein of ~100 kDa reacted with the capsid-associated MAb≤ (20F10) in western blot analysis.
    [Show full text]
  • "Fischgesundheit Und Fischerei Im Wandel Der Zeit"
    Fischgesundheit und Fischerei im Wandel der Zeit Tagungsband XV. Gemeinschaftstagung der Deutschen, Österreichischen und Schweizer Sektionen der European Association of Fish Pathologists (EAFP) Starnberg, 8. – 10. Oktober 2014 Die Tagung wurde in wesentlichen Teilen finanziert vom Bayerischen Staatsministerium für Ernährung, Landwirtschaft und Forsten (StMELF) aus der Fischereiabgabe Bayerns Weitere Unterstützung erfolgte durch: ― Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit ― Bayerische Landesanstalt für Landwirtschaft, Institut für Fischerei ― MSD Tiergesundheit, Intervet Deutschland GmbH ― Zentralverband Zoologischer Fachbetriebe (ZZF) und Wirtschaftsgemeinschaft Zoolo- gischer Fachbetriebe GmbH (WZF) ― Familie Gerda und Hartmut Stachowitz ― Oswald Fürneisen ― Tetra GmbH, Melle ― BioMar Group Für die Erstellung des Tagungsbandes wurden die von den Autoren eingesandten Manu- skripte bzw. Zusammenfassungen verwendet. Für die Inhalte und Abbildungen sind die Autoren verantwortlich. Einige Beiträge wurden oder werden an anderer Stelle veröffent- licht. Im vorliegenden Tagungsband sind Zusammenfassungen dieser Beiträge veröffent- licht. Zitiervorschlag KLEINGELD, D. W., und WEDEKIND, H. (Hrsg.) (2015): Fischgesundheit und Fische- rei im Wandel der Zeit. XV. Gemeinschaftstagung der Deutschen, Österreichischen und Schweizer Sektion der European Association of Fish Pathologists (EAFP), 8. – 10. Okto- ber 2014 an der LfL in Starnberg. Impressum Herausgeber: Bayerische Landesanstalt für Landwirtschaft, Vöttinger
    [Show full text]
  • Koi Herpesvirus Disease (KHVD)1 Kathleen H
    VM-149 Koi Herpesvirus Disease (KHVD)1 Kathleen H. Hartman, Roy P.E. Yanong, Deborah B. Pouder, B. Denise Petty, Ruth Francis-Floyd, Allen C. Riggs, and Thomas B. Waltzek2 Introduction Koi herpesvirus (KHV) is a highly contagious virus that causes significant morbidity and mortality in common carp (Cyprinus carpio) varieties (Hedrick et al. 2000, Haenen et al. 2004). Common carp is raised as a foodfish in many countries and has also been selectively bred for the ornamental fish industry where it is known as koi. The first recognized case of KHV occurred in the United Kingdom in 1996 (Haenen et al. 2004). Since then other cases have been confirmed in almost all countries that culture koi and/ or common carp with the exception of Australia (Hedrick et al. 2000; Haenen et al. 2004, Pokorova et al. 2005). This information sheet is intended to inform veterinarians, biologists, fish producers and hobbyists about KHV disease. What Is KHV? Figure 1. Koi with mottled gills and sunken eyes due to koi Koi herpesvirus (also known as Cyprinid herpesvirus 3; herpesvirus disease. Credit: Deborah B. Pouder, University of Florida CyHV3) is classified as a double-stranded DNA virus herpesvirus, based on virus morphology and genetics, and belonging to the family Alloherpesviridae (which includes is closely related to carp pox virus (Cyprinid herpesvirus fish herpesviruses). The work of Waltzek and colleagues 1; CyHV1) and goldfish hematopoietic necrosis virus (Waltzek et al. 2005, 2009) revealed that KHV is indeed a (Cyprinid herpesvirus 2; CyHV2). Koi herpesvirus disease has been diagnosed in koi and common carp (Hedrick 1.
    [Show full text]
  • Identification and Characterization of Cyprinid Herpesvirus-3 (Cyhv-3) Encoded Micrornas
    RESEARCH ARTICLE Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs Owen H. Donohoe1,2, Kathy Henshilwood1, Keith Way3, Roya Hakimjavadi2, David M. Stone3, Dermot Walls2* 1 Marine Institute, Rinville, Oranmore, Co. Galway, Ireland, 2 School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland, 3 Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom a11111 * [email protected] Abstract MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional OPEN ACCESS gene regulation. Some viruses encode their own miRNAs and these are increasingly being Citation: Donohoe OH, Henshilwood K, Way K, recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus Hakimjavadi R, Stone DM, Walls D (2015) 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the ONE 10(4): e0125434. doi:10.1371/journal. CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) pone.0125434 genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led Academic Editor: Sebastien Pfeffer, French National to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from Center for Scientific Research - Institut de biologie some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, North- moléculaire et cellulaire, FRANCE ern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 Received: December 15, 2014 expresses two pre-miRNAs during infection in vitro.
    [Show full text]
  • Identification of B Cells As a Major Site for Cyprinid Herpesvirus 3 Latency
    Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency Reed, A. N., Izume, S., Dolan, B. P., LaPatra, S., Kent, M., Dong, J., & Jin, L. (2014). Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency. Journal of Virology, 88(16), 9297-9309. doi:10.1128/JVI.00990-14 10.1128/JVI.00990-14 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency Aimee N. Reed,a,b Satoko Izume,a Brian P. Dolan,a Scott LaPatra,c Michael Kent,a,b Jing Dong,a Ling Jina,b Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USAa; Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USAb; Research Division, Clear Springs Foods, Inc., Buhl, Idaho, USAc ABSTRACT Downloaded from Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM؉ WBC. The presence of the CyHV-3 genome in IgM؉ WBC was about 20-fold greater than in IgM؊ WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat -was investigated in IgM؉ WBC from koi with latent CyHV-3 infection.
    [Show full text]
  • Non-Structural Protein Porf 12 of Cyprinid Herpesvirus 3 Is Recognized by the Immune System of the Common Carp Cyprinus Carpio
    Vol. 111: 269–273, 2014 DISEASES OF AQUATIC ORGANISMS Published October 16 doi: 10.3354/dao02793 Dis Aquat Org NOTE Non-structural protein pORF 12 of cyprinid herpesvirus 3 is recognized by the immune system of the common carp Cyprinus carpio Julia Kattlun, Simon Menanteau-Ledouble, Mansour El-Matbouli* Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria ABSTRACT: Cyprinid herpesvirus 3 is an important pathogen and the causative agent of koi herpesvirus disease, which has been associated with mass mortalities in koi and common carp Cyprinus carpio. Currently, the only available commercial vaccine is an attenuated version of the virus. This has led to concerns about its risk to reversion to virulence. Furthermore, the vaccine is currently only available in Israel and the United States. In order to investigate the antigenic profile of the virus, western blot was performed using infected cell culture supernatant and sera from carp that had survived exposure to the virus. Only one antigen could be detected, and mass spec- trometry analysis identified the corresponding protein as ORF 12, a putative secreted tumour necrosis factor receptor homologue. In other herpesviruses, such proteins have been associated with the viral infectious process in a number of ways, including the entry into the host cell and the inhibition of apoptosis in infected cells. The reason why only one antigen could be detected during this study is unknown. KEY WORDS: Koi herpesvirus · Antigenic determinants · Western blot · Fish-acquired immunity Resale or republication not permitted without written consent of the publisher INTRODUCTION against the virus: vaccination prevented any mortali- ties while the non-vaccinated control group suffered Cyprinid herpesvirus (CyHV-3) is a notifiable 95% mortality (Ronen et al.
    [Show full text]
  • Expression of Immune-Related Genes of Common Carp During Cyprinid Herpesvirus 3 Infection
    Vol. 113: 127–135, 2015 DISEASES OF AQUATIC ORGANISMS Published March 9 doi: 10.3354/dao02824 Dis Aquat Org Expression of immune-related genes of common carp during cyprinid herpesvirus 3 infection Agus Sunarto1,2, Kenneth A. McColl1,* 1CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia 2AMFRD Centre for Aquaculture Research and Development, Fish Health Research Laboratory, Jakarta 12540, Indonesia ABSTRACT: Fish herpesviruses and their hosts may have coevolved for 400 to 450 million yr. Dur- ing this coexistence, the hosts have equipped themselves with an elaborate immune system to defend themselves from invading viruses, whereas the viruses have developed strategies to evade host immunity, including the expression of cytokine genes that have been captured from the host. Taking advantage of our experimental model for cyprinid herpesvirus 3 (CyHV-3) persistence in carp, we studied the gene expression of host and virus immune-related genes in each stage of infection: acute, persistent and reactivation phases. IFNγ-1, IFNγ-2, IL-12 and IL-10 host genes, and the CyHV-3 vIL-10 gene (khvIL-10) were highly significantly up-regulated in different phases of CyHV-3 infection. Similarly, host IL-1β was up-regulated in the acute phase of CyHV-3 infec- tion. There was no significant difference in the expression of host TNFα-1 and MHC-II genes dur- ing all phases of CyHV-3 infection. Based on the expression profile of carp immune-related genes in each stage of CyHV-3 infection, we propose a possible interaction between carp IL-12, carp IL- 10 and khvIL-10 during the course of viral infection.
    [Show full text]
  • Cyprinid Herpesvirus 3
    1 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 2 http://creativecommons.org/licenses/by-nc-nd/4.0/ 3 doi:10.1016/bs.aivir.2015.03.001 4 Running title: Cyprinid herpesvirus 3 5 Title: Cyprinid herpesvirus 3, an archetype of fish alloherpesviruses 6 Authors and Affiliations 7 Maxime Boutier 1, Maygane Ronsmans 1, Krzysztof Rakus 1, Joanna Jazowiecka-Rakus 1, 8 Catherine Vancsok 1, Léa Morvan 1, Ma. Michelle D. Peñaranda 1, David M. Stone 2, Keith 9 Way 2, Steven J. van Beurden 3, Andrew J. Davison 4 and Alain Vanderplasschen 1* 10 11 1 Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, 12 Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary 13 Medicine, University of Liège, B-4000 Liège, Belgium. 14 2 The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, 15 Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom. 16 3 Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 17 1, 3584CL Utrecht, The Netherlands. 18 4 MRC - University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 19 5JR, United Kingdom. 20 21 22 * Corresponding author. Mailing address: Immunology-Vaccinology (B43b), Department of 23 Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 24 B-4000 Liège, Belgium. Phone: 32-4-366 42 64 - Fax: 32-4-366 42 61 25 E-mail: [email protected] 26 Author’s contacts (see affiliations above) 27 28 Maxime Boutier: [email protected] ; +32 4 366 42 66 29 Maygane Ronsmans: [email protected] ; +32 4 366 42 66 30 Krzysztof Rakus: [email protected] ; +32 4 366 42 66 31 Joanna Jazowiecka-Rakus: [email protected] ; +32 4 366 42 66 32 Catherine Vancsok: [email protected] ; +32 4 366 42 66 33 Léa Morvan: [email protected] ; +32 4 366 42 66 34 Ma.
    [Show full text]
  • Conference 17 11 February 2009
    The Armed Forces Institute of Pathology Department of Veterinary Pathology Conference Coordinator: Todd M. Bell, DVM WEDNESDAY SLIDE CONFERENCE 2008-2009 Conference 17 11 February 2009 Conference Moderator: Dr. Fabio Del Piero, DVM, DACVP material as well as clusters of erythrocytes (Fig. 1-1). The CASE I – S0 10582 (AFIP 3113965) neoplastic cells have indistinct cell borders, large amount of eosinophilic cytoplasm, one oval to elongated nucleus with rounded poles and finely granular heterochromatin Signalment: 20-year-old, gelding, Arabian horse and 1-2 small basophilic nucleoli. The cells have moderate (Equus caballus) anisokaryosis with rare mitotic figures per HPF (40X). There are scattered hemosiderin laden macrophages History: A cecal mass was submitted for within the mass. There are multifocal areas of chronic histopathology. hemorrhages with aggregations of siderophages present in the capsule. Gross Pathology: The submitted tissue was an approximately 4x5x4 cm round, firm, nodular, dark gray, Immunohistochemistry was performed. The submitted well encapsulated mass with intact surface mucosa. On mass was strongly positive for vimentin and c-kit and cut section the mass was distinct from the mucosa, white- slightly positive for NSE. It did not stain with desmin, tan and multilobulated. smooth muscle actin and S100. Unfortunately, no history was submitted with this mass to know the reason for Laboratory Results: None removal. Histopathologic Description: The mass is a well Contributor’s Morphologic Diagnosis: Cecum: demarcated, encapsulated, multilobulated, expansile Gastrointestinal stromal tumor with peripheral hemorrhage mass located from deep tunica muscularis to the serosa and siderophages compressing the adjacent tissues and muscle layers. The mass is composed of multiple large lobules separated Contributor’s Comment: Equine gastrointestinal by a thick dense fibrous connective tissue.
    [Show full text]
  • Fish Herpesvirus Diseases
    ACTA VET. BRNO 2012, 81: 383–389; doi:10.2754/avb201281040383 Fish herpesvirus diseases: a short review of current knowledge Agnieszka Lepa, Andrzej Krzysztof Siwicki Inland Fisheries Institute, Department of Fish Pathology and Immunology, Olsztyn, Poland Received March 19, 2012 Accepted July 16, 2012 Abstract Fish herpesviruses can cause significant economic losses in aquaculture, and some of these viruses are oncogenic. The virion morphology and genome organization of fish herpesviruses are generally similar to those of higher vertebrates, but the phylogenetic connections between herpesvirus families are tenuous. In accordance with new taxonomy, fish herpesviruses belong to the family Alloherpesviridae in the order Herpesvirales. Fish herpesviruses can induce diseases ranging from mild, inapparent infections to serious ones that cause mass mortality. The aim of this work was to summarize the present knowledge about fish herpesvirus diseases. Alloherpesviridae, CyHV-3, CyHV-2, CyHV-1, IcHV-1, AngHV-1 Herpesviruses comprise a numerous group of large DNA viruses with common virion structure and biological properties (McGeoch et al. 2008; Mattenleiter et al. 2008). They are host-specific pathogens. Apart from three herpesviruses found recently in invertebrate species, all known herpesviruses infect vertebrates, from fish to mammals (Davison et al. 2005a; Savin et al. 2010). According to a new classification accepted by the International Committee on Taxonomy of Viruses (http:/ictvonline.org), all herpesviruses have been incorporated into a new order named Herpesvirales, which has been split into three families. The revised family Herpesviridae contains mammalian, avian, and reptilian viruses; the newly-created family Alloherpesviridae contains herpesviruses of fish and amphibians, and the new family Malacoherpesviridae comprises single invertebrate herpesvirus (Ostreid herpesvirus).
    [Show full text]