Week 14 Part II Vaccine Preventable Disease Surveillance Welcome To

Total Page:16

File Type:pdf, Size:1020Kb

Week 14 Part II Vaccine Preventable Disease Surveillance Welcome To Slide 1 Welcome to Week 14 Part II on Vaccine Preventable Disease Week 14 Part II Surveillance. In this part, we will discuss immunization Vaccine Preventable coverage as an indicator for vaccine preventable disease Disease Surveillance surveillance, on a global scale. To accomplish this, we will use the most updated information from the World Health Organization (W.H.O.). ©DJH2013 Slide 2 The following slides were excerpted from a presentation entitled “Progress Towards Global Immunization Goals-2012”. This is a summary presentation of key indicators from the World Health Organization which was last updated in July 2013. This is the most current available information at the time of this lecture. Source: http://www.who.int/immunization_monitoring/data/SlidesGlobalI mmunization.pdf http://www.who.int/immunization_monitorin ©DJH2013 g/data/SlidesGlobalImmunization.pdf Slide 3 This graph shows the % coverage with diphtheria, tetanus, & pertussis (DTP3) vaccine (from 0-100%) on the “y” axis and the year (from 1980-2012) on the “x” axis. The yellow bars represent the global percentages. The different colored lines represent the 6 regions designated by the W.H.O.: African, American, Eastern Mediterranean, European, Southeast Asian, and Western Pacific. In 2012, coverage for this vaccine series on a global scale was 83%. In that same year, the Western ©DJH2013 Pacific and European Regions, followed by the American ©DJH2013 Region, had the highest % coverage for this vaccine. Slide 4 This pie chart divides the 6 regions by the numbers of infants not immunized for diphtheria toxoid, tetanus toxoid and pertussis vaccine (DTP3). In 2012, the total number of infants not immunized for DTP3 was 22.6 million. The Southeast Asian and African regions had the highest number of infants not immunized for DTP3 vaccine in 2012. ©DJH2013 Slide 5 On a global scale, the annual surviving infants cohort = 133.2 million. For the 83% global coverage with DTP3 vaccine reported on the first graph, 110.6 million children were vaccinated, leaving 22.6 million unvaccinated. To achieve 90% coverage would involve vaccinating 9.3 million additional children and leaving 13.3 million unvaccinated. To achieve 100% coverage with this vaccine, would involve vaccinating an additional 22.6 million children, leaving none unvaccinated. ©DJH2013 Slide 6 This color-coded map represents immunization coverage with DTP3 vaccines in infants from <50% for the year 2012. Red indicates <50% coverage, which occurred in 6 (or 3%) of countries, pink indicates 50-79% coverage (23 or 12% of countries), light blue 80-89% coverage (in 34 or 18% of countries) and dark blue in ≥ 90% (in 131 or 68% of countries). ©DJH2013 ©DJH2013 Slide 7 This color-coded map represents countries with ALL districts achieving at least 80% coverage with DTP3 vaccines in infants for the year 2012. You can see, when comparing with the previous map, not all countries that have achieved 80% coverage have equal success through the entire country; there are still disparities by district. Dark blue indicates that ALL districts within that country have achieved 80% coverage of DTP3 vaccine (63 or 32% of countries), light blue indicates countries that have not reached 80% coverage in ALL of their ©DJH2013 ©DJH2013 districts (87 countries or 45%). These specific data were not available for 44 countries (23%). Slide 8 Between 1988-2012, much progress has been made towards polio eradication. One hundred and fourteen countries are certified to be polio-free, 73 countries are not certified but have non-endemic polio cases and 3 countries still have endemic wild polio virus. The 3 countries are: Afghanistan, Nigeria, and Pakistan. In February of 2012, India was taken out of the endemic with wild polio virus category. ©DJH2013 Slide 9 This chart shows the progress in polio eradication, for estimated and reported cases of polio, between 1985-2012. On the “y” axis are the number of cases, in thousands. On the “x” axis are years from 1985-2012. The light blue color depicts reported and darker blue, estimated numbers of cases. In 1988, there was a resolution to eradicate polio. In 1999, the resolution was to accelerate polio eradication activities. The year 2000 was the original target date for interruption of transmission, with 2971 reported and 3500 estimated cases. In ©DJH2013 2012 there were 293 reported polio cases, a marked reduction when compared to 1985. Slide 10 Worldwide, reported measles cases have decreased from 853,480 in 2000 to 227,245 in 2012. (http://www.who.int/immunization_monitoring/diseases/measles /en/index.html ). In 2011, there were 157,700 deaths due to measles, an increase from 2010 where there were 139,300. Most of these deaths occur in children under the age of 5 years. This color-coded map represents immunization with measles-containing vaccines in infants for the year 2012. Red indicates <50% coverage, which occurred in 3 (or 2%) of ©DJH2013 countries, pink indicates 50-79% coverage (32 or 16% of countries), light blue 80-89% coverage (in 31 or 16% of countries) and dark blue in ≥ 90% (in 128 or 66% of countries). Slide 11 This chart shows the number of countries on the “y” axis and the years 1989 through 2012 on the “x” axis. The light blue bars represent the number of countries that have introduced the hepatitis B vaccine and the blue dotted line indicates the percentage of global infant coverage with 3 doses of the hepatitis B vaccine. In 2012, 181 countries had introduced hepatitis B vaccine and approximately 80% of the countries had global infant hepatitis B coverage. ©DJH2013 Slide 12 This map depicts the number and percentage of countries that achieved coverage of infants with the 3rd dose of hepatitis B vaccine. Hepatitis B vaccine is not in the schedule of 14 (7%) of countries, ≥90% coverage was achieved in 119 (61%) of countries, 80-89% in 29 (15%), 50-79% in 24 (12%) and <50% coverage in 7 countries (or 4%). ©DJH2013 ©DJH2013 Slide 13 This set of maps compares the number of countries who introduced the Haemophilus influenzae B (Hib) vaccine in 1997 vs. 2012. In 1997, 29 countries had introduced this vaccine; in 2012, 180 countries had introduced it and an additional 4 countries partially introduced it. ©DJH2013 Slide 14 In 2012, 153 or 79% of countries had a national 3-5 year strategic plan for an immunization program, 27 countries or 14% did not, and no data were available for 14 (7%) of countries. ©DJH2013 Slide 15 In 2012, 166 countries or 86% of countries had a national annual work plan for immunization services. 12 countries (or 6%) did not have such a plan and no data were available for 16 (or 8%) of countries. ©DJH2013 ©DJH2013 Slide 16 A consultant group to the World Health Organization is called Per S.A.G.E. the Strategic Advisory Group of Experts (SAGE) on Immunization. It is charged with advising W.H.O. on overall global policies and strategies, ranging from vaccines and technology, research and development, to delivery of immunization and its linkages with other health interventions. SAGE is concerned not just with childhood vaccines and immunization, but all vaccine-preventable diseases. In their assessment of World Health Organization’s global ©DJH2013 immunization coverage for vaccine preventable diseases, SAGE has specified the types of surveillance that match up with specific surveillance objectives. In order to document the eradication or elimination, find all chains of transmission, and certify areas are free of certain diseases such as polio and measles, country-wide, active surveillance with lab confirmation of all cases should be used. For routine monitoring or outbreak detection investigation, country-wide passive, aggregate reporting, with selective investigation should be used. Sentinel site surveillance, when used as a network of sentinel sites, can provide representative data for the population. Various other epidemiological studies should be used to obtain epidemiologic information. Source: http://www.who.int/immunization/sage/SAGE_November_2011 _Cherian.pdf Slide 17 There are many positive changes that have occurred with Global Successes global immunization coverage. Here are a few examples: • More children are being reached with 1) More children are being reached with immunization. In immunization (DTP3 example) 2012, about 111 million infants worldwide were vaccinated with • More countries achieve high levels of vaccination coverage (DTP3 in 2012 vs. three doses of diphtheria-tetanus-pertussis (DTP3) vaccine. 2011) These children are protected against a number of infectious • Access to new & underused vaccines diseases that can have serious consequences in terms of increased by end of 2012 (HPV, rubella, other examples) illness and disability or can be fatal. Source: http://www.who.int/hpvcentre/Global_Immunization_Data.pdf 2) More countries achieve high levels of vaccination ©DJH2013 coverage. The number of countries reaching 90% or more DTP3 coverage in 2012 was 131, compared with 128 in 2011. 3) Access to new and underused vaccines is increasing. The number of countries using specific vaccines by the end of 2012 was: •Human papillomavirus (HPV) vaccines: 45 •Pneumococcal vaccines: 88 •Rotavirus vaccines: 41 •Rubella vaccines: 134 •Yellow fever vaccines: 36 countries and territories (out of the 48 at risk for yellow fever in Africa and the Americas) Source: http://www.who.int/hpvcentre/Global_Immunization_Data.pdf Slide 18 Despite the successes, there are still challenges to be met. In Global Challenges 2011, an estimated 22 million infants worldwide are still not being reached by routine immunization services.1 Nearly • ~ 22 million infants worldwide still not 2 reached by routine immunizations seventy percent of these children live in ten countries : • ~ 70% live in 10 countries (see •Philippines transcript) •Democratic Republic of the Congo • Priority to strengthening global routine vaccination, especially in •Ethiopia countries ↑ # of unvaccinated children •India ©DJH2013 •Indonesia •Iraq •Nigeria •Pakistan •South Africa and •Uganda Priority needs to be given to strengthening routine vaccination globally, especially in the countries that are home to the highest number of unvaccinated children.
Recommended publications
  • Small Drinking Water Systems Project
    Strong evidence, stronger public health Small Drinking Water-borne Disease Outbreaks in Water Systems Canadian Small Drinking Water Systems Project Hannah Moffatt, Sylvia Struck Report Highlights Information about Canadian drinking water systems and past water-borne disease outbreaks is incomplete and non-standardized. Standard definitions and coordinated surveillance systems for water-borne disease outbreaks would help inform policy and practice. A relatively high proportion of past water-borne disease outbreaks in Canada are estimated to have occurred in small drinking water systems serving populations of 5,000 people or less. Water-borne disease outbreaks in small drinking water systems are often the result of a combination of water system failures; contributing factors often include a lack of source water protection and inadequate drinking water treatment. Analyses suggest small drinking water systems face challenges associated with infrastructure, technology, and financial constraints. Investments in drinking water systems and operator training have the potential to reduce the burden of water-borne disease in Canada. Executive Summary Generally, Canadians have access to safe and secure drinking water. However, as demonstrated by the events of Walkerton in 2000, the exception can be tragic. Outbreaks of water-borne disease are preventable, yet evidence-informed policy and practice is hampered, in part, by our limited knowledge of drinking water systems that experience outbreaks and the factors that contribute to outbreaks in Canada. There is no national surveillance system for systematic collection of water-borne disease outbreak data. Investigating past water-borne disease outbreaks is a valuable approach to collect information to inform practice and policy. Investigations of water-borne disease outbreaks are challenging because the outbreak events are rare, the pathogenic agents involved may be transmitted via multiple routes (e.g., person to person, food-borne, as well as water-borne), and gastrointestinal illnesses are frequently under-reported.
    [Show full text]
  • Globalization and Infectious Diseases: a Review of the Linkages
    TDR/STR/SEB/ST/04.2 SPECIAL TOPICS NO.3 Globalization and infectious diseases: A review of the linkages Social, Economic and Behavioural (SEB) Research UNICEF/UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR) The "Special Topics in Social, Economic and Behavioural (SEB) Research" series are peer-reviewed publications commissioned by the TDR Steering Committee for Social, Economic and Behavioural Research. For further information please contact: Dr Johannes Sommerfeld Manager Steering Committee for Social, Economic and Behavioural Research (SEB) UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland E-mail: [email protected] TDR/STR/SEB/ST/04.2 Globalization and infectious diseases: A review of the linkages Lance Saker,1 MSc MRCP Kelley Lee,1 MPA, MA, D.Phil. Barbara Cannito,1 MSc Anna Gilmore,2 MBBS, DTM&H, MSc, MFPHM Diarmid Campbell-Lendrum,1 D.Phil. 1 Centre on Global Change and Health London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK 2 European Centre on Health of Societies in Transition (ECOHOST) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK TDR/STR/SEB/ST/04.2 Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases 2004 All rights reserved. The use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated.
    [Show full text]
  • Water-Borne Diseases
    Bronx Community Health Dashboard: Communicable Disease Last Updated: 9/24/2019 See last slide for more information about this project. 1 Food- & Water-Borne Diseases Data note: All data are reported by labs and are not a measure of true incidence in the population as not all people seek care or are tested. 2 Overall, salmonella rates have declined in all five boroughs Bronx Brooklyn Manhattan Queens Staten Island 25 Salmonella is a group of bacteria that is one of the most common causes of food poisoning in the U.S. Most infected people develop diarrhea, fever, and abdominal cramps 12 to 72 hours after infection. The illness 20 typically lasts 4 to 7 days, and most people recover without treatment. However, in some people, the diarrhea may be so severe that they need to be hospitalized. 16.0 16.2 15 15.5 13.5 12.6 13.1 12.3 10 10.1 adjusted rate per adjusted 100,000 Salmonella 7.0 - Age 5 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 3 Data source: New York City Department of Health and Mental Hygiene Communicable Disease Surveillance Data, 2000-2017. Salmonella rates are above average in the Morrisania, Pelham, and Fordham areas of the Bronx compared to New York City overall 101 101 Kingsbridge 103 102 16 15.5 102 Northeast Bronx 14.4 13.9 103 Fordham 105 104 12.8 104 Pelham 106 105 Crotona 107 12 106 Morrisania 10.3 10.1 107 Mott Haven 8.8 8 4 adjusted rate per adjusted 100,000 Salmonella - 0 Age 4 Data source: New York City Department of Health and Mental Hygiene Communicable Disease Surveillance Data, 2017.
    [Show full text]
  • Principles and Practice of Public Health Surveillance
    r I P82 " ,Ji<liTin' S PB93-101129 1994 I" PRINCIPLES AND PRACTICE OF PUBLIC HEALTH SURVEILLANCE CENTERS FOR DISEASE CONTROL ATLANTA, GA AUG 92 U.S. DEPARTMENT OF COMMERCE National Technical Information Service \\ P3S3-1C112S Principles and Practice of Public Health Surveillance Steven M. Teutsch R. Elliott Churchill Editors BLDG 10 S. DEPARTMENT OF HEALTH & HUMAN SERVICES CDC Public Health Service Health Lftwy Paiuam »*» Epidemiology Program Office Lane.P.n".. 5600 Fishars Centers for Disease Control 20857 August 1992 Us* of trade naaaa is for identification only and does not constitute endorsement by the Public Health Service or the Centers for Disease Control. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour oer response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this 5 collection of information, including suggestions for reducing this burden, to Washington Headouarters Services. Directorate for Information Operations and Reports, 1215 Jefferson L ' " *— Dav — '. andto the Officeof Managementand Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503 PB9 3-10 1129 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1992 Final 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Principles and Practice of Surveillance None 6. AUTHOR(S) Teutsch, Steven M. and CHoif.) 4il-^^o Churchill, R. Elliott, Editors 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Epidemiology Program Office Centers for Disease Control Mail stop C08 Atlanta, GA 30333 None 9.
    [Show full text]
  • (IDSR) Technical Guidelines
    CONTENTS This booklet introduces all 11 sections of the Integrated Disease Surveillance and Response (IDSR) Technical Guidelines THIRD EDITION World Health Organization Centers for Disease Control and Prevention Regional Office for Africa Center for Global Health WHO Health Emergency Programme Division of Public Health Systems and Workforce Development Brazzaville, Republic of Congo Atlanta, Georgia, USA Integrated Disease Surveillance and Response Technical Guidelines, Booklet One: Introduction Section WHO/AF/WHE/CPI/05, 2019 © WHO Regional Office for Africa 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc- sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.
    [Show full text]
  • Cooperation and Tension in Regional and Global Infectious Disease
    UNITED STATES INSTITUTE OF PEACE PEACEBrIeF34 United States Institute of Peace • www.usip.org • Tel. 202.457.1700 • Fax. 202.429.6063 June 1, 2010 LEONARD S. RUBEN S TEIN Cooperation and Tension in Regional E-mail: [email protected] and Global Infectious Disease Phone: 443.287.8729 Surveillance Summary • Globalization of infectious disease transmission has led to international and regional initiatives to improve surveillance and response. The World Health Organization’s revised International Health Regulations provide a more robust legal framework for outbreak investigations. New regional networks are strengthening collaborative approaches to prevention of pandemics even in parts of the world where political tensions usually run high. • To fulfill the promise of these new mechanisms, the United States should integrate capac- ity development for disease surveillance into its global health strategy, including providing greater investment in laboratories, training and technical assistance for low-income countries. • Effective international cooperation has not extended to creating a system for equitable distri- bution of vaccines, resulting in vast disparities in availability of vaccines between richer and poorer countries. As a result, political tensions between wealthy and low-income countries have increased. Unless inequity is addressed, global health security will not advance. Without resolution, The emergence of novel infectious diseases, including HIV/AIDS, SARS, and influenza A (H5N1), has led states to appreciate that protection of their citizens from pathogens depends in part upon the problem of inequitable “ successful international cooperation on infectious disease surveillance and response. The World distribution of vaccines will Health Organization’s revisions to its International Health Regulations, adopted in 2005 and signed remain a major global health by 194 countries, along with the creation of regional networks, represent major advances in coop- eration on global infectious disease surveillance and response.
    [Show full text]
  • (INCLUDING PANDEMICS) INTO DRR PLANNING Annex
    INTEGRATING BIOLOGICAL HAZARDS (INCLUDING PANDEMICS) INTO DRR PLANNING Annex Team Members Rajib Shaw, Keio University and Resilience Innovation Knowledge Academy (RIKA) Ranit Chatterjee, Resilience Innovation Knowledge Academy (RIKA) Ambika Dabral, Resilience Innovation Knowledge Academy (RIKA) Advisors Emily Chan, Chinese University of Hong Kong, China Antonia Loyzaga, National Resilience Council, the Philippines Yong-kyun Kim, Ministry of Interior and Safety, Republic of Korea ii | Page Table of Contents 1. Background ............................................................................................................................................... 1 2. Biological hazards ..................................................................................................................................... 2 3. Content review ......................................................................................................................................... 5 3.1 Regional DRR and biological hazards/ public health response plans/ agreements ........................ 5 3.1.1 The Association of Southeast Asian Nations (ASEAN) ............................................................. 6 3.1.2 European Union (EU) ............................................................................................................... 7 3.2 National DRR and biological hazards/ public health response plans ............................................ 11 3.2.1 Germany ................................................................................................................................
    [Show full text]
  • Recreational Water and Prevention of Waterborne Disease Transmission
    The Domestic Public Health Impact of Climate Change: U.S. Perspective on Waterborne Disease Transmission Michael J. Beach, Ph. D. Centers for Disease Control and Prevention Potential U.S. Health Effects of Climate Change Heat stress, cardiovascular HEAT failure SEVERE WEATHER Injuries, fatalities Asthma, cardiovascular AIR POLLUTION Climate change: disease Respiratory allergies, poison ALLERGIES ivy • Temperature rise Malaria, dengue, VECTOR-BORNE DISEASES encephalitis, hantavirus, Rift • Sea level rise Valley fever • Hydrologic Cryptosporidiosis, Naegleria, WATER-BORNE DISEASES Campylobacteriosis, extremes vibriosis leptospirosis Malnutrition, diarrhea, algal WATER AND FOOD SUPPLY blooms, hygiene-related disease Anxiety, post-traumatic MENTAL HEALTH stress, despair, depression Forced migration, civil Adapted from J. Patz ENVIRONMENTAL REFUGEES conflict Potential Climate Change-related Events Impacting Waterborne Disease • Environmental change/disturbance • Extreme weather events • Flood: CSO, SSOs • Drought: soil/geologic changes • Re-use of water and wastewater • Urbanization • Increased cooling system usage • Exploitation of man-made habitats • Legionella, Mycobacterium Potential Climate Change-related Events Impacting Waterborne Disease • Increasing water temperatures and/or nutrients • Enhanced growth of pathogens • Naegleria, Vibrio, Pseudomonas, HAB • HAB-Related Illness Surveillance System (HABISS) • Environmental data, animal and human illness • All recreational water indicators Increasing recreational activities • Swimming
    [Show full text]
  • Technical Guidelines for Integrated Disease Surveillance and Response in the African Region
    Technical guidelines for integrated disease surveillance and response in the African region July 2001 World Health Organization Centers for Disease Control and Prevention Regional Office for Africa EPO-Division of International Health Division of Communicable Disease Prevention and Control NCID-Division of Bacterial and Mycotic Diseases Harare, Zimbabwe Atlanta, Georgia, USA Antoine Kaboré, MD, MPH World Health Organization Regional Headquarters for the African Region Division of Communicable Disease Prevention and Control Harare, Zimbabwe Bradley A. Perkins, MD Centers for Disease Control and Prevention National Center for Infectious Diseases Division of Bacterial and Mycotic Diseases Atlanta, Georgia Sharon McDonnell, MD, MPH Centers for Disease Control and Prevention Epidemiology Program Office Division of International Health Atlanta, Georgia This document was prepared by the WHO Regional Office for Africa (AFRO), Harare, Zimbabwe, in collaboration with the Centers for Disease Control and Prevention (CDC), Atlanta, USA, and supported by USAID. Integrated Disease Surveillance and Integrated Disease Surveillance and Response workgroup at CDC-Atlanta Response workgroup at WHO/AFRO: Bradley A. Perkins, MD Antoine Kaboré, MD, MPH Sharon McDonnell, MD, MPH Wondimagegnehu Alemu, MD, MPH Kathy Cavallaro, MS Bradford Kay, PhD John D. Leake, MD, MPH Paul S. Lusamba-dikassa, MD, PhD Peter Nsubuga, MD, MPH Mac W. Otten, Jr., MD, MPH Helen Perry, MA Louis H. Ouedraogo, MD, MPH Montse Soriano-Gabarro, MD, MSc Developed by: Mac W. Otten, Jr., MD, MPH, Medical Epidemiologist, African Regional Office (WHO) Helen Perry, MA, Educational Design Specialist, Division of International Health (CDC) Electronic Development by: Nadine Sunderland (M.Ed.) and Francois Rollin (CDC) Cover Design by: Diane Speight (B.A.) The material in this manual is in the public domain.
    [Show full text]
  • Public Health Surveillance: Preparing for the Future Pdf Icon[PDF – 40 Pages]
    PUBLIC HEALTH SURVEILLANCE PREPARING FOR THE FUTURE Newer. Faster. Smarter. Better. 2 3 Table of Contents 5 Introduction STRATEGY: This section provides rationale and context for CDC’s Surveillance Strategy 7 Improving Public Health Surveillance 8 A Stepwise Approach 10 Public Health Surveillance at CDC INITIATIVES: This section summarizes priorities, metrics, and impact 13 Taking the Initiative 14 Pulse Check: Our Progress 15 How Tracking Deaths Protects Health 17 How Counting Disease Cases Prompts Action 19 Lab Reporting at the Speed of Light 21 When Symptoms Send a Signal 23 Connecting Data Helps Combat the Opioid Epidemic INNOVATION: This section highlights progress made through innovation and partnerships 25 Enhancing Surveillance Through Innovation 26 When Informatics Promotes Innovation 27 How Sharing Advances Surveillance 29 How Sharing Data Digitally Benefits Health 31 Better Data Connections 32 How a Forward-Thinking Workforce Drives Progress MOVING AHEAD: This section gives a vision for the future 35 Moving Ahead 36 Preparing for the Future 38 Key Sources and Credits 2 3 There is no human endeavor that is “ outside the realm of public health. — William “Bill” Foege, MD, MPH Director, Centers for Disease Control and Prevention, 1977–1983 ” 4 5 Introduction Over the course of my career I’ve witnessed the progress, power, and untapped potential of public health. I draw inspiration from the quote by Bill Foege—a hero and former CDC director—who believes that nothing is beyond public health’s sphere of influence. His legendary leadership in the defeat of smallpox proved that public health strategies and resourcefulness could eliminate an infectious disease for the first time.
    [Show full text]
  • Infectious Disease Surveillance Jillian Murray and Adam L Cohen, World Health Organization, Geneva, Switzerland
    Infectious Disease Surveillance Jillian Murray and Adam L Cohen, World Health Organization, Geneva, Switzerland Ó 2017 Elsevier Inc. All rights reserved. World Health Organization retains copyright in the manuscript and provides Elsevier the permission to publish the manuscript as a chapter in this book. Goals of Infectious Disease Surveillance into the population. The Zika outbreak in South America in 2015–16 demonstrates how rapidly a known pathogen in Infectious disease surveillance is an important epidemiolog- a naïve population can spread. ical tool to monitor the health of a population. The goals of infectious disease surveillance are threefold: (1) to describe Infectious Disease Surveillance Methods the current burden and epidemiology of disease, (2) to monitor trends, and (3) to identify outbreaks and new path- Infectious disease surveillance can have different approaches ogens. First, describing the burden and epidemiology based on the epidemiology and clinical presentation of the (including seasonality, age distribution, age groups, etc.) of disease and the goals of surveillance. We will discuss some disease is critical for demonstrating the need and advocating distinctions between infectious disease surveillance methods for interventions, such as vaccination and mass drug adminis- and give examples below. tration. Surveillance is also used to detect antimicrobial resis- tance in certain pathogens (for example, fluoroquinolone Active versus Passive Surveillance resistance in gonorrhea) and the circulating strains of disease, which helps target vaccine interventions (for example, annual In passive surveillance systems, medical professionals in the influenza vaccine composition). community and at health facilities report cases to the public Second, infectious disease surveillance is used to monitor health agency, which conducts data management and analysis disease trends, such as the impact of interventions like vacci- once the data are received.
    [Show full text]
  • INTEGRATING BIOLOGICAL HAZARDS (INCLUDING PANDEMICS) INTO DRR PLANNING Technical Advisory Document
    INTEGRATING BIOLOGICAL HAZARDS (INCLUDING PANDEMICS) INTO DRR PLANNING Technical Advisory Document Team Members Rajib Shaw, Keio University and Resilience Innovation Knowledge Academy (RIKA) Ranit Chatterjee, Resilience Innovation Knowledge Academy (RIKA) Ambika Dabral, Resilience Innovation Knowledge Academy (RIKA) Advisors Emily Chan, Chinese University of Hong Kong, China Antonia Loyzaga, National Resilience Council, the Philippines Yong-kyun Kim, Ministry of Interior and Safety, Republic of Korea ii | Page Table of Contents 1. Background .............................................................................................................................................. 1 2. Purpose and target audience .................................................................................................................. 1 3. Review of existing risk assessment frameworks and country experiences ............................................ 2 4. Key sectors relevant for mitigation, transmission and impacts ............................................................. 3 4.1 Sectors that help in mitigation ........................................................................................................ 3 4.2 Sectors that exacerbate transmission of infectious diseases ......................................................... 4 4.3 Sectors impacted ............................................................................................................................. 5 4.3.1 Impact on the primary sector .................................................................................................
    [Show full text]