Infectious Disease Surveillance Jillian Murray and Adam L Cohen, World Health Organization, Geneva, Switzerland

Total Page:16

File Type:pdf, Size:1020Kb

Infectious Disease Surveillance Jillian Murray and Adam L Cohen, World Health Organization, Geneva, Switzerland Infectious Disease Surveillance Jillian Murray and Adam L Cohen, World Health Organization, Geneva, Switzerland Ó 2017 Elsevier Inc. All rights reserved. World Health Organization retains copyright in the manuscript and provides Elsevier the permission to publish the manuscript as a chapter in this book. Goals of Infectious Disease Surveillance into the population. The Zika outbreak in South America in 2015–16 demonstrates how rapidly a known pathogen in Infectious disease surveillance is an important epidemiolog- a naïve population can spread. ical tool to monitor the health of a population. The goals of infectious disease surveillance are threefold: (1) to describe Infectious Disease Surveillance Methods the current burden and epidemiology of disease, (2) to monitor trends, and (3) to identify outbreaks and new path- Infectious disease surveillance can have different approaches ogens. First, describing the burden and epidemiology based on the epidemiology and clinical presentation of the (including seasonality, age distribution, age groups, etc.) of disease and the goals of surveillance. We will discuss some disease is critical for demonstrating the need and advocating distinctions between infectious disease surveillance methods for interventions, such as vaccination and mass drug adminis- and give examples below. tration. Surveillance is also used to detect antimicrobial resis- tance in certain pathogens (for example, fluoroquinolone Active versus Passive Surveillance resistance in gonorrhea) and the circulating strains of disease, which helps target vaccine interventions (for example, annual In passive surveillance systems, medical professionals in the influenza vaccine composition). community and at health facilities report cases to the public Second, infectious disease surveillance is used to monitor health agency, which conducts data management and analysis disease trends, such as the impact of interventions like vacci- once the data are received. Public health staff do not engage in nation. Disease trends do not only mean the number of identifying cases but rather assess data completeness and reli- cases, but also the etiology of cases. For example, after pneu- ability of the reported cases. In contrast, active surveillance mococcal conjugate vaccine introduction, the distribution of requires public health staff to engage actively in the system serotypes causing disease should be surveyed for serotype and take action in order to receive reports of disease cases. replacement, when the incidence of disease caused by sero- This may involve calling or visiting health facilities to encourage types not covered in the vaccine may increase following the follow-up or having staff review medical records to identify cases decline in disease due to vaccine serotypes from vaccination. meeting prescribed case definitions. Active surveillance aims to Information garnered from vaccine effectiveness studies can detect every case, and passive surveillance likely misses cases be coupled with burden and cost information to describe due to the reporting structure. Although active surveillance is the cost-effectiveness of interventions. more comprehensive, it requires significant human and financial Surveillance also monitors the control, elimination, and resources, so passive surveillance is often implemented. eradication of diseases. Disease control refers to reducing the Notifiable disease surveillance is an example of passive incidence of disease to a desired level (which will vary depend- surveillance. Notifiable diseases are classified as such because ing on the disease) and includes diseases such as malaria they are of public health importance: they can be a severe risk (Dowdle, 1999). Disease elimination is defined as zero disease to human health, outbreak prone, considered to be an emerging inadefined geographic area as a result of control measures. Prog- or reemerging disease, or have a timely intervention available ress toward disease elimination requires control measures to for control of the disease. Countries mandate which diseases stay in effect. Disease eradication is defined as zero disease glob- are notifiable, many of which are infectious diseases. Globally, ally as a result of control measures, which are no longer required. the WHO, as described in the International Health Regulations, Smallpox is the only human disease and rinderpest is the only defines what is notifiable by every country to WHO, such as animal disease that have been eradicated from the world, but MERS-CoV (Middle East respiratory syndrome coronavirus) efforts are underway to eradicate polio and dracunculiasis. and Ebola. Nationally notifiable diseases depend on the Finally, a key aspect of infectious disease surveillance is the country. In the United States, the Centers for Disease Control cycle of detecting, responding to, and preventing outbreaks. and Prevention (CDC) and the Council of State and Ongoing surveillance for an outbreak- and epidemic-prone Territorial Epidemiologists compile a list of diseases that have disease can facilitate early detection of an outbreak, allowing mandated reporting to the CDC. These include foodborne a more rapid response and therefore mitigation of the and sexually transmitted infections, other infectious diseases outbreak. Epidemic meningococcal disease in the meningitis such as dengue, malaria, and HIV, and noncommunicable belt in Africa requires ongoing surveillance to identify diseases such as cancer. The list is updated every year. On 21 outbreaks in the region. Cholera surveillance is maintained January 2016, the list was amended to include Zika virus globally to detect outbreaks and requires mandatory reporting disease after an outbreak in South America resulted in cases to the World Health Organization (WHO). Emerging and ree- being imported into the United States. merging diseases also pose a big risk to public health. These Although not commonly used for surveillance purposes, diseases include both unknown pathogens that appear for the administrative data or vital statistics are another example first time in a population as well as known pathogens that of routinely gathered data that can be used as passive surveil- increase in geographic spread or severity or are reintroduced lance. The International Classification of Diseases (ICD-10) 222 International Encyclopedia of Public Health, 2nd edition, Volume 4 http://dx.doi.org/10.1016/B978-0-12-803678-5.00517-8 Infectious Disease Surveillance 223 is used globally for the standard naming of diseases in hospi- are reported to the Ministry of Health and WHO. Data are talized patients. Administrative data such as hospital billing analyzed to look at trends of disease, including pre- and data using ICD codes can be used for syndromic surveillance, postintroduction of vaccine. Other diseases that have glob- such as for pneumonia, if it is available for ongoing moni- ally coordinated sentinel surveillance networks include rota- toring of disease. These data may provide information on virus, influenza, and congenital rubella syndrome. the clinical characteristics of patients across different regions Surveillance for some diseases can be a mixture of passive and hospitals. and active surveillance wherein passive surveillance is comple- Active surveillance can have many approaches, including mented by active surveillance to investigate outbreak signals country-wide (e.g., for polio, measles, and rubella) or detected through passive surveillance. For example, surveil- restricted to sentinel sites that capture cases within a demined lance for Ebola virus disease is ongoing throughout the year catchment population. For example, as of 2015, the WHO– as it is a notifiable disease for many countries and globally. coordinated Global Invasive Bacterial Vaccine–Preventable During an outbreak, active case finding in the community is Disease (IBVPD) Sentinel Site Surveillance Network is enacted to find symptomatic patients as well as contact tracing a system of more than 100 hospitals in more than 54 coun- to find those at risk for developing the disease. tries that conducts active surveillance for meningitis, pneu- monia, and sepsis (Figure 1). Within this network, staff are Identifying Cases in Medical Facilities and the Community engaged to work specifically on finding all cases meeting thecasedefinition at the sites. Cases are enrolled into surveil- Choosing where to conduct surveillance is based on a number lance after they have been admitted to the medical facility. of considerations: How severe is the disease and how does it A case report form, filled out by the dedicated staff member, present? How important is it to find every single case? How details their clinical symptoms. Laboratory testing is done at outbreak prone is the disease? Cases of infectious disease the hospital for initial diagnosis or at a national or regional can be identified at medical facilities (hospitals and outpa- reference laboratory to monitor for trends in culture tient clinics) or in the community. The location of individuals positivity and serotype/serogroup incidence. These data enrolled into surveillance can vary based on clinical Figure 1 Map of sentinel surveillance site locations in the World Health Organization (WHO) Global Invasive Bacterial Vaccine-Preventable (IB-VPD) network reporting data from 2013 to 2015. 224 Infectious Disease Surveillance presentation of disease and access to health care. More severe effectiveness of a vaccine or other preventive measures. Surveil- cases of disease can often be identified
Recommended publications
  • Small Drinking Water Systems Project
    Strong evidence, stronger public health Small Drinking Water-borne Disease Outbreaks in Water Systems Canadian Small Drinking Water Systems Project Hannah Moffatt, Sylvia Struck Report Highlights Information about Canadian drinking water systems and past water-borne disease outbreaks is incomplete and non-standardized. Standard definitions and coordinated surveillance systems for water-borne disease outbreaks would help inform policy and practice. A relatively high proportion of past water-borne disease outbreaks in Canada are estimated to have occurred in small drinking water systems serving populations of 5,000 people or less. Water-borne disease outbreaks in small drinking water systems are often the result of a combination of water system failures; contributing factors often include a lack of source water protection and inadequate drinking water treatment. Analyses suggest small drinking water systems face challenges associated with infrastructure, technology, and financial constraints. Investments in drinking water systems and operator training have the potential to reduce the burden of water-borne disease in Canada. Executive Summary Generally, Canadians have access to safe and secure drinking water. However, as demonstrated by the events of Walkerton in 2000, the exception can be tragic. Outbreaks of water-borne disease are preventable, yet evidence-informed policy and practice is hampered, in part, by our limited knowledge of drinking water systems that experience outbreaks and the factors that contribute to outbreaks in Canada. There is no national surveillance system for systematic collection of water-borne disease outbreak data. Investigating past water-borne disease outbreaks is a valuable approach to collect information to inform practice and policy. Investigations of water-borne disease outbreaks are challenging because the outbreak events are rare, the pathogenic agents involved may be transmitted via multiple routes (e.g., person to person, food-borne, as well as water-borne), and gastrointestinal illnesses are frequently under-reported.
    [Show full text]
  • Globalization and Infectious Diseases: a Review of the Linkages
    TDR/STR/SEB/ST/04.2 SPECIAL TOPICS NO.3 Globalization and infectious diseases: A review of the linkages Social, Economic and Behavioural (SEB) Research UNICEF/UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR) The "Special Topics in Social, Economic and Behavioural (SEB) Research" series are peer-reviewed publications commissioned by the TDR Steering Committee for Social, Economic and Behavioural Research. For further information please contact: Dr Johannes Sommerfeld Manager Steering Committee for Social, Economic and Behavioural Research (SEB) UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland E-mail: [email protected] TDR/STR/SEB/ST/04.2 Globalization and infectious diseases: A review of the linkages Lance Saker,1 MSc MRCP Kelley Lee,1 MPA, MA, D.Phil. Barbara Cannito,1 MSc Anna Gilmore,2 MBBS, DTM&H, MSc, MFPHM Diarmid Campbell-Lendrum,1 D.Phil. 1 Centre on Global Change and Health London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK 2 European Centre on Health of Societies in Transition (ECOHOST) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK TDR/STR/SEB/ST/04.2 Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases 2004 All rights reserved. The use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated.
    [Show full text]
  • Water-Borne Diseases
    Bronx Community Health Dashboard: Communicable Disease Last Updated: 9/24/2019 See last slide for more information about this project. 1 Food- & Water-Borne Diseases Data note: All data are reported by labs and are not a measure of true incidence in the population as not all people seek care or are tested. 2 Overall, salmonella rates have declined in all five boroughs Bronx Brooklyn Manhattan Queens Staten Island 25 Salmonella is a group of bacteria that is one of the most common causes of food poisoning in the U.S. Most infected people develop diarrhea, fever, and abdominal cramps 12 to 72 hours after infection. The illness 20 typically lasts 4 to 7 days, and most people recover without treatment. However, in some people, the diarrhea may be so severe that they need to be hospitalized. 16.0 16.2 15 15.5 13.5 12.6 13.1 12.3 10 10.1 adjusted rate per adjusted 100,000 Salmonella 7.0 - Age 5 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 3 Data source: New York City Department of Health and Mental Hygiene Communicable Disease Surveillance Data, 2000-2017. Salmonella rates are above average in the Morrisania, Pelham, and Fordham areas of the Bronx compared to New York City overall 101 101 Kingsbridge 103 102 16 15.5 102 Northeast Bronx 14.4 13.9 103 Fordham 105 104 12.8 104 Pelham 106 105 Crotona 107 12 106 Morrisania 10.3 10.1 107 Mott Haven 8.8 8 4 adjusted rate per adjusted 100,000 Salmonella - 0 Age 4 Data source: New York City Department of Health and Mental Hygiene Communicable Disease Surveillance Data, 2017.
    [Show full text]
  • Principles and Practice of Public Health Surveillance
    r I P82 " ,Ji<liTin' S PB93-101129 1994 I" PRINCIPLES AND PRACTICE OF PUBLIC HEALTH SURVEILLANCE CENTERS FOR DISEASE CONTROL ATLANTA, GA AUG 92 U.S. DEPARTMENT OF COMMERCE National Technical Information Service \\ P3S3-1C112S Principles and Practice of Public Health Surveillance Steven M. Teutsch R. Elliott Churchill Editors BLDG 10 S. DEPARTMENT OF HEALTH & HUMAN SERVICES CDC Public Health Service Health Lftwy Paiuam »*» Epidemiology Program Office Lane.P.n".. 5600 Fishars Centers for Disease Control 20857 August 1992 Us* of trade naaaa is for identification only and does not constitute endorsement by the Public Health Service or the Centers for Disease Control. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour oer response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this 5 collection of information, including suggestions for reducing this burden, to Washington Headouarters Services. Directorate for Information Operations and Reports, 1215 Jefferson L ' " *— Dav — '. andto the Officeof Managementand Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503 PB9 3-10 1129 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1992 Final 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Principles and Practice of Surveillance None 6. AUTHOR(S) Teutsch, Steven M. and CHoif.) 4il-^^o Churchill, R. Elliott, Editors 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Epidemiology Program Office Centers for Disease Control Mail stop C08 Atlanta, GA 30333 None 9.
    [Show full text]
  • Week 14 Part II Vaccine Preventable Disease Surveillance Welcome To
    Slide 1 Welcome to Week 14 Part II on Vaccine Preventable Disease Week 14 Part II Surveillance. In this part, we will discuss immunization Vaccine Preventable coverage as an indicator for vaccine preventable disease Disease Surveillance surveillance, on a global scale. To accomplish this, we will use the most updated information from the World Health Organization (W.H.O.). ©DJH2013 Slide 2 The following slides were excerpted from a presentation entitled “Progress Towards Global Immunization Goals-2012”. This is a summary presentation of key indicators from the World Health Organization which was last updated in July 2013. This is the most current available information at the time of this lecture. Source: http://www.who.int/immunization_monitoring/data/SlidesGlobalI mmunization.pdf http://www.who.int/immunization_monitorin ©DJH2013 g/data/SlidesGlobalImmunization.pdf Slide 3 This graph shows the % coverage with diphtheria, tetanus, & pertussis (DTP3) vaccine (from 0-100%) on the “y” axis and the year (from 1980-2012) on the “x” axis. The yellow bars represent the global percentages. The different colored lines represent the 6 regions designated by the W.H.O.: African, American, Eastern Mediterranean, European, Southeast Asian, and Western Pacific. In 2012, coverage for this vaccine series on a global scale was 83%. In that same year, the Western ©DJH2013 Pacific and European Regions, followed by the American ©DJH2013 Region, had the highest % coverage for this vaccine. Slide 4 This pie chart divides the 6 regions by the numbers of infants not immunized for diphtheria toxoid, tetanus toxoid and pertussis vaccine (DTP3). In 2012, the total number of infants not immunized for DTP3 was 22.6 million.
    [Show full text]
  • (IDSR) Technical Guidelines
    CONTENTS This booklet introduces all 11 sections of the Integrated Disease Surveillance and Response (IDSR) Technical Guidelines THIRD EDITION World Health Organization Centers for Disease Control and Prevention Regional Office for Africa Center for Global Health WHO Health Emergency Programme Division of Public Health Systems and Workforce Development Brazzaville, Republic of Congo Atlanta, Georgia, USA Integrated Disease Surveillance and Response Technical Guidelines, Booklet One: Introduction Section WHO/AF/WHE/CPI/05, 2019 © WHO Regional Office for Africa 2019 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc- sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.
    [Show full text]
  • International Requisition Form
    PleasePlease place place collection collection kit kit INTERNATIONAL barcode here. REQUISITION FORM barcode here. REQUISITION FORM 123456-2-X PLEASE COMPLETE ALL FIELDS. REQUISITION FORMS SUBMITTED WITH MISSING INFORMATION MAY CAUSE A DELAY IN TURNAROUND TIME OF THE TEST. PLEASE COMPLETE ALL FIELDS. REQUISITION FORMS SUBMITTED WITH MISSING INFORMATION MAY CAUSE A DELAY IN TURNAROUND TIME OF THE TEST. PATIENT INFORMATION ORDERING CLINICIAN INFORMATION PATIENT NAME (LAST, FIRST) NAME OF ORGANIZATION 1 PatIENT INFORmatION (Must be completed in English) 2 ORDERING CLINICIAN (Must be completed in English) DATE OF BIRTH (MM/DD/YYYY) Organization (Clinic, Hospital, or Lab): Patient Name (Last, First): ADDRESS TELEPHONE CITYPatient DOB (DD/MM/YYYY): STATE ZIP CODE ORDERINGLIMS-ID: CLINICIAN TELEPHONE EMAIL Patient Street Address: Telephone: I would like to receive emails about my test from Natera Y N City: Country: Ordering Clinician: PATIENT MALE OR FEMALE? M-V26.34 F-V26.31 PATIENT PREGNANT? Y-V22.1 N DATE OF SAMPLE COLLECTION (MM/DD/YY):_____________________________ Telephone: Email: PAYMENT PLEASEPatient CHECK male orONE: female: M F BILL INSURANCE BILL CLINIC BILL CLINIC/CA Prenatal SELF-PAY Patient pregnant? Program YPDC N INSURANCE COMPANY (Please enclose a photocopy (front and CLINICIAN INFORMED CONSENT MEMBERDate of ID sample collectionSUBSCRIBER (DD/MM/YYYY): NAME (if different than patient) back) or all relevant insurance cards) If you would like the results of this case to be sent to an additional FAX fax number other than what is indicated on your setup form, please IF SELF-PAY, CHECK CARD TYPE: VISA MASTER CARD AMEX DISCOVER provide the fax number.
    [Show full text]
  • European Conference on Rare Diseases
    EUROPEAN CONFERENCE ON RARE DISEASES Luxembourg 21-22 June 2005 EUROPEAN CONFERENCE ON RARE DISEASES Copyright 2005 © Eurordis For more information: www.eurordis.org Webcast of the conference and abstracts: www.rare-luxembourg2005.org TABLE OF CONTENT_3 ------------------------------------------------- ACKNOWLEDGEMENTS AND CREDITS A specialised clinic for Rare Diseases : the RD TABLE OF CONTENTS Outpatient’s Clinic (RDOC) in Italy …………… 48 ------------------------------------------------- ------------------------------------------------- 4 / RARE, BUT EXISTING The organisers particularly wish to thank ACKNOWLEDGEMENTS AND CREDITS 4.1 No code, no name, no existence …………… 49 ------------------------------------------------- the following persons/organisations/companies 4.2 Why do we need to code rare diseases? … 50 PROGRAMME COMMITTEE for their role : ------------------------------------------------- Members of the Programme Committee ……… 6 5 / RESEARCH AND CARE Conference Programme …………………………… 7 …… HER ROYAL HIGHNESS THE GRAND DUCHESS OF LUXEMBOURG Key features of the conference …………………… 12 5.1 Research for Rare Diseases in the EU 54 • Participants ……………………………………… 12 5.2 Fighting the fragmentation of research …… 55 A multi-disciplinary approach ………………… 55 THE EUROPEAN COMMISSION Funding of the conference ……………………… 14 Transfer of academic research towards • ------------------------------------------------- industrial development ………………………… 60 THE GOVERNEMENT OF LUXEMBOURG Speakers ……………………………………………… 16 Strengthening cooperation between academia
    [Show full text]
  • Cooperation and Tension in Regional and Global Infectious Disease
    UNITED STATES INSTITUTE OF PEACE PEACEBrIeF34 United States Institute of Peace • www.usip.org • Tel. 202.457.1700 • Fax. 202.429.6063 June 1, 2010 LEONARD S. RUBEN S TEIN Cooperation and Tension in Regional E-mail: [email protected] and Global Infectious Disease Phone: 443.287.8729 Surveillance Summary • Globalization of infectious disease transmission has led to international and regional initiatives to improve surveillance and response. The World Health Organization’s revised International Health Regulations provide a more robust legal framework for outbreak investigations. New regional networks are strengthening collaborative approaches to prevention of pandemics even in parts of the world where political tensions usually run high. • To fulfill the promise of these new mechanisms, the United States should integrate capac- ity development for disease surveillance into its global health strategy, including providing greater investment in laboratories, training and technical assistance for low-income countries. • Effective international cooperation has not extended to creating a system for equitable distri- bution of vaccines, resulting in vast disparities in availability of vaccines between richer and poorer countries. As a result, political tensions between wealthy and low-income countries have increased. Unless inequity is addressed, global health security will not advance. Without resolution, The emergence of novel infectious diseases, including HIV/AIDS, SARS, and influenza A (H5N1), has led states to appreciate that protection of their citizens from pathogens depends in part upon the problem of inequitable “ successful international cooperation on infectious disease surveillance and response. The World distribution of vaccines will Health Organization’s revisions to its International Health Regulations, adopted in 2005 and signed remain a major global health by 194 countries, along with the creation of regional networks, represent major advances in coop- eration on global infectious disease surveillance and response.
    [Show full text]
  • NGS Sequencing May Be Wes Or Targeted
    Guidelines for diagnostic next generation sequencing 2 December 2014 LS, This is the final draft version of a document on the diagnostic use of NGS that we wish to publish on behalf of EuroGentest. The first version of this document was drafted by a small number of people. It was subjected to peer review by the participants to the Nijmegen meeting, November 21-22, 2013. The document is ready for circulation and public consultation. Hence, it will be posted on the EuroGentest website for a few weeks. The procedure is in line with the process that other policy documents, generated by the European Society of Human Genetics, have to follow: the background document is posted and an invitation to comment is sent to the membership of the Society. Thereafter, a final version of the guidelines will be published in the European Journal for Human Genetics. Of course, guidelines in a fast moving field can never be definitive, hence a system will be put in place to update them on a regular basis. I wish to thank all the colleagues who have contributed to the development of the guidelines and the generation of the document. The members of the working group will be co-authors on the paper, the contribution of the other participants to the Nijmegen meeting will be acknowledged. We believe that the document is timely, even though we have been slow in finalizing the editorial work. By posting it now, everybody who is interested in the guidelines or eagerly seeking advice will be able to consult the workgroup’s viewpoints and recommendations.
    [Show full text]
  • Environmental Nutrition: Redefining Healthy Food
    Environmental Nutrition Redefining Healthy Food in the Health Care Sector ABSTRACT Healthy food cannot be defined by nutritional quality alone. It is the end result of a food system that conserves and renews natural resources, advances social justice and animal welfare, builds community wealth, and fulfills the food and nutrition needs of all eaters now and into the future. This paper presents scientific data supporting this environmental nutrition approach, which expands the definition of healthy food beyond measurable food components such as calories, vitamins, and fats, to include the public health impacts of social, economic, and environmental factors related to the entire food system. Adopting this broader understanding of what is needed to make healthy food shifts our focus from personal responsibility for eating a healthy diet to our collective social responsibility for creating a healthy, sustainable food system. We examine two important nutrition issues, obesity and meat consumption, to illustrate why the production of food is equally as important to consider in conversations about nutrition as the consumption of food. The health care sector has the opportunity to harness its expertise and purchasing power to put an environmental nutrition approach into action and to make food a fundamental part of prevention-based health care. but that it must come from a food system that conserves and I. Using an Environmental renews natural resources, advances social justice and animal welfare, builds community wealth, and fulfills the food and Nutrition Approach to nutrition needs of all eaters now and into the future.i Define Healthy Food This definition of healthy food can be understood as an environmental nutrition approach.
    [Show full text]
  • Regulations for Disease Reporting and Control
    Department of Health Regulations for Disease Reporting and Control Commonwealth of Virginia State Board of Health October 2016 Virginia Department of Health Office of Epidemiology 109 Governor Street P.O. Box 2448 Richmond, VA 23218 Department of Health Department of Health TABLE OF CONTENTS Part I. DEFINITIONS ......................................................................................................................... 1 12 VAC 5-90-10. Definitions ............................................................................................. 1 Part II. GENERAL INFORMATION ............................................................................................... 8 12 VAC 5-90-20. Authority ............................................................................................... 8 12 VAC 5-90-30. Purpose .................................................................................................. 8 12 VAC 5-90-40. Administration ....................................................................................... 8 12 VAC 5-90-70. Powers and Procedures of Chapter Not Exclusive ................................ 9 Part III. REPORTING OF DISEASE ............................................................................................. 10 12 VAC 5-90-80. Reportable Disease List ....................................................................... 10 A. Reportable disease list ......................................................................................... 10 B. Conditions reportable by directors of
    [Show full text]