Mobilization and Deployment Vol. 1, Chapter 26, Military Diving Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Mobilization and Deployment Vol. 1, Chapter 26, Military Diving Medicine Military Diving Medicine Chapter 26 MILITARY DIVING MEDICINE RICHARD S. BROADHURST, MD, MPH; LELAND JED MORRISON, MD; CHARLES R. HOWSARE, MD; AND ANDREW F. ROCCA, MD INTRODUCTION MILITARY DIVING OPERATIONS HISTORY OF DIVING Early Diving Endeavors Evolution of Diving Equipment DIVING PHYSICS AND DECOMPRESSION THEORY Application of Gas Laws to Diving History and Development of Decompression Procedures Current Decompression Procedures and Tables GASES AND DIVING Oxygen Disorders Carbon Dioxide Toxicity Carbon Monoxide Poisoning Nitrogen Narcosis Helium Diving ENVIRONMENTAL HAZARDS Thermal Dangers Acoustic Hazards Blast Injuries Electrical Hazards Radiation Hazards Dangerous Marine Life DYSBARIC ILLNESS Decompression Sickness Pulmonary Over-Inflation Syndrome Barotrauma Dysbaric Osteonecrosis EPIDEMIOLOGY OF DIVING CASUALTIES AND DECOMPRESSION ILLNESS Civilian Experiences Military Data PREVENTION OF DIVING-RELATED ILLNESSES AND INJURIES The Fit Diver Personnel and Their Roles in Prevention Diver Training Research INJURED DIVER ASSESSMENT The Evaluation Monitoring the Dive Summary DIVING ACCIDENT MANAGEMENT Recompression Chambers Diving Accident Investigation SUMMARY 575 Military Preventive Medicine: Mobilization and Deployment, Volume 1 R. S. Broadhurst; Colonel, Medical Corps, North Carolina Army National Guard; Commander, Company C, 161st Area Support Medical Battalion; formerly, Lieutenant Colonel, Medical Corps, US Army, Senior Diving Medical Officer, US Army Special Opera- tions Command, Fort Bragg, NC 28307 L. J. Morrison; Captain, Medical Corps, US Navy (Retired); Chief Physician Naval Forces, United Arab Emirates; formerly, Senior Medical Officer, Naval Diving and Salvage Training Center, 350 S. Crag Road, Panama City, FL 32407 C. R. Howsare; Medical Director, Healthforce; 210 W. Holmes Avenue, Altoona, PA 16602; formerly, Lieutenant Commander, Medi- cal Corps, US Navy, Training Medical Officer, DMO Course Coordinator, Naval Diving and Salvage Training Center, 350 S. Crag Road, Panama City, FL 32407 A. F. Rocca; Lieutenant Commander, Medical Corps, US Navy; Senior Resident, Department of Orthopedics, National Naval Medi- cal Center, Bethesda, MD 20889-5600; formerly, Director of Clinical and Hyperbaric Medicine, Naval Diving and Salvage Training Center, 350 S. Crag Road, Panama City, FL 32407 576 Military Diving Medicine INTRODUCTION All services in the Department of Defense have a specialized type of occupational medicine, con- elements actively involved in diving operations. siders the medical issues involved in working in Historically the US military, particularly the US the unique conditions of the undersea environ- Navy, has been a world leader in the development ment, much as aviation medicine is concerned of diving and undersea technology, including div- with similar issues in the hypobaric realm of ing medicine.1 Diving Medical Officers (DMOs), flight. This chapter will address the issues that both physicians and physician assistants, and military preventive medicine specialists should Diving Medical Technicians (DMTs) are specifi- understand about military diving, including rel- cally trained in military diving medicine and per- evant physics and physiology associated with form fitness-to-dive evaluations, prevent and diving, approaches to the prevention of diving ill- treat diving-related injuries, and monitor ongo- nesses and injuries, and the epidemiology and ing diving operations for safety. Diving medicine, management of diving medicine problems. MILITARY DIVING OPERATIONS Military diving is divided into two general Land (SEAL) forces conduct all aspects of SOF missions, fleet diving (eg, underwater ship’s diving, including maritime direct-action opera- husbandry, salvage, underwater construction) tions (eg, ship attacks, ship boardings, harbor and specialized diving (eg, special operations, penetrations, hydrographic reconnaissance, explosive ordnance disposal [EOD], saturation). clearance of beaches for amphibious assaults, Military diving is generally performed at depths shallow-water mine countermeasures). Divers in of less than 60 ft, except for some salvage, EOD, the Marine Corps Force Reconnaissance Units and saturation (prolonged duration) diving op- survey landing beaches and conduct covert un- erations. Fleet diving is conducted throughout derwater insertions. The Coast Guard, a Naval the US Navy and by US Army Engineer Corps augmentee in time of war, uses divers for ship’s divers, while specialized diving is performed by husbandry, navigational buoy maintenance, and all four services in the Department of Defense. ocean search and rescue. As part of what is the Special Operations Forces (SOF) in the Army in- most extensive diving program in the US mili- clude Rangers and Special Forces (“Green Be- tary, the Navy operates the Naval Experimental rets”). Combat divers in the Special Forces per- Diving Unit, the Naval Submarine Medical Re- form inland search and rescue and combat search search Laboratory, and the Naval Medical Re- and rescue, as well as coastal infiltration and search Center. These organizations conduct exfiltration, reconnaissance, and demolitions. manned and unmanned testing of military div- Army Ranger combat divers are currently used ing equipment, decompression algorithms, and only to perform reconnaissance. The SOF ele- hyperbaric physiology. The Naval Safety Center ments in the Air Force—Pararescue Teams and supports all diving in the Department of Defense Combat Controllers—also must be capable of by managing diving data, issuing safety mes- conducting downed-aircraft recovery and infil- sages, inspecting diving lockers, and investigat- tration into denied territory. Navy Sea/Air/ ing accidents.2,3 HISTORY OF DIVING Early Diving Endeavors evolved to include reconnaissance, covert infil- tration, ordnance disposal, obstacle removal, and The first recorded example of military diving demolitions, in addition to underwater sabotage. was in the 5th century BC when a Greek diver US divers disposed of ordnance during the Civil cut the anchor lines of Persian warships to create War, investigated the sinking of the USS Maine in confusion between vessels and cover his escape.4 1898, and performed submarine rescue and sal- Salvage diving is nearly as old, traceable to the vage in the early part of the 20th century. It was 1st century BC in the eastern Mediterranean. Over the period during and after the second World War, time, the use of divers in combat operations has however, that saw rapid growth in military div- 577 Military Preventive Medicine: Mobilization and Deployment, Volume 1 ing, including the development of all types of spe- cialized diving and significant improvements in fleet diving.5 All of these advances were made possible by revolutionary improvements in div- ing technology. Evolution of Diving Equipment Humanity’s success underwater has always de- pended on the ability to procure air or oxygen and to survive in the environment. Although the an- cients initially relied on simple breath-hold div- ing, they soon recognized the need to spend greater time working at depth. One solution was the diving bell, an inverted container lowered by rope to provide air at depth and increase bottom time. Alexander the Great is reported to have used one in the 4th century BC.4 Diving bells were im- proved and came into widespread use from the Fig. 26-1. Siebe’s Diving Dress and Helmet. Augustus 16th to the 19th centuries to support the growing Siebe developed the first practical diving suit. He im- business of salvage diving. Then in 1840, Augustus proved on earlier attempts by attaching the helmet to the Siebe improved on existing diving suits, designed rest of the suit and adding an exhaust valve. to protect divers from temperature and pressure Source: US Department of the Navy. US Navy Diving extremes and other hazards, with new technology Manual. Rev 4. Washington, DC: Naval Sea Systems Com- that allowed air to be pumped from the surface to mand; 1999: 1-5. divers at depth (Figure 26-1). This surface-supplied diving apparatus was the prototype for deep sea diving rigs, which are still used today in situations and increased diving time, while the use of air as a requiring prolonged bottom time, stationary work, breathing gas was a safer and cheaper alternative or other specific circumstances.5 to oxygen. The Aqua-Lung not only provided more The next significant technological breakthrough opportunities in military diving, it set the scene for was the development of scuba (self-contained un- the development of diving for sport and recreation.4 derwater breathing apparatus). In 1878, Fleuss After World War II, researchers became inter- demonstrated the first practical scuba, which was ested in testing human endurance under the a closed-circuit (no expired gas released into the waves. Saturation diving grew out of experiments water), 100% oxygen rebreather rig. This technol- designed to test whether or not divers could sur- ogy was used to develop oxygen rebreather sys- vive at depth for days and weeks with their tis- tems for submarine escape and rescue in the early sues “saturated” with the gases they breathed. 20th century. The first scuba used to a significant Neither air nor pure oxygen could be used at these degree in the US was invented in 1940 by Dr. Chris- extreme depths because they caused nitrogen nar- tian Lambertsen and was a semi-rebreather rig cosis and oxygen toxicity, respectively, which are with steady-flow oxygen. This physician was also explained later in this
Recommended publications
  • A Field Study of the Ventilatory Response to Ambient Temperature and Pressure in Sport Diving
    Br. J. Sports Med., Vol. 29, No. 3, pp. 185-190, 1995 nE I N E M A N N Copyright (C 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0306-3674/95 $10.00 + 00 Br J Sports Med: first published as 10.1136/bjsm.29.3.185 on 1 September 1995. Downloaded from A field study of the ventilatory response to ambient temperature and pressure in sport diving F L L Muller Department of Oceanography, The University, Southampton, UK This study reports on the relationship between minute The 'environmental conditions' simulated in most ventilation (VE) and environmental variables of temperature laboratory studies may be of limited relevance to sport (T) and pressure (P) during open water diving. The author on the effects of conducted a total of 38 dives involving either a light (20 diving. Experiments focusing pressure dives) or a moderate (18 dives) level of physical activity. have usually been performed within a compression Within each of these groups, P and T taken together chamber, with the subject either lying down3 or sitting accounted for about two thirds of the variance in the VE on a chair or bicycle ergometer.47 Likewise, the effects data. A very significant increase in VE was observed as T of water temperature on respiratory variables have been decreased (1 < T(0C) < 22), and the magnitude of this investigated in relatively small tanks in which the increase at a given pressure level was similar in the 'light' subject was immersed up to the shoulders."'0 Changes and the 'moderate' data sets.
    [Show full text]
  • Hypothermia and Respiratory Heat Loss While Scuba Diving
    HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat.
    [Show full text]
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • Maintaining Harvest Fresh Apples Controlled Atmosphere Storage Requires Accurate Carbon Dioxide Measurements
    Penny Hickey Application Engineer Vaisala Woburn, MA, USA Maintaining harvest fresh apples Controlled Atmosphere storage requires accurate carbon dioxide measurements Controlled atmosphere (CA) storage is a widely used technique for long-term storage of freshly picked fruits and vege- tables. Historically, CA storage has been the primary method for the long-term storage of apples. Through a biological process called respiration, apples take in oxygen and generate carbon dioxide, water, and heat. Controlled Atmosphere storage is an entirely natural process that reduces the effects of respiration to a minimum by controlling the environmental condi- tions surrounding the stored fruit. CA storage makes it possible to buy crisp, juicy apples year round. Many cultivars of apples can be preserved for a remarkable 9 – 12 months in CA storage, as opposed to only 2 – 3 months if using refrigerated storage. Optimal conditions important In order to effectively preserve apples the storage atmosphere must have a controlled amount of humidity, oxygen (O2), carbon dioxide (CO2) and temper- ature. The essence of CA storage is the range for O2 and CO2 concentrations, which both must be kept between 0.5 to 2.5%. The precise optimum concentra- tions vary for different varieties of apples (i.e. Golden Delicious apples may need different conditions than Jonagold apples, etc). The relative humidity is kept in the range between 90 to 95%. High relative humidity slows down water loss and enhances storage life of the produce, but humidity too close to saturation encour- ages bacterial growth. Temperature in the storage container is maintained 4 | Vaisala News 175 / 2 0 07 CA storage makes it possible to buy crisp, juicy apples year round.
    [Show full text]
  • Subchapter V—Marine Occupational Safety and Health Standards
    SUBCHAPTER V—MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS PART 197—GENERAL PROVISIONS 197.456 Breathing supply hoses. 197.458 Gages and timekeeping devices. 197.460 Diving equipment. Subpart A [Reserved] 197.462 Pressure vessels and pressure piping. Subpart B—Commercial Diving Operations RECORDS GENERAL 197.480 Logbooks. 197.482 Logbook entries. Sec. 197.484 Notice of casualty. 197.200 Purpose of subpart. 197.486 Written report of casualty. 197.202 Applicability. 197.488 Retention of records after casualty. 197.203 Right of appeal. 197.204 Definitions. Subpart C—Benzene 197.205 Availability of standards. 197.206 Substitutes for required equipment, 197.501 Applicability. materials, apparatus, arrangements, pro- 197.505 Definitions. cedures, or tests. 197.510 Incorporation by reference. 197.208 Designation of person-in-charge. 197.515 Permissible exposure limits (PELs). 197.210 Designation of diving supervisor. 197.520 Performance standard. 197.525 Responsibility of the person in EQUIPMENT charge. 197.300 Applicability. 197.530 Persons other than employees. 197.310 Air compressor system. 197.535 Regulated areas. 197.312 Breathing supply hoses. 197.540 Determination of personal exposure. 197.314 First aid and treatment equipment. 197.545 Program to reduce personal expo- 197.318 Gages and timekeeping devices. sure. 197.320 Diving ladder and stage. 197.550 Respiratory protection. 197.322 Surface-supplied helmets and masks. 197.555 Personal protective clothing and 197.324 Diver’s safety harness. equipment. 197.326 Oxygen safety. 197.560 Medical surveillance. 197.328 PVHO—General. 197.565 Notifying personnel of benzene haz- 197.330 PVHO—Closed bells. ards. 197.332 PVHO—Decompression chambers.
    [Show full text]
  • NATO HANDBOOK on MARITIME MEDICINE Amedp-11(A)
    NAT/PfP UNCLASSIFIED AMedP-11(A) NATO HANDBOOK ON MARITIME MEDICINE AMedP-11(A) ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) INTENTIONALLY BLANK ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) NATO HANDBOOK ON MARITIME MEDICINE AMedP-11(A) NOVEMBER 2008 i ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) INTENTIONALLY BLANK ii ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11 (A) NORTH ATLANTIC TREATY ORGANIZATION NATO STANDARDIZATION AGENCY (NSA) NATO LETTER OF PROMULGATION 24 November 2008 1. AMedP-11(A) - NATO HANDBOOK ON MARITIME MEDICINE is a NATO/PfP UNCLASSIFIED publication. The agreement of nations to use this publication is recorded in STANAG 1269. 2. AMedP-11 (A) is effective on receipt. It supercedes AMedP-11, which shall be destroyed in accordance with the local procedure for the destruction of documents. Juan . MORENO Vice dmiral, ESP(N) Dir tor, NATO Standardization Agency III ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) INTENTIONALLY BLANK IV ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) THIS PAGE IS RESERVED FOR NATIONAL LETTER OF PROMULGATION V ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) INTENTIONALLY BLANK VI ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) RECORDS OF CHANGES Change No Date inserted NATO Signature Rank/Rate/ Effective Date Grade VII ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) INTENTIONALLY BLANK VIII ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) RECORD OF RESERVATIONS BY NATIONS CHAPTER RECORD OF RESERVATIONS BY NATIONS General FRA 2 TUR 3 TUR 4 TUR 14 TUR 16 TUR 20 TUR Annex A TUR IX ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) INTENTIONALLY BLANK X ORIGINAL NAT/PfP UNCLASSIFIED NAT/PfP UNCLASSIFIED AMedP-11(A) RECORD OF SPECIFIC RESERVATIONS COUNTRY SPECIFIC RESERVATIONS France considers AMedP‑11 as an interesting guide, but this publication does not constitute a national technical guideline.
    [Show full text]
  • Ear Clearing for Non-Divers
    Scuba School Ltd – Ear Clearing for non-divers Ear clearing or clearing the ears or equalization is any of various maneuvers to equalize the pressure in the middle ear with the outside pressure, by letting air enter along the Eustachian tubes, as this does not always happen automatically when the pressure in the middle ear is lower than the outside pressure. This need can arise in scuba diving, freediving/spearfishing, skydiving, fast descent in an aircraft, fast descent in a mine cage, and being put into pressure in a caisson or similar pressure-bearing structure, or sometimes even simply travelling at fast speeds in an automobile. People who do intense weight lifting, like squats, may experience sudden conductive hearing loss due to air pressure building up inside the ear. They are advised to engage in an ear clearing method to relieve pressure, or pain if any. Methods The ears can be cleared by various methods,[5] some of which pose a distinct risk of barotrauma including perforation of the eardrum: Yawning which helps to open the eustachian tubes; Swallowing which helps to open the eustachian tubes; The "Frenzel maneuver": Using the rear part of the tongue and throat muscles, close the nostrils, and close the back of the throat as if straining to lift a weight. Then make the sound of the letter "K." This pushes the back of the tongue upward, compressing air into the openings of the eustachian tubes. "Politzerization": a medical procedure that involves inflating the middle ear by blowing air up the nose during the act of swallowing; The "Toynbee maneuver": pinching the nose and swallowing.
    [Show full text]
  • Navy Diver Navy Diver
    “We Dive the World Over” NAVY DIVER NAVY DIVER No matter how extreme the conditions or the task QUALIFICATIONS Both males and females are eligible to become Navy Divers. at hand, Navy Divers will be there to play a vital role. To qualify for Diver training, you must: Taking calculated risks when no one else will. Using • Meet specific eyesight requirements: 20/200 bilateral correctable to 20/25 with no color blindness willpower and thorough mental and physical training • Meet the minimum Armed Services Vocational Aptitude Battery to excel in any situation. All for the purpose of a (ASVAB) score: AR+VE=103, MC=51 or GS+MC+EI=165 • Be age 30 or younger greater goal: to make the world a better, safer place. • Be a U.S. citizen Navy Divers are members of the Naval Special Operations (NSO) community, comprising men PHYSICAL SCREENING TEST REQUIREMENTS and women who take on the most impossible missions and the most elusive objectives. To qualify for the Navy Diver program, you must complete the following minimum Physical Screening Test Requirements: JOB DESCRIPTION • Swim 500 yards using side- or breaststroke within 14 minutes Their accomplishments are epic. Their expertise is unrivaled. No other force is more intensely • Rest 10 minutes trained to succeed in the perilous world of underwater adventure. Each assignment they take on • 42 push-ups within 2 minutes is crucial and backed by a steadfast dedication to teamwork. • Rest 2 minutes • 50 sit-ups within 2 minutes As a Navy Diver, you will be part of an extraordinary brotherhood. You will journey anywhere • Rest 2 minutes from the ocean depths to frigid arctic waters.
    [Show full text]
  • Will Makeun Til at Mata U
    WILL MAKEUN USTIL 20170253312A1 AT MATA U ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2017/ 0253312 A1 Burleson et al. (43 ) Pub . Date : Sep . 7 , 2017 ( 54 ) PORTABLE INFLATABLE HABITAT WITH B63C 11 /52 (2006 .01 ) MODULAR PAYLOAD , SYSTEM AND B63C 11 / 42 (2006 . 01 ) METHOD B63C 11 : 44 ( 2006 .01 ) B63B 21 /26 ( 2006 . 01 ) (71 ) Applicants :Winslow Scott Burleson , New York , 2 ) U . S . Cl. NY (US ) ; Michael Lombardi , CPC .. B63C 11 /325 ( 2013 .01 ) ; B63C 11 /44 Rumford , RI ( US) ( 2013 . 01 ) ; B63C 11/ 30 (2013 .01 ) ; B63B 21/ 26 ( 2013 . 01 ) ; B63C 11/ 52 ( 2013. 01 ) ; B63C 11/ 42 ( 72 ) Inventors : Winslow Scott Burleson , New York , ( 2013 .01 ) ; B01D 53 /0407 ( 2013 .01 ) ; B01D NY (US ) ; Michael Lombardi, 2257 / 504 ( 2013 .01 ) ; B01D 2259 /4566 Rumford , RI (US ) ( 2013 .01 ) ( 73 ) Assignees: New York University , New York , NY ( 57 ) ABSTRACT (US ) ; Michael Lombardi, Rumford , RI A diving apparatus for a diver underwater includes a por (US ) table habitat in which a breathable environment is main tained underwater . The habitat has a collapsible envelope . The collapsible envelope takes shape through inflation to an (21 ) Appl. No. : 15/ 438 ,415 expanded state underwater . The habitat has a modular pay ( 22) Filed : Feb . 21 , 2017 load which removably attaches to the envelope underwater. The habitat has a seat on which a diver can sit while the Related U . S . Application Data habitat is underwater. The modular payload has a breathable gas source to provide breathable gas for the diver to breathe (60 ) Provisional application No .
    [Show full text]
  • THE PHYSICIAN's GUIDE to DIVING MEDICINE the PHYSICIAN's GUIDE to DIVING MEDICINE Tt",,.,,,,., , ••••••••••• ,
    THE PHYSICIAN'S GUIDE TO DIVING MEDICINE THE PHYSICIAN'S GUIDE TO DIVING MEDICINE tt",,.,,,,., , ••••••••••• , ......... ,.", •••••••••••••••••••••••• ,. ••. ' ••••••••••• " .............. .. Edited by Charles W. Shilling Catherine B. Carlston and Rosemary A. Mathias Undersea Medical Society Bethesda, Maryland PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main entry under title: The Physician's guide to diving medicine. Includes bibliographies and index. 1. Submarine medicine. 2. Diving, Submarine-Physiological aspects. I. Shilling, Charles W. (Charles Wesley) II. Carlston, Catherine B. III. Mathias, Rosemary A. IV. Undersea Medical Society. [DNLM: 1. Diving. 2. Submarine Medicine. WD 650 P577] RC1005.P49 1984 616.9'8022 84-14817 ISBN-13: 978-1-4612-9663-8 e-ISBN-13: 978-1-4613-2671-7 DOl: 10.1007/978-1-4613-2671-7 This limited facsimile edition has been issued for the purpose of keeping this title available to the scientific community. 10987654 ©1984 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Contributors The contributors who authored this book are listed alphabetically below. Their names also appear in the text following contributed chapters or sections. N. R. Anthonisen. M.D .. Ph.D. Professor of Medicine University of Manitoba Winnipeg. Manitoba. Canada Arthur J. Bachrach. Ph.D. Director. Environmental Stress Program Naval Medical Research Institute Bethesda. Maryland C. Gresham Bayne.
    [Show full text]
  • Diving Safety Manual Revision 3.2
    Diving Safety Manual Revision 3.2 Original Document: June 22, 1983 Revision 1: January 1, 1991 Revision 2: May 15, 2002 Revision 3: September 1, 2010 Revision 3.1: September 15, 2014 Revision 3.2: February 8, 2018 WOODS HOLE OCEANOGRAPHIC INSTITUTION i WHOI Diving Safety Manual DIVING SAFETY MANUAL, REVISION 3.2 Revision 3.2 of the Woods Hole Oceanographic Institution Diving Safety Manual has been reviewed and is approved for implementation. It replaces and supersedes all previous versions and diving-related Institution Memoranda. Dr. George P. Lohmann Edward F. O’Brien Chair, Diving Control Board Diving Safety Officer MS#23 MS#28 [email protected] [email protected] Ronald Reif David Fisichella Institution Safety Officer Diving Control Board MS#48 MS#17 [email protected] [email protected] Dr. Laurence P. Madin John D. Sisson Diving Control Board Diving Control Board MS#39 MS#18 [email protected] [email protected] Christopher Land Dr. Steve Elgar Diving Control Board Diving Control Board MS# 33 MS #11 [email protected] [email protected] Martin McCafferty EMT-P, DMT, EMD-A Diving Control Board DAN Medical Information Specialist [email protected] ii WHOI Diving Safety Manual WOODS HOLE OCEANOGRAPHIC INSTITUTION DIVING SAFETY MANUAL REVISION 3.2, September 5, 2017 INTRODUCTION Scuba diving was first used at the Institution in the summer of 1952. At first, formal instruction and proper information was unavailable, but in early 1953 training was obtained at the Naval Submarine Escape Training Tank in New London, Connecticut and also with the Navy Underwater Demolition Team in St.
    [Show full text]
  • Vge) Formation
    THE CONTRIBUTION OF ELEVATED PERIPHERAL TISSUE TEMPERATURE TO VENOUS GAS EMBOLI (VGE) FORMATION By NEAL WILLIAM POLLOCK B.Sc, The University of Alberta, 1983 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHYSICAL EDUCATION in THE FACULTY OF GRADUATE STUDIES School of Physical Education and Recreation, Exercise Physiology \ We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1988 ® Neal William Pollock, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. ~ ^ , Physical Educ Department of The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 1988 October 14 DE-6G/81) ii The Contribution of Elevated Peripheral Tissue Temperature To Venous Gas Emboli (VGE) Formation Abstract This purpose of this study was to evaluate the contribution of post-dive peripheral tissue warming to the production of venous gas emboli (VGE) in divers. Inert gas elimination from the tissues is limited by both perfusion and diffusion. If changes in diffusion are matched by corresponding perfusion (vasoactive) changes, decompression should be asymptomatic (within allowable exposure limits). Under conditions when the diffusion of inert gas from the tissues is not matched by blood perfusion, VGE will ensue.
    [Show full text]