ES49CH14_Bolnick ARI 3 August 2018 12:41 Annual Review of Ecology, Evolution, and Systematics (Non)Parallel Evolution Daniel I. Bolnick,1,2 Rowan D.H. Barrett,3 Krista B. Oke,3,4 Diana J. Rennison,5 and Yoel E. Stuart1 1Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA; email:
[email protected] 2Current affiliation: Department of Ecology and Evolution, University of Connecticut, Storrs, Connecticut 06268, USA; email:
[email protected] 3Redpath Museum, McGill University, Montreal, Quebec, H3A 2K6, Canada; email:
[email protected] 4Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95060, USA; email:
[email protected] 5Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; email:
[email protected] Annu. Rev. Ecol. Evol. Syst. 2018. 49:303–30 Keywords The Annual Review of Ecology, Evolution, and adaptation, convergence, divergence, many-to-one mapping, nonparallel Systematics is online at ecolsys.annualreviews.org evolution, parallel evolution https://doi.org/10.1146/annurev-ecolsys-110617- 062240 Abstract Copyright c 2018 by Annual Reviews. Parallel evolution across replicate populations has provided evolutionary All rights reserved biologists with iconic examples of adaptation. When multiple populations colonize seemingly similar habitats, they may evolve similar genes, traits, or functions. Yet, replicated evolution in nature or in the laboratory of- Annu. Rev. Ecol. Evol. Syst. 2018.49. Downloaded from www.annualreviews.org Access provided by University of Texas - Austin on 08/19/18. For personal use only. ten yields inconsistent outcomes: Some replicate populations evolve along highly similar trajectories, whereas other replicate populations evolve to different extents or in distinct directions.