Bringing Homologies Into Focus

Total Page:16

File Type:pdf, Size:1020Kb

Bringing Homologies Into Focus Evo Edu Outreach (2008) 1:498–504 DOI 10.1007/s12052-008-0080-5 VIEWS FROM UNDERSTANDING EVOLUTION Bringing Homologies Into Focus Anastasia Thanukos Published online: 26 September 2008 # Springer Science + Business Media, LLC 2008 Abstract Anyone who has skimmed a high school biology Subsequent evolution in the lineage leading to modern textbook will be familiar with the iconic examples of humans and in the lineage leading to modern lizards has homology that seem inseparable from any explanation of resulted in differences between our two appendages: bones the term: the limb structure of four-legged animals, the with slightly different shapes, orientations, and functions. human tailbone and the more elaborate tail of monkeys, and Nevertheless, the common evolutionary origin of the two the remarkable similarities among the embryological appendages is evident in their deep similarities. Though development of fish, birds, and humans. These same differently shaped, corresponding bones are present in the examples make their way from edition to edition, along two groups of organisms and develop in similar ways. The with the classic illustration of an analogous structure: the same set of arguments applies to human and lizard eyes. wings of butterflies, birds, and bats. But is that really all Both lineages bear the same type of complex lens eyes that there is to say about homologies and analogies? Several we inherited from our common ancestor (Fig. 2). articles in this issue discuss these concepts more deeply in Analogies, on the other hand, are similar traits that the context of eye evolution (Gregory 2008; Oakley and evolved through convergent evolution. In the classic Pankey 2008; Piatigorsky 2008). Homologies and analo- example, evolution independently shaped the forelimb of gies, it seems, are not a black and white issue—especially a dinosaur, the forelimb of an ancient mammal, and the gill- when it comes to vision. like appendage of an ancient insect into wings that could carry their bearers (birds, bats, and insects) through the air. Keywords Homology. Homoplasy. Analogy. Teaching The fact that modern birds, bats, and most insects have wings reflects, not common ancestry, but similar processes of exaptation and subsequent adaptation. In the same way, A Textbook Review of Homologies and Analogies the complex lens eyes of humans and squid are remarkably similar (Fig. 3) but analogous, since they evolved inde- Homologies are traits present in two or more organisms that pendently in our ancestral lineages (Fig. 4). were inherited from the common ancestor of those organisms. The human five-fingered hand and the five-toed foot of a lizard, for example, were both inherited from our Beyond Analogies common ancestor that lived more than 300 Mya (Fig. 1). So far, so good. This is the view presented by standard biology textbooks. However, biologists often depart from high school texts in their analysis of analogies (e.g., Hall A. Thanukos (*) 2007; Gregory 2008). The counterpart of homology is University of California Museum of Paleontology, usually considered to be homoplasy, a much broader 1101 Valley Life Sciences Building, concept than analogy. A homoplasious trait is a similarity Berkeley, CA 94720-4780, USA e-mail: [email protected] among organisms that was not inherited from the common URL: http://evolution.berkeley.edu ancestor of those organisms. Homoplasies can evolve in Evo Edu Outreach (2008) 1:498–504 499 Fig. 1 Humans and lizards inherited appendages with similar structures from a common ancestor whose limbs human also had this structure. Illustra- ancestral tetrapod tion adapted with permission from the Understanding Evolution website lizard three ways (though the lines between these categories are and then regains them, producing a species similar to a often blurry): closely related lineage that never lost its stripes in the first place. A real-life example of evolutionary reversal & Convergent evolution. This process produces analogies, involves stick insects, which evolved from a winged as discussed above. Two lineages that begin with ancestor but then lost those wings. Stick insects different traits evolve a similar characteristic indepen- diversified into many different species in their new dently of one another, often because both lineages face wingless form. However, a few stick insect lineages similar environmental challenges and selective pres- seem to have independently “reevolved” wings by sures. For example, two distantly related plant lineages reactivating an ancient genetic program that produces might evolve analogous tubular red flowers under wings (Whiting et al. 2003). These newly winged selection from hummingbird nectar feeders. Or, as in insects now have wings similar to one another and to Fig. 5a, fish lineages that originally had different body more distantly related winged insects—insects which patterns might independently evolve analogous vertical never lost their wings in the first place. However, the stripes, perhaps because of selection for a particular wings in these different groups are homoplasious since camouflage pattern. they were not directly inherited from a common & Parallel evolution. In this process, two traits that are ancestor: the winged stick insects went through an already similar (usually because of common ancestry) intermediary wingless stage. independently evolve the same set of changes—generally meaning that the same set of underlying genes are involved. This is illustrated in Fig. 5b in which two Eye evolution, in fact, exhibits both convergent and closely related fish lineages evolve in the same way, parallel evolution. The similarity in structure between squid resulting in two lineages with a striped body pattern. A and vertebrate eyes (Fig. 3) is a classic example of real-life example of parallel evolution also involves fish. convergent evolution, since our most recent common The ancestral stickleback fish was marine-living and ancestor may have borne nothing more complex than a heavily armored by sturdy plates. However, several few light-sensitive cells. In a remarkable example of stickleback lineages invaded new, freshwater environ- parallel evolution, the same protein (known as zeta- ments. Many of these now-freshwater lineages indepen- crystallin) appears to have been independently recruited to dently evolved the same sort of genetic changes which go to work as part of the lens in two distantly related groups produce a lightly armored body form. Scientists are not of vertebrates: the llama and guinea pig families (Gonzalez sure why the lightly armored trait was favored in so many et al. 1995). The zeta-crystallin in the lenses of these different lineages, but it may have involved selection for relatively remote relatives represents the legacy of parallel increased body flexibility (Colosimo et al. 2005). & Evolutionary reversal. In this process, a lineage evolves Fig. 2 Humans and lizards humans lizards toward one of its ancestral traits, effectively losing a inherited their complex, lens- based eye from a common more recently evolved trait. This is generally thought to ancestor that also had this sort involve genetically “reactivating” the ancestral trait of eye structure (e.g., see Marshall et al. 1994). If a related lineage has retained the ancestral trait, the two lineages will share a similar feature, not because of inheritance from a common ancestor but because of an evolutionary reversal in one lineage. This is illustrated in Fig. 5cin Complex lens eyes evolved which an originally striped fish lineage loses its stripes 500 Evo Edu Outreach (2008) 1:498–504 Fig. 3 Human and squid eyes iris are structured similarly but are pigment iris alternating analogous since they evolved cells photoreceptor independently in the two line- & pigment cells ages. Illustration adapted with lens lens permission from the Under- standing Evolution website retina (photoreceptors) human eye squid eye evolutionary events, not recent common ancestry. These Partly because of this hierarchy, meaningful statements processes, as well as evolutionary reversal, can produce about homology must include several details: traits that are strikingly similar—though not inherited directly from a common ancestor. 1. Which organisms are being compared? The complex lens eye is homologous among humans, lizards, and fish, but the same trait is homoplasious between Homologies at Many Levels humans and squid, having evolved independently in vertebrates and mollusks. Simply identifying a trait as An examination of eye evolution also highlights another, homologous or homoplasious is meaningless unless we less familiar aspect of homology. Though we tend to think know which lineages are being considered. of homologies in terms of anatomy (e.g., the tetrapod limb, 2. What specific aspect of the trait is being compared? insect wing, or vertebrate eye), any heritable trait— Taking another example from eye evolution, we need to anything that can be directly or indirectly encoded in know whether we are considering the entirety of a DNA—can be a homology. Coding and noncoding DNA complex structure (e.g., a lens-type eye), the lens itself, sequences, the proteins and gene regulation systems encoded the proteins that make up that lens, the genes that by DNA sequences, simple traits (like eye color), compo- encode those proteins, or the genetic triggers that cause nents of complex organs (like the lens of an eye), entire those genes to be turned on in developing eyes. Each complex structures, and even behaviors
Recommended publications
  • Alfred Russel Wallace and the Darwinian Species Concept
    Gayana 73(2): Suplemento, 2009 ISSN 0717-652X ALFRED RUSSEL WALLACE AND THE Darwinian SPECIES CONCEPT: HIS paper ON THE swallowtail BUTTERFLIES (PAPILIONIDAE) OF 1865 ALFRED RUSSEL WALLACE Y EL concepto darwiniano DE ESPECIE: SU TRABAJO DE 1865 SOBRE MARIPOSAS papilio (PAPILIONIDAE) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P.
    [Show full text]
  • Evolution Activity, Grade 11
    Evolution Activity, Grade 11 Evolution Activities for Grade 11 Students at the Toronto Zoo 1 Evolution Activity, Grade 11 Table of Contents Pre-Zoo Activity 3-8 • Think, Pair, Share – Animals in Society and Role of Zoos 3-5 o Description 3 o Materials 3 o Four Corners Activity 6 o Background Information 7-8 Zoo Activity 9-19 • Teacher’s Notes 9-13 o General Information, Curriculum expectations, 9-10 materials, procedure o Evaluation Rubrics 11-12 o Glossary 13 • Student Assignment 14-19 o Part 1 – Mission Preparation at the Zoo 15-16 (Observation Sheets) o Part 2 – Scientific Notes 17 o Part 3 – Documentation: The Story 18 o Appendix – Animal signs 19 Evaluation 20 2 Evolution Activity, Grade 11 Suggested Pre-zoo activity Time needed : 35 minutes (or more) Type of activity : pair-share, small-group (approximately 2-3 students) Objective : encourage students to think about and evaluate the roles of animals in our society and the purposes of zoos along with their own attitudes or stands toward zoos Materials needed : a set of 8-16 statements and a mode of ranking (either above the line-below the line or diamond style ranking system) Special note : In order to manage time, teacher can chose to use any number of the statements as long as the 4 core statements listed bellow are included. Task : students work together to rank the statements about the treatment of animals. They should work together and try to negotiate a consensus, but if this is impossible they can either leave out the particular statement or write down a few lines in their notes as to why they would place them in a different category.
    [Show full text]
  • Countershading in Zebrafish Results from an Asip1 Controlled
    www.nature.com/scientificreports OPEN Countershading in zebrafsh results from an Asip1 controlled dorsoventral gradient of pigment Received: 1 October 2018 Accepted: 12 February 2019 cell diferentiation Published: xx xx xxxx Laura Cal1, Paula Suarez-Bregua1, Pilar Comesaña1, Jennifer Owen2, Ingo Braasch3, Robert Kelsh 2, José Miguel Cerdá-Reverter4 & Josep Rotllant1 Dorso-ventral (DV) countershading is a highly-conserved pigmentary adaptation in vertebrates. In mammals, spatially regulated expression of agouti-signaling protein (ASIP) generates the diference in shading by driving a switch between the production of chemically-distinct melanins in melanocytes in dorsal and ventral regions. In contrast, fsh countershading seemed to result from a patterned DV distribution of diferently-coloured cell-types (chromatophores). Despite the cellular diferences in the basis for counter-shading, previous observations suggested that Agouti signaling likely played a role in this patterning process in fsh. To test the hypotheses that Agouti regulated counter-shading in fsh, and that this depended upon spatial regulation of the numbers of each chromatophore type, we engineered asip1 homozygous knockout mutant zebrafsh. We show that loss-of-function asip1 mutants lose DV countershading, and that this results from changed numbers of multiple pigment cell-types in the skin and on scales. Our fndings identify asip1 as key in the establishment of DV countershading in fsh, but show that the cellular mechanism for translating a conserved signaling gradient into a conserved pigmentary phenotype has been radically altered in the course of evolution. Most vertebrates exhibit a dorso-ventral pigment pattern characterized by a light ventrum and darkly colored dorsal regions. Tis countershading confers UV protection against solar radiation, but also is proposed to pro- vide anti-predator cryptic pigmentation.
    [Show full text]
  • Stable Structural Color Patterns Displayed on Transparent Insect Wings
    Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling.
    [Show full text]
  • Convergent Evolution of Seasonal Camouflage in Response to Reduced Snow Cover Across the Snowshoe Hare Range
    ORIGINAL ARTICLE doi:10.1111/evo.13976 Convergent evolution of seasonal camouflage in response to reduced snow cover across the snowshoe hare range Matthew R. Jones,1,2 L. Scott Mills,3,4 Jeffrey D. Jensen,5 and Jeffrey M. Good1,3,6 1Division of Biological Sciences, University of Montana, Missoula, Montana 59812 2E-mail: [email protected] 3Wildlife Biology Program, University of Montana, Missoula, Montana 59812 4Office of Research and Creative Scholarship, University of Montana, Missoula, Montana 59812 5School of Life Sciences, Arizona State University, Tempe, Arizona 85281 6E-mail: [email protected] Received January 22, 2020 Accepted April 2, 2020 Determining how different populations adapt to similar environments is fundamental to understanding the limits of adaptation under changing environments. Snowshoe hares (Lepus americanus) typically molt into white winter coats to remain camouflaged against snow. In some warmer climates, hares have evolved brown winter camouflage—an adaptation that may spread in re- sponse to climate change. We used extensive range-wide genomic data to (1) resolve broad patterns of population structure and gene flow and (2) investigate the factors shaping the origins and distribution of winter-brown camouflage variation. Incoastal Pacific Northwest (PNW) populations, winter-brown camouflage is known to be determined by a recessive haplotype atthe Agouti pigmentation gene. Our phylogeographic analyses revealed deep structure and limited gene flow between PNW and more north- ern Boreal populations, where winter-brown camouflage is rare along the range edge. Genome sequencing of a winter-brown snowshoe hare from Alaska shows that it lacks the winter-brown PNW haplotype, reflecting a history of convergent phenotypic evolution.
    [Show full text]
  • The Molecular Basis of Phenotypic Convergence
    ES45CH10-Rosenblum ARI 15 October 2014 11:31 The Molecular Basis of Phenotypic Convergence Erica Bree Rosenblum,1 Christine E. Parent,1,2 and Erin E. Brandt1 1Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720; email: [email protected], [email protected] 2Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2014. 45:203–26 Keywords First published online as a Review in Advance on convergent evolution, parallelism, genetics, nonmodel species September 29, 2014 The Annual Review of Ecology, Evolution, and Abstract Systematics is online at ecolsys.annualreviews.org Understanding what aspects of evolution are predictable, and repeatable, is a This article’s doi: central goal of biology. Studying phenotypic convergence (the independent 10.1146/annurev-ecolsys-120213-091851 evolution of similar traits in different organisms) provides an opportunity to Copyright c 2014 by Annual Reviews. address evolutionary predictability at different hierarchical levels. Here we All rights reserved focus on recent advances in understanding the molecular basis of conver- Annu. Rev. Ecol. Evol. Syst. 2014.45:203-226. Downloaded from www.annualreviews.org Access provided by University of California - Berkeley on 01/30/15. For personal use only. gence. Understanding when, and why, similar molecular solutions are used repeatedly provides insight into the constraints that shape biological diver- sity. We first distinguish between convergence as a phenotypic pattern and parallelism as a shared molecular basis for convergence. We then address the overarching question: What factors influence when parallel molecular mechanisms will underlie phenotypic convergence? We present four core determinants of convergence (natural selection, phylogenetic history, pop- ulation demography, and genetic constraints) and explore specific factors that influence the probability of molecular parallelism.
    [Show full text]
  • Consequences of Evolutionary Transitions in Changing Photic Environments
    bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness.
    [Show full text]
  • (Non)Parallel Evolution 3 4 Daniel I. Bolnick1,2*, Rowan Barrett3, Krista
    1 2 3 (Non)Parallel Evolution 4 5 Daniel I. Bolnick1,2*, Rowan Barrett3, Krista Oke3,4 , Diana J. Rennison5 , Yoel E. Stuart1 6 7 1 Department of Integrative Biology, University of Texas at Austin, Austin TX 78712, USA; 8 [email protected]; [email protected] 9 2 Department of Ecology and Evolution, University of Connecticut, Storrs CT 06268, USA (as of 10 07/2018) 11 3 Redpath Museum, McGill University, Montreal, Quebec, Canada; [email protected] 12 4 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa 13 Cruz, CA, 95060, USA; [email protected] 14 5 Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland; 15 [email protected] 16 17 * Corresponding author: Email: [email protected] Telephone: +011 (512) 471-2824 18 19 20 Running title: “(Non)Parallel Evolution” 21 22 1 23 Abstract 24 Parallel evolution across replicate populations has provided evolutionary biologists with iconic 25 examples of adaptation. When multiple populations colonize seemingly similar habitats, they 26 may evolve similar genes, traits, or functions. Yet, replicated evolution in nature or in the lab 27 often yields inconsistent outcomes: some replicate populations evolve along highly similar 28 trajectories, whereas other replicate populations evolve to different extents or in atypical 29 directions. To understand these heterogeneous outcomes, biologists are increasingly treating 30 parallel evolution not as a binary phenomenon but rather as a quantitative continuum ranging 31 from nonparallel to parallel. By measuring replicate populations’ positions along this 32 “(non)parallel” continuum, we can test hypotheses about evolutionary and ecological factors that 33 influence the likelihood of repeatable evolution.
    [Show full text]
  • Convergent Evolution
    Exploring the KU Natural History Museum Convergent Evolution Target Audience: Middle school and above Differentiated Instruction Summary Strategy Levels Content/Process/Product Grouping(s) Learning modalities Whole group • Level 1 – Visual (spatial) Small groups Process Cubing Level 2 – Kinesthetic (physical) Peer partners • Product • Level 3 – Verbal (linguistic) Homogeneous Heterogeneous * Varied grouping options can be used for this activity, depending on student needs and chaperone ability. Objectives: Explore examples of convergent evolution in vertebrates. Pre-assessment/Prior Knowledge: Prior to their visit, students should be familiar with the idea of convergent evolution, overall evolutionary relationships/classification of vertebrate groups and basic anatomy of those groups. Activity Description: Students explore the idea of convergent evolution through museum exhibits through different learning modalities. Materials Needed: • Student o Cubes (three levels, see attached) o Paper and pencils (alternatively you could use flipchart paper and markers, whiteboards and dry erase markers) o Optional (cell phones or other recording device for visual or kinesthetic levels) Note: Format to record/present findings determined by individual teacher. Provide clear instructions about expectations for documenting participation, particularly for verbal/spatial and body/kinesthetic levels (e.g. stage direction, audio/video recording). • Teacher o Content Outline o Cube labels o Cube template Content: Convergence Overview Convergent evolution refers to the similarities in biological traits that arise independently in organisms that are not closely related, e.g. wings in birds, bats and insects. Similarity among organisms and their structures that was not inherited from a common ancestor is considered to be homoplasy. This can be contrasted with homology, which refers to similarity of traits due to common ancestry.
    [Show full text]
  • The Genetic Causes of Convergent Evolution
    Nature Reviews Genetics | AOP, published online 9 October 2013; doi:10.1038/nrg3483 REVIEWS The genetic causes of convergent evolution David L. Stern Abstract | The evolution of phenotypic similarities between species, known as convergence, illustrates that populations can respond predictably to ecological challenges. Convergence often results from similar genetic changes, which can emerge in two ways: the evolution of similar or identical mutations in independent lineages, which is termed parallel evolution; and the evolution in independent lineages of alleles that are shared among populations, which I call collateral genetic evolution. Evidence for parallel and collateral evolution has been found in many taxa, and an emerging hypothesis is that they result from the fact that mutations in some genetic targets minimize pleiotropic effects while simultaneously maximizing adaptation. If this proves correct, then the molecular changes underlying adaptation might be more predictable than has been appreciated previously. (FIG. 1) Fitness Different species often evolve similar solutions to envi­ introgression . It is worth distinguishing between The potential evolutionary ronmental challenges. Insects, birds and bats evo­ these scenarios because each provides evidence for a dif­ success of a genotype, defined lved wings, and octopi, vertebrates and spiders ferent evolutionary path3. The first case, the independent as the reproductive success or evolved focusing eyes. Phenotypic convergence provides origin and spread of mutations, has been called parallel the proportion of genes that an individual leaves in the gene compelling evidence that ecological circumstances can genetic evolution. I suggest that the evolution of alleles 1,2 pool of the next generation in a select for similar evolutionary solutions .
    [Show full text]
  • Progress and Competition in Macroevolution
    Biol . Rev . (1987). 62. pp. 305-338 Printed in Great Britain PROGRESS AND COMPETITION IN MACROEVOLUTION BY MICHAEL J . BENTON Department of Geology. The Queen’s University of Belfast. Belfast. BT7 INN. Northern Ireland (Received I 3 August 1985. accepted 23 February 1987) CONTENTS I . Introduction ........ I1. Improvements in competitive ability through time ........ (I) Evolutionary progress ............ (2) Increase in morphological complexity ......... (3) The expansion of life ............. (4) Evolutionary trends ............. (5) Increased effectiveness of adaptation .......... I11 . Competition in microevolution ........... (I) Competition and natural selection .......... (2) The evolutionary effects of interspecific competition ....... (3) The effects of interspecific competition on community structure .... IV . Competition in macroevolution ........... (I) Extinction and competition ........... (2) The Red Queen .............. (3) The community paradigm ............ (4) Evolutionary rates and competitive ability ......... V . Competition and major ecological replacements ........ (I) Key adaptations and replacements ........... (2) Patterns of ecological replacement ........... (3) The evidence for double-wedge patterns (differential survival) in the fossil record . (4) The evidence that differential survival was caused by competition .... (5) Alternatives to competition ........... VI . The problems of invoking large-scale competition ........ VII . Summary ................ VIII . Acknowledgements .............. IX. References
    [Show full text]
  • Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, Morphology and the Great American Interchange
    Molecular Phylogenetics and Evolution 43 (2007) 1076–1095 www.elsevier.com/locate/ympev Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange a, b c a Klaus-Peter KoepXi ¤, Matthew E. Gompper , Eduardo Eizirik , Cheuk-Chung Ho , Leif Linden a, Jesus E. Maldonado d, Robert K. Wayne a a Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA b Department of Fisheries and Wildlife Sciences, University of Missouri, Colombia, MO 65211, USA c Faculdade de Biociencias, PUCRS, Av. Ipiranga, 6681, Predio 12, Porto Alegre, RS 90619-900, Brazil d Smithsonian Institution, NMNH/NZP—Genetic Program, 3001 Connecticut Avenue NW, Washington, DC 20008, USA Received 10 June 2006; revised 22 September 2006; accepted 2 October 2006 Available online 11 October 2006 Abstract The Procyonidae (Mammalia: Carnivora) have played a central role in resolving the controversial systematics of the giant and red pandas, but phylogenetic relationships of species within the family itself have received much less attention. Cladistic analyses of morpho- logical characters conducted during the last two decades have resulted in topologies that group ecologically and morphologically similar taxa together. SpeciWcally, the highly arboreal and frugivorous kinkajou (Potos Xavus) and olingos (Bassaricyon) deWne one clade, whereas the more terrestrial and omnivorous coatis (Nasua), raccoons (Procyon), and ringtails (Bassariscus) deWne another clade, with the similar-sized Nasua and Procyon joined as sister taxa in this latter group. These relationships, however, have not been tested with molecu- lar sequence data. We examined procyonid phylogenetics based on combined data from nine nuclear and two mitochondrial gene seg- ments totaling 6534 bp.
    [Show full text]