The Origins of Late Quaternary Debris Avalanche and Debris Flow Deposits

Total Page:16

File Type:pdf, Size:1020Kb

The Origins of Late Quaternary Debris Avalanche and Debris Flow Deposits The origins of Late Quaternary debris avalanche and debris fl ow deposits from Cofre de Perote volcano, México Rodolfo Díaz-Castellón1,*,†, Bernard E. Hubbard2,†, Gerardo Carrasco-Núñez1, and José Luis Rodríguez-Vargas1 1Centro de Geociencias, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, 76230 Querétaro, México 2U.S. Geological Survey, Eastern Mineral Resources, MS 954, 12201 Sunrise Valley Drive, Reston, Virginia 20192, USA ABSTRACT on a larger scale. The younger Xico avalanche Scott et al., 1995; Vallance and Scott, 1997) and deposit contains abundant smectite, jarosite, the 16.4–16.6 ka Teteltzingo lahar from Citlalté- Cofre de Perote volcano is a compound, kaolinite, gypsum, and mixed-layered illite/ petl (Carrasco-Núñez et al., 1993, 2006), have shield-like volcano located in the northeast- smectite, which are either defi nitely or most left extensive deposits many tens of kilometers ern Trans-Mexican volcanic belt. Large likely of hydrothermal alteration origin. from their sources, signaling that population debris avalanche and lahar deposits are asso- Smectite in particular appears to be the most centers situated far from a volcanic edifi ce may ciated with the evolution of Cofre. The two abundant and spectrally dominant mineral still be at risk. Volcanic debris avalanches and best preserved of these debris-avalanche and in summit ground truth samples, ASTER debris fl ows are not always accompanied by debris-fl ow deposits are the ~42 ka “Los Pes- mapping results, Xico avalanche deposit, and eruptive activity. They can be triggered by a cados debris fl ow” deposit and the ~11–13 ka an older (pre-Xico avalanche) deposit de rived variety of factors such as increased precipita- “Xico avalanche” deposit, both of which dis- from collapse(s) of ancestral Cofre de Perote tion, as exemplifi ed in 1998 by the Casita ava- play contrasting morphological and textural edifi ce. However, both Xico avalanche and lanche and lahar triggered by Hurricane Mitch characteristics, source materials, origins and Los Pescados debris flow deposits show (Sheridan et al., 1999; Scott et al., 2005); slope emplacement environments. Laboratory some evidence of secondary, postemplace- instability and over steepening caused by gla- X-ray diffraction and visible-infrared refl ec- ment weathering and induration, which cial erosion (Crowley et al., 2003); strong seis- tance spectroscopy were used to identify the is evident by the presence of gibbsite, and mic activity (Martinez et al., 1995; Scott et al., most abundant clay, sulfate, ferric-iron, and hydroxyl interlayered minerals, in addition 2001); or they can occur even without warning. silica minerals in the deposits, which were to recently formed halloysite and hydrous A number of studies have made interpre- either related to hydrothermal alteration or silica (i.e., indurating) cements. Field-based, tations about the origins of ancient volcanic chemical weathering processes. Cloud-free visible infrared image spectroscopy (VIS/IR) debris avalanches and fl ows based on the type Advanced Spaceborne Thermal Emission spectral measurements offer the possibility and distribution of clay, sulfate, and silica min- and Refl ection Radiometer (ASTER) remote of distinguishing primary minerals of hydro- erals indicative of either hydrothermal alteration sensing imagery, supporting EO-1 Hyperion thermal alteration origin in debris-avalanche and/or chemical weathering processes (e.g., image spectra, and fi eld ground truth samples and debris-fl ow deposits from those pro- Crandell, 1971; Carrasco-Núñez et al., 1993; were used to map the mineralogy and distri- duced either by in situ chemical weathering Vallance and Scott, 1997; Vallance, 1999; Capra bution of hydrothermally altered rocks on or bulked from weathered source materials. and Macias, 2000; Capra and Macias, 2002; Pul- the modern summit of Cofre de Perote. The garin et al., 2004; Carrasco-Núñez et al., 2006; results were then compared to minerals iden- INTRODUCTION Murcia et al., 2008). However, few studies have tifi ed in the two debris-avalanche and debris- mapped the distribution of clay-rich, hydrother- fl ow deposits in order to assess possible source Volcanic debris avalanches and debris fl ows mally altered rocks on volcanoes with down- materials and origins for the two deposits. (i.e., lahars) originate as slope failures high on stream populations at risk (e.g., Crowley and The older Los Pescados debris-fl ow deposit volcanic edifi ces and transport enormous vol- Zimbelman, 1997; Hubbard, 2001; Finn et al., contains mostly halloysite and hydrous silica umes of fl uidized rock and soil into surrounding 2001; Crowley et al., 2003; Finn et al., 2007) or minerals, which match the dominant miner- river valleys. In populated areas, these phenom- compared the mineralogy of actual debris-ava- alogy of soils and weathered volcanic deposit ena can be incredibly destructive and deadly, as lanche and debris-fl ow deposits with those of in the surrounding fl anks of Cofre de Perote. tragically exemplifi ed by the >22,000 people potential source rock areas on the volcano (e.g., Its source materials were most likely derived killed by lahars from the Nevado del Ruiz vol- Pevear et al., 1982; Frank, 1983; Hubbard, 2001; from initially noncohesive or clay-poor fl ows, cano, Colombia, in 1985, during a minor erup- Opfergelt et al., 2006), assuming that such rocks which subsequently bulked with clay-rich tion that melted glacial ice and bulked with indeed still remain on the edifi ce. For example, valley soils and alluvium in a manner similar clay-rich soils and alluvium from the surround- Pevear et al. (1982) notes that the 18 May 1980 to lahars from Nevado del Ruiz in 1985, but ing valleys (Lowe et al., 1986; Pierson et al., debris avalanche deposit from Mount St. Helens 1990). Lahars containing abundant hydrother- lacks acid-sulfate minerals such as kaolinite and *Corresponding author: [email protected]. mally produced clays, such as the 5.6 ka Osceola alunite, but contains abundant chlorite, mixed †These authors contributed equally to this work. mudfl ow from Mount Rainier (Crandell, 1971; layered chlorite/smectite (i.e., corrensite), and Geosphere; August 2012; v. 8; no. 4; p. 950–971; doi:10.1130/GES00709.1; 16 fi gures; 3 tables. Received 6 April 2011 ♦ Revision received 23 November 2011 ♦ Accepted 1 February 2012 ♦ Published online 16 July 2012 950 For permission to copy, contact [email protected] © 2012 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/8/4/950/3343011/950.pdf by guest on 01 October 2021 Late Quaternary debris avalanche and debris fl ow deposits saponite (an Mg/Fe2+ or trioctahedral smectite), and to assess the signifi cance of hydrothermal four months) dry season from January to April, indicative of a sealed hydrothermal system that alteration and/or soil-forming processes in gen- and receives >1400 mm of annual precipitation prevented acidic fl uids from reaching the sur- erating future debris avalanches and lahars from (Elsass et al., 2000). Soils on the eastern fl anks face or near surface oxidizing environments. Cofre de Perote volcano. are also andosols but are typically indurated with Minor amounts of acid-sulfate alteration min- hydrous silica minerals (i.e., silcrete) (Elsass erals such as kaolinite, alunite, cristobalite, BACKGROUND: GEOLOGIC AND et al., 2000). Land use on the east side of Cofre tridymite, and opal were known to exist locally GEOGRAPHIC SETTING de Perote volcano favors a dense vegetation can- around the vicinity of fumarolic and geothermal opy ranging from cloud forest to low jungle and areas on the pre-1980 Mount St. Helens summit Cofre de Perote is the northernmost and savannas with numerous scattered sugar cane dome and goat rocks dome (Pevear et al., 1982 second highest (~4220 masl) volcano of the and coffee plantations. On both sides of Cofre and references therein). These dome rocks were Citlaltépetl–Cofre de Perote volcanic range. de Perote volcano, the weathering zone extends subsequently removed during the 18 May 1980 It is situated at the eastern end of the Trans- to a maximum depth of ~4 m (Dubroeucq et al., rockslide, though (not surprisingly) their altera- Mexican volcanic belt (TMVB; Fig. 1). The 1998; Elsass et al., 2000), although this varies tion products are not evident in the resulting Trans-Mexican volcanic belt is a Neogene vol- with slope and often grades into saprolite on the debris-avalanche deposit as shown by Pevear canic arc characterized by its oblique geometry western side (Elsass et al., 2000). et al. (1982). In contrast, Hubbard (2001) used with respect to the Middle American subduc- Morphologically, Cofre de Perote volcano airborne visible–infrared imaging spectrometer tion zone trench. It contains a wide range of could be described as a compound, shield-like (AVIRIS) hyperspectral data to map a variety of volcanic structures, including large silicic cal- volcano with a broad and gently sloping profi le hydrothermal alteration minerals on the modern deras, andesitic stratovolcanoes, silicic domes, (Fig. 2) (Carrasco-Núñez et al., 2010). Consid- edifi ce of Citlaltépetl, as well as the remnants and large basaltic monogenetic fi elds (Demant, ering that Cofre de Perote volcano is probably of two ancestral edifi ces, and compared them 1978). The easternmost Trans-Mexican volcanic extinct because its last eruptive episode ended with the mineralogy of the debris-avalanche belt comprises the Citlaltépetl–Cofre de Perote ~200 ka (Carrasco-Núñez et al., 2006), detailed and debris-fl ow deposits that resulted from their volcanic range and the Serdán-Oriental Basin, geologic mapping and study of its potential haz- collapse . marked by a bimodal volcanism with numer- ards have received little attention until recent This study focuses on Cofre de Perote vol- ous maars, domes, and cinder cones compris- times. Nevertheless, the young-looking scarps cano, one of the main volcanoes of the Citlal- ing a scattered monogenetic fi eld.
Recommended publications
  • Expeditions & Treks 2008/2009
    V4362_JG_Exped Cover_AW 1/5/08 15:44 Page 1 Jagged Globe NEW! Expeditions & Treks www.jagged-globe.co.uk Our new website contains detailed trip itineraries 2008 for the expeditions and treks contained in this brochure, photo galleries and recent trip reports. / 2009 You can also book securely online and find out about new trips and offers by subscribing to our email newsletter. Jagged Globe The Foundry Studios, 45 Mowbray Street, Sheffield S3 8EN United Kingdom Expeditions Tel: 0845 345 8848 Email: [email protected] Web: www.jagged-globe.co.uk & Treks Cover printed on Take 2 Front Cover: Offset 100% recycled fibre Mingma Temba Sherpa. sourced only from post Photo: Simon Lowe. 2008/2009 consumer waste. Inner Design by: pages printed on Take 2 www.vividcreative.com Silk 75% recycled fibre. © 2007 V4362 V4362_JG_Exped_Bro_Price_Alt 1/5/08 15:10 Page 2 Ama Dablam Welcome to ‘The Matterhorn of the Himalayas.’ Jagged Globe Ama Dablam dominates the Khumbu Valley. Whether you are trekking to Everest Base Camp, or approaching the mountain to attempt its summit, you cannot help but be astounded by its striking profile. Here members of our 2006 expedition climb the airy south Expeditions & Treks west ridge towards Camp 2. See page 28. Photo: Tom Briggs. The trips The Mountains of Asia 22 Ama Dablam: A Brief History 28 Photo: Simon Lowe Porter Aid Post Update 23 Annapurna Circuit Trek 30 Teahouses of Nepal 23 Annapurna Sanctuary Trek 30 The Seven Summits 12 Everest Base Camp Trek 24 Lhakpa Ri & The North Col 31 The Seven Summits Challenge 13
    [Show full text]
  • Talk 8 at State Episode 8: Getting Outside with Abby Hepp Transcript
    Talk 8 at State Episode 8: Getting Outside with Abby Hepp Transcript Eliza Barsanti: Welcome to the department of Health and Exercise Studies’ Talk 8 at State Podcast with your host, Eliza Barsanti! EB: A couple weeks into the Fall 2020 semester, Covid-19 precautions caused NC State to put all classes online. This switch caused a lot of change in the lives of NC State students, forcing them to step out of their typical day-to-day routines in favor of something different. Abby Hepp ‘23 took this as an opportunity to go on the adventure of a lifetime-hiking, camping, and climbing her way across the United States! Today, we sit down with her to talk about her cross-country road trip, along with advice and NC State resources that students can use to get outside and craft their own adventures. EB: Okay, so today we are sitting down with Abby Hepp. Abby, would you like to introduce yourself to the podcast? Abby Hepp: Hi my name is Abby Hepp, I am majoring in Communication Media at NC State and I'm currently a sophomore. EB: Awesome! So we're going to get right into it! Today we're going to be talking about some of your adventures that you've been going on in the past few years and using to inspire other people as well, so let's start with- how did you become involved in outdoor activities and adventuring initially? AH: First of all, thank you for having me and initially will growing up, I would say my family was moderately active and you know I kind of had the typical playing outside with the neighbors childhood.
    [Show full text]
  • Overview of the Geology of Mount Shasta
    Overview of the Geology of Mount Shasta Geology 60 Fall 2007 William Hirt College of the Siskiyous 800 College Avenue Weed, California Introduction Mount Shasta is one of the twenty or so large volcanic peaks that dominate the High Cascade Range of the Pacific Northwest. These isolated peaks and the hundreds of smaller vents that are scattered between them lie about 200 kilometers east of the coast and trend southward from Mount Garibaldi in British Columbia to Lassen Peak in northern California (Figure 1). Mount Shasta stands near the southern end of the Cascades, about 65 kilometers south of the Oregon border. It is a prominent landmark not only because its summit stands at an elevation of 4,317 meters (14,162 feet), but also because its volume of nearly 500 cubic kilometers makes it the largest of the Cascade STRATOVOLCANOES (Christiansen and Miller, 1989). Figure 1: Locations of the major High Cascade volcanoes and their lavas shown in relation to plate boundaries in the Pacific Northwest. Full arrows indicate spreading directions on divergent boundaries, and half arrows indicate directions of relative motion on shear boundaries. The outcrop pattern of High Cascade volcanic rocks is taken from McBirney and White (1982), and plate boundary locations are from Guffanti and Weaver (1988). Mount Shasta's prominence and obvious volcanic character reflect the recency of its activity. Although the present stratocone has been active intermittently during the past quarter of a million years, two of its four major eruptive episodes have occurred since large glaciers retreated from its slopes at the end of the PLEISTOCENE EPOCH, only 10,000 to 12,000 years ago (Christiansen, 1985).
    [Show full text]
  • Redalyc.Short-Term Climatic Change in Lake Sediments from Lake Alchichica, Oriental, Mexico
    Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Caballero, Margarita; Vilaclara, Gloria; Rodríguez, Alejandro; Juárez, Diana Short-term climatic change in lake sediments from lake Alchichica, Oriental, Mexico Geofísica Internacional, vol. 42, núm. 3, july-september, 2003, pp. 529-537 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56842325 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geofísica Internacional (2003), Vol. 42, Num. 3, pp. 529-537 Short-term climatic change in lake sediments from lake Alchichica, Oriental, Mexico Margarita Caballero1, Gloria Vilaclara2, Alejandro Rodríguez3 and Diana Juárez3 1 Institute of Geophysics, UNAM, México, D. F., México 2 FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. de México. 3 Posgrado de Ciencias del Mar y Limnologia, UNAM, México, D. F., México Received: September 3, 2000; accepted: July 15, 2001 RESUMEN En el centro de México el fenómeno de “El Niño” provoca una reducción en la precipitación. Estas variaciones interanuales en el clima pueden modificar el comportamiento de mezcla-estratificación de los lagos, reflejándose a veces en los sedimentos que se acumulan año con año en sus fondos, sobrepuesto a las tendencias de cambio climático de mayor duración. Presentamos datos preliminares de una evaluación del potencial de los sedimentos del lago de Alchichia para registrar cambios climáticos de períodos medio y corto, analizando diatomeas, calcinación y pigmentos totales en un núcleo de 168 cm de longitud (Alchi-III) recuperado de la orilla NE del lago.
    [Show full text]
  • Chapter 23: Literature: Poetry
    Mount Shasta Annotated Bibliography Chapter 23 Literature: Poetry Mount Shasta as a symbol of high ideals, as a symbol of God's domain, as a symbol of purity, and as an inspiring presence, are just some of the varied themes which run through the 19th and 20th Century poems about this majestic mountain. In 1854 John Rollin Ridge, a Cherokee Indian who later became editor of the Sacramento Bee newspaper, wrote one of the earliest Mt. Shasta poems; entitled Mount Shasta it became one of the most famous California poems. Ridge's message was one for the entire state, and the poem contains lines such as "And well this Golden State shall thrive, if like Its own Mount Shasta, Sovereign Law shall lift Itself in purer atmosphere—so high..." The well-known abolitionist poet John Greenleaf Whittier, in 1863, used Shasta as a symbol of God's works: "Amidst the glorious works of thine, The solemn minarets of Pine, And awful Shasta's icy shrine,-Where swell thy hymns from wave and gale..." Many Mt. Shasta poems are less abstract and more personal in sentiment. Joaquin Miller, who lived from 1854-57 near Mt. Shasta, and who visited many times thereafter, wrote several poems about his old home mountain. In his Shadows of Shasta poem, reprinted in this section, one sees his recurring theme of the 'Shadows,' or dark secrets, he saw inflicted on the lives of the Indians at the hands of the whites: "In the place where the grizzly reposes, Under peaks where a right is a wrong...." See also Section 20.
    [Show full text]
  • Climbing Ranger Report 2019
    MOUNT SHASTA Climbing Ranger Report 2019 Season summary Winter 2018/19 was fueled by generous storms resulting in a deep winter snowpack. Rangers knew this meant the 2019 spring/summer climbing season would be full of hustle and bustle. Eager parties of skiers and climbers made the trek up Mount Shasta all throughout the spring and summer. Visitors marveled in amazement as they traveled past massive walls of avalanche debris from the Valentine Day avalanche in Avalanche Gulch. We all made bets on how long the debris pile would take to melt. Winter storms continued well into May. These late season storms thwarted off many successful summits for the early contingent of climbers. The inclement weather did little to discourage climbers though and it wasn’t long before the vibrant tent city at Helen Lake took shape. Rangers erected their home away from home, a 6x7 foot canvas walled tent, on May 8th and for several weekends had to dig it out due to spring storms. Final state snow surveys in April resulted in water totals 141% of the historical average. The snow depth at Horse Camp was approximately 12 feet deep. Final snow-water equivalent came in at 61.6 inches. Theoretically, if you could melt all this snow instantaneously, over 5 feet of water would result. Mt. Shasta Area Snow Survey - April 2019 180 Current 160 Snow Current 140 Water 120 Average 100 Snow 80 Inches 60 40 20 0 A total of 6,579 summit passes were sold in 2019, only 32 above the yearly average since 1997.
    [Show full text]
  • Secretaria De Desarrollo Social
    (Segunda Sección) DIARIO OFICIAL Lunes 14 de agosto de 2006 SECRETARIA DE DESARROLLO SOCIAL ACUERDO de Coordinación para la distribución y ejercicio de recursos de los programas del Ramo Administrativo 20 Desarrollo Social en las microrregiones y regiones, que suscriben la Secretaría de Desarrollo Social y el Estado de Veracruz de Ignacio de la Llave. Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Desarrollo Social. ACUERDO DE COORDINACION PARA LA DISTRIBUCION Y EJERCICIO DE RECURSOS DE LOS PROGRAMAS DEL RAMO ADMINISTRATIVO 20 “DESARROLLO SOCIAL” EN LAS MICRORREGIONES Y REGIONES, QUE SUSCRIBEN POR UNA PARTE EL EJECUTIVO FEDERAL, A TRAVES DE LA SECRETARIA DE DESARROLLO SOCIAL, EN LO SUCESIVO “SEDESOL”, REPRESENTADA EN ESTE ACTO POR EL SUBSECRETARIO DE DESARROLLO SOCIAL Y HUMANO, EL C. ING. SERGIO SOTO PRIANTE, Y EL ENCARGADO DE DESPACHO DE LA DELEGACION EN EL ESTADO DE VERACRUZ, EL C. ARQ. JOSE FRANCISCO GONZALEZ HIDALGO Y, POR LA OTRA, EL EJECUTIVO DEL ESTADO DE VERACRUZ DE IGNACIO DE LA LLAVE, EN LO SUCESIVO “EL ESTADO”, REPRESENTADO POR LA SECRETARIA DE FINANZAS Y PLANEACION, LA SECRETARIA DE DESARROLLO SOCIAL Y MEDIO AMBIENTE Y LA CONTRALORIA GENERAL, LOS CC. C.P. RAFAEL GERMAN MURILLO PEREZ, C.P. LEONOR DE LA MIYAR HUERDO Y LIC. SUSANA TORRES HERNANDEZ, EN EL MARCO DEL CONVENIO DE COORDINACION PARA EL DESARROLLO SOCIAL Y HUMANO, EN LO SUCESIVO “CONVENIO MARCO”. ANTECEDENTES I. El Convenio de Coordinación para el Desarrollo Social y Humano, tiene por objeto coordinar programas, acciones y recursos con el fin de trabajar de manera corresponsable en la tarea de superar la pobreza y marginación, mejorando las condiciones sociales y económicas de la población, mediante la instrumentación de políticas públicas que promuevan el desarrollo humano, familiar, comunitario y productivo, con equidad y seguridad, atendiendo al mismo tiempo, el desafío de conducir el desarrollo urbano y territorial.
    [Show full text]
  • Discriminación De Unidades Volcánicas a Partir De Ímagenes Ópticas Y Radar: Estudio De Caso Volcán De Colima, Periodo 2004-2014.”
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE GEOGRAFÍA “DISCRIMINACIÓN DE UNIDADES VOLCÁNICAS A PARTIR DE ÍMAGENES ÓPTICAS Y RADAR: ESTUDIO DE CASO VOLCÁN DE COLIMA, PERIODO 2004-2014.” TESIS QUE PARA OBTENER EL GRADO DE: LICENCIADO EN GEOINFORMÁTICA PRESENTA CIRINO GARCÍA MALVAÉZ DIRECTORA DRA. NORMA DÁVILA HERNÁNDEZ REVISORES MTRO. RAÚL EDUARDO MURILLO OLVERA DR. HÉCTOR CABADAS BÁEZ TOLUCA, ESTADO DE MÉXICO. DICIEMBRE DEL 2014 Agradecimientos A mi asesora Dr. Norma Dávila Hernández por el apoyo brindado durante la elaboración de este trabajo, el creer en mí y por la dedicación brindada para lograr esta gran meta en mi vida. A mis revisores Mtro. Raúl Eduardo Murillo Olvera y Dr. Héctor Cabadas Báez, en verdad no pude haber tenido mejores revisores. Mtro. Murillo a usted un agradecimiento especial ya que siempre estuvo a mi lado en el transcurso de toda la licenciatura no solo como profesor, si no como amigo. Gracias. A mis papas con la mayor gratitud por los esfuerzos realizados para que yo lograra terminar mi tesis profesional siendo para mí la mejor herencia y a ellos les dedico este trabajo ya que son mi más grande estimulo e inspiración. Gracias por guiar mi vida, esto ha hecho que sea quien soy en la vida. LOS AMO A mis hermanas porque siempre me apoyaron, me alentaron, estimularon y me alegraron en momentos difíciles. A Mary que fue mi acompañante en toda la licenciatura, que siempre me apoyo, me ayudo a dar el máximo y me oriento. 1 INDICE 1.0 INTRODUCCIÓN .............................................................................................. 3 2.0 ANTECEDENTES ............................................................................................. 5 3.0 PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN .............................
    [Show full text]
  • INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio Regional Del
    INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio regional del Campo Volcánico de la Cuenca Serdán – Oriental a través de métodos potenciales. Tesis que presenta Nereida de la Paz Pérez Méndez Para obtener el grado de Maestra en Geociencias Aplicadas Director de Tesis Dr. Vsevolod Yutsis San Luis Potosí, SLP. Diciembre de 2017 2 Créditos Institucionales Esta tesis fue elaborada en la División de Geociencias Aplicadas del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección del Dr. Vsevolod Yutsis Durante la realización del trabajo el autor recibió una beca académica del Consejo Nacional de Ciencia y Tecnología (No. 596331) y del Instituto Potosino de Investigación Científica y Tecnológica, A. C. ii A mis padres y hermanos por su apoyo, a Rob, por su infinita ayuda y amistad, a Gerardo por su ánimo y cariño en mis días grises, a mi familia potosina, Lupita Méndez, Juán Guerrero, Norma, J Carlos y Janabanana por quienes siempre me sentí querida y cuidada. iv Agradecimientos A mis Padres por su amor y apoyo incondicional a lo largo de toda mi vida, son mis pilares y mi fuerza. Mis hermanos Nora, Mabel, Teresa y Emmanuel quienes me consienten e inspiran a seguir adelante. A mi amigo y compañero el Mtro. Alejandro Cruz Palafox por su paciencia y ayuda al responder a mis infinitas preguntas y dudas, y por compartir largas jornadas de trabajo conmigo. A Angelina Candia, Rosaira Cruz y Claudia Rigel que siempre estuvieron para mí en todo este proceso, su amistad y conocimiento me motivaron a diario.
    [Show full text]
  • Dr 3004 Perote Zalayeta
    DXCIX REGIÓN HIDROLÓGICO-ADMINISTRATIVA “GOLFO CENTRO" R DNCOM VCAS VEXTET DAS DÉFICIT CLAVE ACUÍFERO CIFRAS EN MILLONES DE METROS CÚBICOS ANUALES ESTADO DE VERACRUZ 3004 PEROTE-ZALAYETA 50.2 10.8 37.840835 32.9 1.559165 0.000000 Determinación de la Disponibilidad de Agua en el Acuífero Perote-Zalayeta, Estado de Veracruz Comisión Nacional del Agua Subdirección General Técnica Gerencia de Aguas Subterráneas Subgerencia de Evaluación y Ordenamiento de Acuíferos DETERMINACIÓN DE LA DISPONIBILIDAD DE AGUA EN EL ACUÍFERO PEROTE-ZALAYETA (3004), ESTADO DE VERACRUZ México D.F., Marzo de 2014 Determinación de la Disponibilidad de Agua en el Acuífero Perote-Zalayeta, Estado de Veracruz CONTENIDO 1. GENERALIDADES ....................................................................................................................................... 1 1.1. Localización .................................................................................................................................................. 1 1.2. Situación administrativa del acuífero ............................................................................................................ 3 2. ESTUDIOS TÉCNICOS REALIZADOS CON ANTERIORIDAD .................................................................. 4 3. FISIOGRAFÍA ............................................................................................................................................... 5 3.1. Provincia fisiográfica ....................................................................................................................................
    [Show full text]
  • Ii \ T MEXICAN GRASSES in the UNITED STATES NATIONAL
    ■ . ~+j-,r?7-w- - i i - . \ t MEXICAN GRASSES IN THE UNITED STATES NATIONAL HERBARIUM. By A. S, Hitchcock INTRODUCTION. The following list of grasses, based entirely upon specimens in the United States National Herbarium, is a preliminary paper, in which the scattered data upon Mexican grasses have been brought together and arranged in a convenient form. The species included have been accepted, for the most part, in their traditional sense. It has been impracticable to examine the types of many of the earlier described species since these specimens are located in European herbaria. For this reason the synonymy has been confined mostly to those names that could be fixed by an examination of American types, or concerning the application of which there was little doubt. The largest number of unidentified names are found in Fournier's work on Mexican grasses.1 This results from the incomplete or unsatis- factory descriptions and from the fact that the specimens cited under a given species either may not agree with the diagnosis, or may belong to two or more species, at least in different herbaria. An examination of the original specimens will undoubtedly lead to the identification of the greater part of these names. There are several specimens that have been omitted from the list because they have not been identified and are apparently unde- scribed species. They belong to genera, however, that are much in need of critical revision and further study of them is deferred for the present. In subsequent articles it is hoped to work out the classifi- cation of the tropical American grasses upon a type basis KEY TO THE GENEBA.
    [Show full text]
  • Geology of Nevado De Toluca Volcano and Surrounding Areas, Central Mexico
    mch089 1 of 26 Geological Society of America Map and Chart Series MCH089 2002 Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico *Armando García-Palomo, José Luis Macías, José Luis Arce Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F., México Lucia Capra Instituto de Geografía, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F., México Victor Hugo Garduño Departamento de Geología y Mineralogía, Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México Juan Manuel Espíndola Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F., México ABSTRACT Nevado de Toluca is an andesitic-dacitic stratovolcano of Pliocene-Holocene age located in central Mexico. The volcano is built on a complex sequence of metamorphic and sedimentary formations of Jurassic-Cretaceous age, rhyolitic ignimbrites of late Eocene age, and massive andesitic lava flows of late Miocene. In the northwest corner of the map area, on top of this basement sequence, a complex andesitic-dacitic strato- volcano, San Antonio, and a series of andesitic-dacitic domes and cones of Pliocene– early Pleistocene age were also built. The first andesitic-dacitic emissions of Nevado de Toluca occurred 2.6 Ma and continued during late Pleistocene–Holocene time contem- porarily with basaltic to dacitic emissions of the Chichinautzin Volcanic Field in the eastern parts of the map area. Volcanism in the area has been controlled by the interplay of three fault systems active since late Miocene. These systems, from older to younger, are the Taxco-Querétaro Fault System (NNW–SSE), the San Antonio Fault System (NE–SW), and the Tenango Fault System (E–W).
    [Show full text]