INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio Regional Del

Total Page:16

File Type:pdf, Size:1020Kb

INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio Regional Del INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio regional del Campo Volcánico de la Cuenca Serdán – Oriental a través de métodos potenciales. Tesis que presenta Nereida de la Paz Pérez Méndez Para obtener el grado de Maestra en Geociencias Aplicadas Director de Tesis Dr. Vsevolod Yutsis San Luis Potosí, SLP. Diciembre de 2017 2 Créditos Institucionales Esta tesis fue elaborada en la División de Geociencias Aplicadas del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección del Dr. Vsevolod Yutsis Durante la realización del trabajo el autor recibió una beca académica del Consejo Nacional de Ciencia y Tecnología (No. 596331) y del Instituto Potosino de Investigación Científica y Tecnológica, A. C. ii A mis padres y hermanos por su apoyo, a Rob, por su infinita ayuda y amistad, a Gerardo por su ánimo y cariño en mis días grises, a mi familia potosina, Lupita Méndez, Juán Guerrero, Norma, J Carlos y Janabanana por quienes siempre me sentí querida y cuidada. iv Agradecimientos A mis Padres por su amor y apoyo incondicional a lo largo de toda mi vida, son mis pilares y mi fuerza. Mis hermanos Nora, Mabel, Teresa y Emmanuel quienes me consienten e inspiran a seguir adelante. A mi amigo y compañero el Mtro. Alejandro Cruz Palafox por su paciencia y ayuda al responder a mis infinitas preguntas y dudas, y por compartir largas jornadas de trabajo conmigo. A Angelina Candia, Rosaira Cruz y Claudia Rigel que siempre estuvieron para mí en todo este proceso, su amistad y conocimiento me motivaron a diario. A Edgar, Fermín y Rob con quienes inicié esta aventura y pasé momentos increíbles, ¡son los mejores! A Edith y a Gaby Assafat, que sin duda son de las personas más agradables que conozco, su disposición a ayudar es admirable así como su eficiencia. Al Dr. Valdis por su apoyo en este proceso, por no perder la fe en mí y animarme a seguir adelante. Al Dr. Nick, muchas gracias por estar a lo largo de mi educación, siempre dispuesto a ayudarme y respetar mi forma de trabajo. Al Dr. Pablo por sus observaciones y puntos de vista, sé que tengo un largo camino que seguir pero su ética profesional y forma crítica de trabajar ha puesto un ejemplo a seguir, gracias por las charlas sobre volcanes. Por último y no menos importante a mis amigos que siempre estuvieron para mí y son parte de este capítulo en mi vida: Katheryn Villareal, Nayelli Vázquez, Mónica Cuevas, Alba Hunter, Aby Rentería, Paty Fernández, Vic, Aréchiga, Oscar Chang, Al Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), por el apoyo brindado durante la maestría. Al Centro Nacional de Ciencia y Tecnología (CONACYT), por la beca otorgada. A la división de Geociencias Aplicadas y al Departamento de Geofísica, al técnico David Gaytán por su ayuda en la logística del trabajo de campo y procesamiento de datos. v Contenido Constancia de aprobación de tesis…………………………………………………... i Créditos institucionales…………………………………………………………………... ii Acta de Examen………………………………………………………………………….. iii Dedicatoria……………………………………………………………………………...… iv Agradecimientos………………………………………………………………………….. v Lista de Figuras y tablas.………………………………………………………………… xi Resumen……………………………………………………………………………….... xix Abstract…………………………………………………………………………………... xx Capítulo 1. Aspectos generales………………………………………………………. 1 1.1 Introducción…………………………………………………………………………… 1 1.2 Hipótesis……………………………………………………………………………… 2 1.3 Objetivo General…………………………………………………………………...... 2 1.3.1 Objetivos particulares……………………………………………………………... 2 1.4 Metodología…………………………………………………………………………... 2 1.4 Localización…………………………………………………………………………... 3 1.5 Antecedentes………………………………………………………………………… 4 Capítulo 2. Marco Geológico………………………………………………………… 14 2.1 Faja Volcánica Transmexicana……………….…………………………………… 14 2.2 Evolución de la FVTM………..…………………………………………………….. 14 2.2.1 Arco del Mioceno medio y tardío…………………………………………….….. 15 2.2.2 Episodio máfico del Mioceno tardío……………………………….……………. 16 2.2.3 Vulcanismo silícico del final de Mioceno y vulcanismo bimodal del Plioceno temprano…………………………………………………………………………………. 17 2.2.4 Arco del Plioceno tardío-Cuaternario 2.3 Geología Estructural y Neotectónica……………………………………………… 20 2.4 Tectónica de la FVTM……………………………………………………………… 21 2.5 Faja Volcánica Trans Mexicana Oriental………………………………………… 23 2.5.1 Coordillera Cofre de Perote-Pico de Orizaba…………………………………. 25 vi 2.5.2 Área Jalapa-Naolinco……………………………………………………………. 25 2.5.3 Macizo Palma Sola……………………………………………………………….. 25 2.5.4 Zona Altiplano…………………………………………………………………….. 26 Hidrología e hidrogeología…………………………………………………...… 26 Vulcanismo monogenético Cuaternario………………………………………. 28 Tectónica Regional……………………………………………………………… 30 Geología Regional…………………………………………….………………… 31 Capítulo 3. Marco Vulcanológico…………………………………………………… 39 3.1 Campos Volcánicos Monogenéticos……………………………………………... 39 3.1.1 Características físicas……………………………………………………………. 40 3.1.2 Estructura geológica……………………………………………………………… 40 3.1.3 Sistemas magmáticos monogenéticos…………………………………………. 41 3.1.4 Principales edificios volcánicos…………………………………………………. 46 Conos de escoria………………………………………………………………... 46 Anillos de toba…………………………………………………………………… 47 Conos de toba…………………………………………………………………… 48 Maars…………………………………………………………………………….. 48 Diatrema…………………………………………………………………. 48 Flujos de lava……………………………………………………….…………… 49 Volcanes escudo………………………………………………………………... 50 3.2 Hidrovulcanismo……………………………………………………………………. 52 3.3 Freatomagmatismo………………………………………………………….……… 52 3.3.1 Dinámica física……………………………………………………….…………… 52 3.3.2 Formas…………………………………………………….………………………. 54 3.4 Erupciones volcánicas sílicas……………………………………………………... 54 3.4.1 Domos……………………………………………………………………………... 55 3.4.2 Domos como indicadores de orientación de estrés tectónico……………….. 55 Capítulo 4. Método magnético………………………………………………………. 57 4.1 El Campo Magnético……………………………………………………………….. 57 4.1.1 Geomagnetismo………………………………………………………………….. 59 vii 4.2 Variaciones del campo magnético…………………….………………………….. 61 4.2.1 Variaciones diurnas……………………….……………………………………… 61 4.2.2 Micropulsaciones……………………………..………………………………….. 62 4.2.3 Tormentas magnéticas……………………………………………………….….. 62 4.2.4 Variación secular…………………………………………………………………. 62 4.2.5 Reversiones geomagnéticas…………………………………………………..... 62 4.3 Susceptibilidad magnética de las rocas……………………………………….…. 62 4.4 Anomalías magnéticas…………………………………...………………………… 65 4.5 Instrumentación…………………………………………………………………….. 67 4.6 Correcciones………………………………………………………………………... 69 4.7 Levantamiento aeromagnético……………………………………………………. 70 4.8 Filtros utilizados para el análisis de datos aeromagnéticos…………….……… 71 4.8.1 Reducción al polo………………………………………………………………… 71 4.8.2 Continuación ascendente…………………………………………………….….. 72 4.8.3 Primera derivada vertical y horizontal……………………………………….…. 72 4.8.4 Señal analítica……………………………………………………………….…… 73 Capítulo 5. Método Gravimétrico…………………………………………………… 74 5.1 Ley de la Gravitación Universal…………………………………………………… 74 5.2 Densidades de las rocas…………………………………………………………... 75 5.3 El geoide…………………………………………………………………………….. 76 5.4 Medición de la gravedad…………………………………………………………... 77 5.4.1 Gravedad absoluta………………………….……………………………………. 77 5.4.2 Gravedad Relativa………….…………….………………………………………. 78 5.5 Correcciones………………………………………………………………………… 79 5.5.1 Corrección por Deriva….………………………………………………………… 79 5.5.2 Corrección de Elevación………………………………………………………… 79 5.5.3 Corrección por Marea……………………………………………………………. 81 5.5.4 Anomalía de Aire – Libre y Bouguer………………………………..…………… 81 Capítulo 6. Análisis de datos geológicos – geofísicos………….……………… 83 6.1 Edificios volcánicos……………………………………………………….………… 83 viii 6.1.1 Identificación y clasificación de edificios volcánicos………………………….. 84 6.1.2 Mapeo de vents volcánicos…………………...…………………………………. 85 6.1.3 Lineamientos……………………………………………………………………… 85 Vents volcánicos………………………………………………………………… 85 Rocas sedimentarias……………………….…………………………………… 85 Rosetas…………………………………………………………………...……… 85 6.1.4 Perfiles geológicos – volcánicos………………………………………………... 86 6.2 Método Magnetométrico…………………………………………………………… 86 6.2.1 Procesamiento de datos..………………………………………….…………….. 87 6.2.2 Dominios aeromagnéticos……………………………………………………….. 89 6.3 Método Gravimétrico……………………………………………………………….. 89 6.3.1 Gravedad Terrestre………………………………………………………………. 89 Adquisición de datos……………………………………………………………. 89 Equipo utilizado………………………………………………………….………. 89 Corrección de datos…………………………………………………………….. 90 Procesado de datos…………………………………………………………….. 90 6.3.2 Gravedad Satelital………………………………………………………………... 91 Procesado de datos…………………………………………………………….. 91 Anomalía de Bouguer Completa y Residual…………………………………. 91 Primera derivada en vertical (z)……………………………………………….. 91 6.3.3 Dominios gravimétricos………………………………….………………………. 92 6.4 Modelado……………………………………………………………………………. 92 Capítulo 7. Integración y Resultados………………………………………….…… 93 7.1 Geoformas……………………………………………………………………….….. 93 7.1.1 Identificación y clasificación de Edificios Volcánicos…………………………. 93 Maars…………………………………………………………………………….. 96 Domos……………………………………………………………………………. 99 Flujos de lava………………………………………………………………...… 100 Conos monogenéticos………………………………………………………… 102 Edificios poligenéticos………………………………………………………… 102 ix 7.1.2 Lineamientos de vents volcánicos………………………………………….…. 105 7.1.3 Lineamientos de rocas sedimentarias………………………………………… 109 7.1.4 Perfiles…………………………………………………………………………… 111 7.2 Magnetometría………………………………………………………………........ 113 7.2.1 Campo Magnético Residual (CMR)…………………………………………… 113 7.2.2 Campo Magnético Residual – Reducido al Polo……………………………. 114
Recommended publications
  • Mechanical Instability Quantification of Slopes at Cofre De Perote Volcano 187 Boletín De La Sociedad Geológica Mexicana
    Mechanical instability quantification of slopes at Cofre de Perote volcano 187 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 60, NÚM. 2, 2008, P. 187-201 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Mechanical instability quantification of slopes at Cofre de Perote volcano, eastern Mexico Rodolfo Díaz Castellón1,*, Gerardo Carrasco Núñez2, Alfonso Álvarez-Manilla Aceves1,3 1Posgrado en Ciencias de la Tierra Centro de Geociencias Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230 2Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230. 3Dirección de Estudios de Posgrado de la Facultad de Ingeniería, Universidad Autónoma de Querétaro, Ciudad Universitaria, Cerro de las Campanas s/n, Querétaro, Qro. 76010 *[email protected]. Abstract Cofre de Perote (CP) volcano is located at the eastern end of the Trans-Mexican Volcanic Belt (TMVB) at 19°30’ Lat N, 97°10’ Long W. At a height of 4,282 m.a.s.l, it comprises one of the most massive structures within the Citlaltépetl – Cofre de Perote volcanic range (CCPVR), which constitutes an important physiographic barrier that separates the central altiplano, also known as Serdán Oriental, from the coastal plains of the Gulf of Mexico. This massive structure has repeatedly collapsed, and at least two of the collapse events occurred long after activity ceased, suggesting that even extinct volcanoes may pose an important hazard to nearby populated areas. In the present work, volcanic instability is approached through both quantitative and descriptive methods that include combined numerical analysis of limit equilibrium, calculated with Bishop’s modified method, and finite element analysis.
    [Show full text]
  • Cerro Pizarro Volcano, Mexico by G. Carrasco-Nú
    1 Polygenetic nature of a rhyolitic dome and implications for hazard assessment: 2 Cerro Pizarro volcano, Mexico 3 by G. Carrasco-Núñez and N. Riggs 4 5 ABSTRACT 6 Rhyolitic domes are commonly regarded as monogenetic volcanoes associated with single, brief 7 eruptions. They are characterized by short-lived successions of pyroclastic and effusive activity 8 associated with a series of discrete eruptive events that apparently last on the order of years to 9 decades. Cerro Pizarro, a ~ 1.1 km3 rhyolitic dome in the eastern Mexican Volcanic Belt, shows 10 aspects of polygenetic volcanism including long-term repose periods (~ 50-80 ky) between 11 eruptions, chemical variations with time, and a complex evolution of alternating explosive and 12 effusive eruptions, a cryptodome phase, and sector collapse. This eruptive behavior provides 13 new insights into how rhyolite domes may evolve. A protracted, complex evolution bears 14 important implications for hazard assessment if reactivation of an apparently extinct rhyolitic 15 dome must be seriously considered. 16 17 Keywords: monogenetic volcanism, polygenetic volcanism, rhyolites, dome growth, volcanic 18 hazards, Mexican Volcanic Belt 19 20 INTRODUCTION 21 Monogenetic volcanoes comprise a wide spectrum of relatively small volcanic structures 22 (generally less than a few km3 erupted material) that show a commonly simple evolution (one 23 eruption, or a few clearly related eruptions), short life span (commonly years to decades for 24 mafic volcanoes, but possibly as much as a few centuries for rhyolitic domes), and minor 25 chemical composition changes. Monogenetic volcanoes are, in general, either basalt or rhyolite, 26 while polygenetic volcanoes, which erupt repeatedly and have a large and persistent magma 27 storage chamber, are commonly andesitic or dacitic in composition.
    [Show full text]
  • Archipelago Reserves, a New Option to Protect Montane Entomofauna and Beta-Diverse Ecosystems
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 89 (2018): 927 - 937 Conservation Archipelago reserves, a new option to protect montane entomofauna and beta-diverse ecosystems Reservas archipiélago, una nueva opción para proteger a la entomofauna de montaña y ecosistemas beta-diversos Victor Moctezuma *, Gonzalo Halffter, Alfonsina Arriaga-Jiménez Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, 91000 Xalapa, Veracruz, Mexico * Corresponding author: [email protected] (V. Moctezuma) Received: 22 August 2017; accepted: 23 March 2018 Abstract Beta diversity is often a dominant characteristic in mountain systems and naturally fragmented ecosystems. However, natural protected areas are traditionally designed to protect ecosystems with high alpha and low beta diversity. Recent information about dung beetles of the Transmexican Volcanic Belt was used to identify the most suitable strategy for the conservation of insect biodiversity in montane and beta-diverse ecosystems. Mean alpha diversity by mountain represents 38% of regional diversity. Most of the variation in beta diversity is explained because each mountain represents a unique habitat hosting a highly differentiated community. National parks appear to be inefficient to protect the high beta diversity shown by Mexican temperate mountains, especially for insect communities adapted to fragile ecosystems. The Archipelago Reserve scheme seems to be a suitable alternative to protect montane entomofauna and beta-diverse ecosystems. Our study reveals beta diversity patterns and complementarity among sites in a montane system, representing a first step to detect a suitable region for establishing an Archipelago Reserve in the Transmexican Volcanic Belt. Nevertheless, an analysis that matches current diversity patterns and protected areas is required to establish the best configuration for future reserves.
    [Show full text]
  • Recent Explosive Volcanism at the Eastern Trans-Mexican Volcanic Belt
    The Geological Society of America Field Guide 25 2012 Recent explosive volcanism at the eastern Trans-Mexican Volcanic Belt G. Carrasco-Núñez* P. Dávila-Harris Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230 Mexico N.R. Riggs M.H. Ort School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona, USA B.W. Zimmer Department of Geology, Appalachian State University, Boone, North Carolina USA C.P. Willcox M.J. Branney Department of Geology, University of Leicester, Leicester, LE17RH, UK ABSTRACT The eastern Trans-Mexican Volcanic Belt is characterized by a diversity of vol- canoes that are related to different processes and eruptive styles. The spectacular exposures of late Pleistocene and Holocene volcanism provide a unique opportunity to explore a variety of volcanic features and deposits that may be relevant for volca- nic hazard assessments within the area. This three-day fi eld guide describes selected representative examples of the regional volcanism showing volcanic features inclu- ding thick pyroclastic successions derived from the explosive activity of Los Humeros caldera volcano, caldera-rim effusions, alternating explosive and effusive activity of a vitrophyric rhyolite dome (Cerro Pizarro), and the eruptive activity of two composi- tionally contrasting maar volcanoes: Atexcac, a classic basaltic maar and Cerro Pinto, a rhyolitic tuff ring–dome complex. *[email protected] Carrasco-Núñez, G., Dávila-Harris, P., Riggs, N.R., Ort, M.H., Zimmer, B.W., Willcox, C.P., and Branney, M.J., 2012, Recent explosive volcanism at the eastern Trans-Mexican Volcanic Belt, in Aranda-Gómez, J.J., Tolson, G., and Molina-Garza, R.S., eds., The Southern Cordillera and Beyond: Geological Society of America Field Guide 25, p.
    [Show full text]
  • Redalyc.Depositional Facies and Migration of the Eruptive Loci For
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México López-Rojas, Mario; Carrasco-Núñez, Gerardo Depositional facies and migration of the eruptive loci for Atexcac axalapazco (central Mexico): implications for the morphology of the crater Revista Mexicana de Ciencias Geológicas, vol. 32, núm. 3, 2015, pp. 377-394 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57243039003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Depositional facies and migration of the eruptive lociv. for32, núm.Atexcac 3, 2015, axalapazco p. 377-394 Depositional facies and migration of the eruptive loci for Atexcac axalapazco (central Mexico): implications for the morphology of the crater Mario López-Rojas* and Gerardo Carrasco-Núñez Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla No. 3001, C.P. 76230, Querétaro, Qro., México. * [email protected] ABSTRACT positación de material de las facies fue acompañada por bloques balísticos de diferentes composiciones (basáltica, caliza, andesítica, microdiorítica, Phreatomagmatic explosions produced an alternated stratified juvenil y rocas alteradas). Las velocidades a la que fueron expulsados estos sequence of surge and fallout deposits that formed the Atexcac axala- bloques resultaron ser infrasónicas (~ 0.3 Mach). Las composiciones y pazco in the eastern Mexican Volcanic Belt. We defined six different direcciones de los bloques balísticos muestreados permitieron definir al depositional facies based on variations in grain size, composition and menos tres etapas explosivas que muestran amplias zonas de localización depositional structures.
    [Show full text]
  • Chapter 8 Volcanic Activity in Mexico During the Holocene
    Chapter 8 Volcanic Activity in Mexico During the Holocene José L. Macías and José L. Arce Abstract This chapter presents an overview of the volcanic eruptions that have occurred in Mexico during the Holocene. Although volcanic regions are distributed all over the country, Holocene eruptions are mainly concentrated in the southern half of the country and, in particular, in the Trans-Mexican Volcanic Belt. Here, we summarize the details of the eruptions from the stratovolcanoes and monogenetic volcanoes, which have been extensively documented in the volcanological litera- ture, and their radiometric or historical dates. Out of the 153 Holocene eruptions described so far, ~63.4% have occurred at active stratovolcanoes and calderas, while the remaining ~36.6% have occurred from vents within monogenetic volcanic fields. Surprisingly, it seems that volcanism increased through time from Early (~17.7%), Middle (~26.8%) to Late Holocene (~55.5%). These figures may be biased because younger deposits are better preserved than older ones, and the latter usually are eroded through time especially around active stratovolcanoes. Around 24 eruptions (~15.6%) have taken place in pre-Hispanic and historical time out of which 11 occurred during the Little Ice Age. These eruptions have posed a serious threat to the surrounding regions and their populations. Some stratovolcanoes have collapsed at least once, covering and destroying previous deposits and making it difficult to reconstruct past eruption records. Large, Plinian to sub-Plinian eruptions at stratovolcanoes are well recorded in the stratigraphy, but the small eruptions that did not produce widespread deposits are difficult to define. Eruptions from monoge- netic volcanic fields were fed from central vents and fissures and mostly dominated by Strombolian activity and lava flows.
    [Show full text]
  • Geology of Las Cumbres Volcanic Complex, Puebla and Veracruz States, Mexico
    Revista Mexicana de CienciasGeology Geológicas, of Las Cumbres v. 22, núm. Volcanic 2, 2005, Complex, p. 181-199 Puebla and Veracruz states, Mexico 181 Geology of Las Cumbres Volcanic Complex, Puebla and Veracruz states, Mexico Sergio Raúl Rodríguez Instituto de Geología, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico, D.F., Mexico Actually at Centro de Ciencias de la Tierra, Universidad Veracruzana, Francisco J. Moreno 207, Col. Zapata, 91090 Jalapa, Veracruz, Mexico. [email protected] ABSTRACT Las Cumbres Volcanic Complex (LCVC) is part of a nearly NE–SW aligned volcanic range formed by the Cofre de Perote extinct volcano to the north, and the active Citlaltépetl volcano to the south. This volcanic range is one of the most striking morphological features in the eastern Trans- Mexican Volcanic Belt. This geological study describes the different volcanic structures and associated deposits forming the LCVC, which was built upon Cretaceous limestones and Tertiary intrusive rocks of syenitic composition. The LCVC geological map includes ten lithostratigraphic volcanic units, some of which include members representing different eruptive periods. The LCVC history has been subdivided in four stages: The fi rst and older stage (~600 ka) consists of thick andesitic lava fl ows that formed the Las Cumbres stratovolcano, with an estimated volume of 200 km3. The second stage (350 – 40 ka) is represented by the collapse of the east fl ank of the Las Cumbres stratovolcano. This eruption completely modifi ed the morphology of the Las Cumbres volcano and produced debris avalanche and pyroclastic deposits, as well as lava fl ows with a minimum volume of 50 km3.
    [Show full text]
  • Geología E Historia Eruptiva De Algunos De Los Grandes Volcanes Activos De México
    Grandes volcanes activos de México 379 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA D GEOL DA Ó VOLUMEN CONMEMORATIVO DEL CENTENARIO E G I I C C TEMAS SELECTOS DE LA GEOLOGÍA MEXICANA O A S TOMO LVII, NÚM. 3, 2005, P. 379-424 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geología e historia eruptiva de algunos de los grandes volcanes activos de México José Luis Macías Departamento de Vulcanología, Instituto de Geofísica, Universidad Nacional Autónoma de México, Del. Coyoacán, 04510, México D. F. [email protected] Resumen La mayor parte de los grandes volcanes de nuestro país se encuentran ubicados en la parte frontal de la Faja Volcánica Transmexicana y en otras zonas volcánicas aisladas. En este trabajo se consideraron algunos de los grandes volcanes, éstos son el volcán de Colima, Nevado de Toluca, Popocatépetl, Pico de Orizaba (Citlaltépetl) y Tacaná. También se incluyó al volcán Chichón debido a su erupción catastrófica de 1982. El edificio actual de estos volcanes, o parte de éste, se ha for- mado en tiempos relativamente recientes; en menos de 2 500 años el volcán de Colima, 16 500 el Pico de Orizaba, 23 000 el Popocatépetl, ~26 000 el Tacaná, y >50 000 el Nevado de Toluca. Los volcanes Colima, Popocatépetl, Pico de Orizaba y Tacaná se encuentran construidos al interior de antiguos cráteres originados por el colapso de edificios ancestrales. Los primeros tres representan los volcanes meridionales activos de cadenas volcánicas orientadas aproximadamente N-S. A pesar de que todos estos edificios volcánicos han sufrido el colapso del edificio volcánico, únicamente en el Pico de Orizaba se han realizado estudios de alteración hidrotermal y estabilidad de pendientes, indispensables para pronosticar las zonas potencialmente peligrosas en el futuro.
    [Show full text]
  • Eruptive Variations During the Emplacement of Cerro Pinto Dome Complex, Puebla, Mexico
    ERUPTIVE VARIATIONS DURING THE EMPLACEMENT OF CERRO PINTO DOME COMPLEX, PUEBLA, MEXICO by Brian William Zimmer A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science In Geology Northern Arizona University May, 2007 Approved: ______________________________ Nancy R. Riggs, Ph.D., Chair ______________________________ Gerardo Carrasco-Nuñez Ph.D. ______________________________ Michael Ort Ph.D. ______________________________ Wendell Duffield Ph.D. ABSTRACT 1 ERUPTIVE VARIATIONS DURING THE EMPLACEMENT OF CERRO PINTO DOME COMPLEX, PUEBLA, MEXICO Brian William Zimmer Cerro Pinto is a Pleistocene rhyolite dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three distinct eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5 km diameter tuff ring that was then followed by emplacement of two domes of approximately the same volume (~ .2 km3). After a brief hiatus in activity, Stage II began with the explosive formation of a second tuff ring to the north of the original ring that was ~ 2.0 km in diameter. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by vulcanian eruptions. The final stage, Stage III, involved the emplacement of a final dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects, however, such as the occurrence of explosive reactivation and explosive dome destruction, are not well documented in rhyolitic structures originating from small, isolated magma chambers.
    [Show full text]
  • Depositional Facies and Migration of the Eruptive Loci for Atexcac Axalapazco (Central Mexico): Implications for the Morphology of the Crater
    REVISTA MEXICANA DE CIENCIAS GEOLÓGICAS Depositional facies and migration of the eruptive lociv. for32, núm.Atexcac 3, 2015, axalapazco p. 377-394 Depositional facies and migration of the eruptive loci for Atexcac axalapazco (central Mexico): implications for the morphology of the crater Mario López-Rojas* and Gerardo Carrasco-Núñez Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla No. 3001, C.P. 76230, Querétaro, Qro., México. * [email protected] ABSTRACT positación de material de las facies fue acompañada por bloques balísticos de diferentes composiciones (basáltica, caliza, andesítica, microdiorítica, Phreatomagmatic explosions produced an alternated stratified juvenil y rocas alteradas). Las velocidades a la que fueron expulsados estos sequence of surge and fallout deposits that formed the Atexcac axala- bloques resultaron ser infrasónicas (~ 0.3 Mach). Las composiciones y pazco in the eastern Mexican Volcanic Belt. We defined six different direcciones de los bloques balísticos muestreados permitieron definir al depositional facies based on variations in grain size, composition and menos tres etapas explosivas que muestran amplias zonas de localización depositional structures. The depositional facies defined in this study de los focos eruptivos dentro del cráter. La evolución de esas probables indicate that the Atexcac axalapazco was formed through phreato- zonas explosivas sugieren la migración y alternancia, y en algunas oca- magmatic, phreatic and magmatic explosions. The fluctuations on siones, simultaneidad de focos explosivos que originaron la morfología the availability of groundwater of a local aquifer allowed intermittent elongada e irregular del cráter actual. interaction with periodic injections of ascending magma bodies and resulted in explosions with different grades of efficiency in fragmen- Palabras clave: volcanes maar, bloques balísticos, migración del foco tation.
    [Show full text]
  • Debris Avalanches and Debris Flows Transformed from Collapses in The
    Journal of Volcanology and Geothermal Research 113 (2002) 81^110 www.elsevier.com/locate/jvolgeores Debris avalanches and debris £ows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico ^ behavior, and implications for hazard assessment L. Capra a;Ã, J.L. Mac|¤as b, K.M. Scott c, M. Abrams d, V.H. Gardun‹o-Monroy e a Instituto de Geograf|¤a, UNAM, Coyoaca¤n 04510, Mexico D.F., Mexico b Instituto de Geof|¤sica, UNAM, Mexico D.F., Mexico c Cascades Volcano Observatory, Vancouver, WA, USA d Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA e Universidad Michoacana de San Nicola¤s de Hidalgo, Morelia, Mexico Received 19 March 2001; received in revised form 14 June 2001; accepted 14 June 2001 Abstract Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocate¤petl, Jocotitla¤n, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E^W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures.
    [Show full text]
  • Evolution of Tuff Ring-Dome Complex
    Zimmer, Riggs, and Carrasco-Nunez, 2010, Evolution of tuff ring-dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt, Bulletin of Volcanology, DOI 10.1007/s00445-010-0391-6 Published by Springer Verlag. The original publication is available at www.springerlink.com (ISSN: 0258-8900) June 29, 2010. Keywords Rhyolite | Dome Complex | Tuff Ring | Phreatomagmatism | Trans-Mexican Volcanic Belt Evolution of tuff ring-dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt Brian W. Zimmer, Nancy R. Riggs and Gerardo Carrasco-Núñez ABSTRACT Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement.
    [Show full text]