Eruptive Variations During the Emplacement of Cerro Pinto Dome Complex, Puebla, Mexico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety
Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety Edited by Thomas J. Casadevall U.S. GEOLOGICAL SURVEY BULLETIN 2047 Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July I991 @mposium sponsored by Air Line Pilots Association Air Transport Association of America Federal Aviation Administmtion National Oceanic and Atmospheric Administration U.S. Geological Survey amposium co-sponsored by Aerospace Industries Association of America American Institute of Aeronautics and Astronautics Flight Safety Foundation International Association of Volcanology and Chemistry of the Earth's Interior National Transportation Safety Board UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.Government Library of Congress Cataloging-in-Publication Data International Symposium on Volcanic Ash and Aviation Safety (1st : 1991 Seattle, Wash.) Volcanic ash and aviation safety : proceedings of the First International Symposium on Volcanic Ash and Aviation Safety I edited by Thomas J. Casadevall ; symposium sponsored by Air Line Pilots Association ... [et al.], co-sponsored by Aerospace Indus- tries Association of America ... [et al.]. p. cm.--(US. Geological Survey bulletin ; 2047) "Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July 1991." Includes bibliographical references. -
Phreatomagmatic Eruptions of 2014 and 2015 in Kuchinoerabujima Volcano Triggered by a Shallow Intrusion of Magma
Journal of Natural Disaster Science, Volume 37,Number 2,2016,pp67-78 Phreatomagmatic eruptions of 2014 and 2015 in Kuchinoerabujima Volcano triggered by a shallow intrusion of magma Nobuo Geshi1, Masato Iguchi2, and Hiroshi Shinohara1 1 Geological Survey of Japan, AIST 2 Disaster Prevention Research Institute, Kyoto University, (Received:Sep 2, 2016 Accepted:Oct.28, 2016) Abstract The 2014 and 2015 eruptions of Kuchinoerabujima Volcano followed a ~15-year precursory activation of the hydrothermal system induced by a magma intrusion event. Continuous heat transfer from the degassing magma body heated the hydrothermal system and the increase of the fluid pressure in the hydrothermal system caused fracturing of the unstable edifice, inducing a phreatic explosion. The 2014 eruption occurred from two fissures that traced the eruption fissures formed in the 1931 eruption. The explosive eruption detonated the hydrothermally-altered materials and part of the intruding magma. The rise of fumarolic activities before the past two activities in 1931-35 and 1966-1980 also suggest activation of the hydrothermal system by magmatic intrusions prior to the eruption. The long-lasting precursory activities in Kuchinoerabujima suggest complex processes of the heat transfer from the magma to the hydrothermal system. Keywords: Kuchinoerabujima Volcano, phreatomagmatic eruption, hydrothermal system, magma intrusion 1. Introduction Phreatic eruptions are generally caused by the rapid extrusion of geothermal fluid from a hydrothermal system within a volcanic edifice (Barberi et al., 1992). Hydrothermal activities and phreatic eruptions are related to magmatic activities directly or indirectly, as the hydrothermal activities of a volcano are basically driven by heat from magma (Grapes et al., 1974). -
Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line*
International Journal of Geosciences, 2014, 5, 1315-1323 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2014.511108 Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line* Boris Chako Tchamabé1#, Takeshi Ohba1, Issa1, Seigo Ooki1, Dieudonné Youmen2, Sebastien Owona2, Gregory Tanyileke3, Joseph Victor Hell3 1Laboratory of Volcanology and Geochemistry, Department of Chemistry, Tokai University, Tokyo, Japan 2Department of Earth Science, Faculty of Sciences, University of Douala, Douala, Cameroon 3Institute of Mining and Geological Research (IRGM), Yaoundé, Cameroon Email: #[email protected] Received 1 August 2014; revised 25 August 2014; accepted 15 September 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m- thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was thought to have been active a million years ago. However, layers stratigraphically separated by the identified paleosoils have been dated to shed lights on its age and to reconstruct the chronology of its past activity. The results showed that the BMM formed through three eruptive cycles: the first ~0.51 Ma ago, the second at ~0.2 Ma and the third ~0.08 Ma B.P. The ages indicate that the BMM maar-forming eruptions were younger than a million years. The findings also suggested that the maar is polygenetic. -
A K-Feldspar Breccia from the MO-Cu Stockwork Deposit in the Galway Granite, West of Ireland
Journal ofthe Geological Sociefy, London, Vol. 145, 1988, pp. 661-667, 4 figs, 2 tables. Printed in Northern Ireland A K-feldspar breccia from the MO-Cu stockwork deposit in the Galway Granite, west of Ireland J. M. DERHAM & M. FEELY Department of Geology, University College, Galway, Ireland Abstrart: A K-feldspar breccia, spatially associated with the MO-Cu mineralization of a stockwork in the Late Caledonian Galway Granite at Mace Head, is described for the first time. Detailed mapping reveals a network of breccia pods and veins over an area of approximately 6000 m’. The breccia is clast-supportedand is composed of sub-angular fragments of perthiticK-feldspar megacrysts (<10cm), granite and microgranodiorite clasts (<25 m) set in a matrix of quartz (<l cm), biotite (<5 cm) and apatite (<3 mm). Field and textural studies indicated that the feldspar megacrysts and granite clasts were brecciated and silicified as they were carried (to the present structural level) by hydrous K- and Si0,-rich fluids. The residue of these fluids crystallized to form the breccia matrix. The formation of the breccia predates the mineralized quartz veins of the MO-Cu stockwork. It is concluded that the breccia formation is genetically related to ore-forming processes in the Galway Granite. Breccia lithologies with a wide spectrum of characteristics of the batholith. It is composed of concentric arcs of are associated worldwide with molybdenumand other metal K-feldspar-rich and K-feldspar-poor varieties of theCarna concentrations especially in mineralized graniteterrains granodiorite (Fig. 1). (Sham 1978; Norman & Sawkins 1985; Scherkenbach et al. 1985;- Warnaars et al. -
(2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. -
MEKE MAAR / Republic of Turkey 1. Name and Adress of the Compiler Of
MEKE MAAR / Republic of Turkey 1. Name and adress of the compiler of this form: Selim ERDOGAN (Hydrogeological Engineer, M.Sc) Ministry of Environment & Forestry., General Directorate of Nature Conservation & National Parks., Wetlands Division Address: Çevre ve Orman Bakanlığı, İstanbul Caddesi No: 98 Phone: 0090 312 3840510 / 3021 Fax: 0090 312 3842476 Email: [email protected] 2. Date this sheet was completed/updated 01.02.2006 3. Country: Republic of Turkey 4. Name of the Ramsar Site Meke Maar 5. Map of Site included A site map of 1:25 000 scale and providing the characteristics indicated in the Annex III of this guideline is included in this package. a) Hard Copy: YES b) Digital (electronic) Format: YES 6. Geographical Coordinates: 33038’28’’ E., 37041’10’’ N 7. General Location: Turkey is separated into 82 administrative districts. As regards area extension, Konya is the largest district of Turkey. It’s also the 4th biggest city with approximately 2 million habitants. Meke Maar is situated in Konya district. The distance of it to the center of the city is approximately 101 km (towards the south of the district). The subdivision in which the Meke Maar is located, is Karapınar and it’s 8 km far from the site. 8. Elevation: 1004 m (minimum – the elevation of the plain on which the maar is situated) 1280 m (maximum – the elevation of the crater of the volcano) 9. Area: 202 hectares 10. Overview: Meke Maar is a volcanic system which contains typically a volcanic rock mass and a crater lake up above. However the system differs from other volcanic systems with its caldera lake surrounding the volcanic mass (See pictures in Annex 2). -
Redalyc.Short-Term Climatic Change in Lake Sediments from Lake Alchichica, Oriental, Mexico
Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Caballero, Margarita; Vilaclara, Gloria; Rodríguez, Alejandro; Juárez, Diana Short-term climatic change in lake sediments from lake Alchichica, Oriental, Mexico Geofísica Internacional, vol. 42, núm. 3, july-september, 2003, pp. 529-537 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56842325 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geofísica Internacional (2003), Vol. 42, Num. 3, pp. 529-537 Short-term climatic change in lake sediments from lake Alchichica, Oriental, Mexico Margarita Caballero1, Gloria Vilaclara2, Alejandro Rodríguez3 and Diana Juárez3 1 Institute of Geophysics, UNAM, México, D. F., México 2 FES-Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Edo. de México. 3 Posgrado de Ciencias del Mar y Limnologia, UNAM, México, D. F., México Received: September 3, 2000; accepted: July 15, 2001 RESUMEN En el centro de México el fenómeno de “El Niño” provoca una reducción en la precipitación. Estas variaciones interanuales en el clima pueden modificar el comportamiento de mezcla-estratificación de los lagos, reflejándose a veces en los sedimentos que se acumulan año con año en sus fondos, sobrepuesto a las tendencias de cambio climático de mayor duración. Presentamos datos preliminares de una evaluación del potencial de los sedimentos del lago de Alchichia para registrar cambios climáticos de períodos medio y corto, analizando diatomeas, calcinación y pigmentos totales en un núcleo de 168 cm de longitud (Alchi-III) recuperado de la orilla NE del lago. -
Bulletin of the Geological Society of America Vol
BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 69, PP. 1071-1073 AUGUST 1953 DEFINITION OF VOLCANIC BRECCIA BY RICHARD V. FISHER Common usage of the term breccia by most usefulness because of these various definitions' geologists limits it to a rock composed of not only in the matter of grade size but, far angular fragments. The lower-size limit of the more importantly, in the matter of genetic fragments is generally set at 2 mm, the limiting implications. Indeed, in the most recent size for granules and larger particles (Went- glossary of geologic terms (American Geological worth, 1922; 1935). Logically it should follow Institute, 1957), volcanic breccia has been that a volcanic breccia is a breccia composed of defined as a "more or less indurated pyroclastic angular volcanic fragments larger than 2 mm. rock (author's italics) consisting chiefly of Norton (1917, p. 162), in his classification of accessory and accidental angular ejecta 32 mm breccias, includes volcanic breccias under the or more in diameter lying in a fine tuff matrix." heading of subaerial breccias, although he does It is commonly recognized that volcanic not set a size limit for the fragments. He breccias may originate in a variety of ways further subdivides volcanic breccias (p. 170) (Anderson, 1933, p. 215-276; Wentworth and into flow breccia, which forms by fragmentation Williams, 1932, p. 32-33; Gilluly, Waters, and of lava during its flow, and tuff breccia "made up Woodford, 1951, p. 606), and apparently most of fragmental products of explosive eruptions." geologists use the term in a broad sense, but in Reynolds (1928, p. -
The Independent Volcanic Eruption Source Parameter Archive
Journal of Volcanology and Geothermal Research 417 (2021) 107295 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Invited Research Article The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): A new observational database to support explosive eruptive column model validation and development Thomas J. Aubry a,b,⁎,SamanthaEngwellc, Costanza Bonadonna d, Guillaume Carazzo e,SimonaScollof, Alexa R. Van Eaton g,IsabelleA.Taylorh,DavidJessope,i,j, Julia Eychenne j,MathieuGouhierj, Larry G. Mastin g, Kristi L. Wallace k, Sébastien Biass l, Marcus Bursik m, Roy G. Grainger h,A.MarkJellinekn, Anja Schmidt a,o a Department of Geography, University of Cambridge, Cambridge, UK b Sidney Sussex College, Cambridge, UK c British Geological Survey, The Lyell Centre, Edinburgh, UK d Department of Earth Sciences, University of Geneva, Geneva, Switzerland e Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France f Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy g U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA h COMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK i Observatoire Volcanologique et Sismologique de Guadeloupe, Institut de Physique du Globe de Paris, F- 97113 Gourbeyre, France j Université Clermont Auvergne, CNRS, IRD, OPGC Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France -
Magmatism and the Baraboo Interval: Breccia, Metasomatism, and Intrusion
MAGMATISM AND THE BARABOO INTERVAL: BRECCIA, METASOMATISM, AND INTRUSION by J.K. Greenbergl. ABSTRACT Breccia consisting of quartzite fragments surrounded by wh ite, vein quartz is known to occur in Wisconsin at several exposures of Baraboo-type metasedimentary rock. These quartzite breccias include those at Rock Springs on the north limb of the Baraboo Syncline, Hamilton Mound. Necedah, Battle Point, Vesper, Waterloo , and McCaslin Mountain. with the exception of McCaslin Mountain in the northeast, all the breccias occur in the central or south-central part of the state. Most of the brecciated quartzite has intrusive contact with plutonic rock. Various types of hydrothe�al alteration (metasomatism) are apparent in the brecciated outcrop and other exposures of quartzite intruded by granitic or dioritic magma . The most common metasomatic features are quartz crystal lined pockets and clay-mica segregations , feldspar porphyroblasts in altered quartz ite , hematite segregations , and quartz-tourmaline veinlets . A present interpretation of the breccias is that they are analogous to the stockwork of quartz veins produced around the upper levels of porphyry- copper mineralized plutons. During mag ma intrusion, the roof rock of quartzite was fractured and soaked in hyd rous granitic fluids. The fluids and their particular effects vary with distance from source plutons . Thus, as in some Wis consin examples quartz veins and breccia grade into pegmatite dikes as an intrusion is approached . Another possible analogue for the Wisconsin examp les are explosive breccias developed in quartzite above volatile-rich appinite intrusions . INTRODUCTION Several exposures of quart zite deposited during the Proterozoic Baraboo tectonic interval (Dott, 1983; Greenberg and Brown , 1983, 1984) contain breccia with a white vein·-quartz matrix. -
Controls on Rhyolite Lava Dome Eruptions in the Taupo Volcanic Zone
Controls on rhyolite lava dome eruptions in the Taupo Volcanic Zone Paul Allan Ashwell A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geological Sciences at the University of Canterbury October 2013 P a g e | II Dedicated to Eva Ashwell P a g e | III View from Ruawahia, across the 1886AD fissure and Wahanga dome towards the Bay of Plenty and White Island (extreme distance, centre left) P a g e | IV Abstract he evolution of rhyolitic lava from effusion to cessation of activity is poorly understood. T Recent lava dome eruptions at Unzen, Colima, Chaiten and Soufrière Hills have vastly increased our knowledge on the changes in behaviour of active domes. However, in ancient domes, little knowledge of the evolution of individual extrusion events exists. Instead, internal structures and facies variations can be used to assess the mechanisms of eruption. Rhyolitic magma rising in a conduit vesiculates and undergoes shear, such that lava erupting at the surface will be a mix of glass and sheared vesicles that form a permeable network, and with or without phenocryst or microlites. This foam will undergo compression from overburden in the shallow conduit and lava dome, forcing the vesicles to close and affecting the permeable network. High temperature, uniaxial compression experiments on crystal-rich and crystal-poor lavas have quantified the evolution of porosity and permeability in such environments. The deformation mechanisms involved in uniaxial deformation are viscous deformation and cracking. Crack production is controlled by strain rate and crystallinity, as strain is localised in crystals in crystal rich lavas. -
How Polygenetic Are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes
Chapter 13 How Polygenetic are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes Boris Chako Tchamabé, Gabor Kereszturi, Karoly Németh and Gerardo Carrasco‐Núñez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/63486 Abstract The increasing number of field investigations and various controlled benchtop and large‐ scale experiments have permitted the evaluation of a large number of processes involved in the formation of maar‐diatreme volcanoes, the second most common type of small‐ volume subaerial volcanoes on Earth. A maar‐diatreme volcano is recognized by a volcanic crater that is cut into country rocks and surrounded by a low‐height ejecta rim com‐ posed of pyroclastic deposits of few meters to up to 200 m thick above the syn‐eruptive surface level. The craters vary from 0.1 km to up to 5 km wide and vary in depth from a few dozen meters to up to 300 m deep. Their irregular morphology reflects the simple or complex volcanic and cratering processes involved in their formation. The simplicity or complexity of the crater or the entire maar itself is usually observed in the stratigraphy of the surrounding ejecta rings. The latter are composed of sequences of successive alternating and contrastingly bedded phreatomagmatic‐derived dilute pyroclastic density currents (PDC) and fallout depositions, with occasional interbedded Strombolian‐derived spatter materials or scoria fall units, exemplifying the changes in the eruptive styles during the formation of the volcano. The entire stratigraphic sequence might be preserved as a single eruptive package (small or very thick) in which there is no stratigraphic gap or signifi‐ cant discordance indicative of a potential break during the eruption.