1 Key Lecture: Volcanological Framework of Costa Rica And

Total Page:16

File Type:pdf, Size:1020Kb

1 Key Lecture: Volcanological Framework of Costa Rica And Key lecture: Volcanological framework of Costa Rica and its volcanic lakes G.E. Alvarado 1, 2, 3, 4, G.J. Soto 1, 2, 4, 5, R. Mora 3, 4, P. Ruiz 6, C. Ramírez 3, 4, A. Vargas 1, J.F. Fernández 7 1: Área de Amenazas y Auscultación Sísmica y Volcánica, Instituto Costarricense de Electricidad 2: Escuela Centroamericana de Geología, Universidad de Costa Rica 3: Centro de Investigaciones en Ciencias Geológicas, Universidad de Costa Rica 4: Red Sismológica Nacional (RSN: UCR-ICE), Costa Rica 5: Terra Cognita Consultores, Costa Rica 6: Rutgers University, New Jersey, USA 7: Laboratorio Químico, Instituto Costarricense de Electricidad Costa Rica is located in a convergent margin, where three plates (Caribbean, Cocos and Nazca) and a microplate (Panama) interact. Hence, there is a complex young geology, since no rocks of pre-Mesozoic age are known. Magmatic provinces can be summarized in: a) ophiolitic complexes of different origins (200-40 Ma), b) volcano-sedimentary basins (100-0 Ma) including several primitive island arcs (125-100 Ma, 75-40 Ma), c) the first in situ arc (29-12 Ma), d) the second volcanic front (7-2 Ma), and the present volcanic front (2-0 Ma) with many eruptive foci, which have developed in three main stages. Orogenic plutonic rocks are Late Oligocene to Pliocene (29-2.1 Ma), mainly Miocene to Pliocene. In the present volcanic front, at least 9 volcanoes are definitively known to have erupted during the last 10 ka, but additionally at least 4 more could have had Holocene activity. Monogenetic vents are both isolated or part of the huge present volcanic massifs, structurally aligned. Arcuate grabens on volcanic summits (often misinterpreted as calderas: e.g., Poás and Tenorio), and horseshoe-shaped sector collapse amphitheaters are present in several volcanoes (e.g., Cacao, Miravalles, Irazú and Turrialba). Volcanoes such as Poás and Rincón de la Vieja have shown periodical eruptions characterized by short-lived (few hours to several days), violent (vulcanian and phreatic) eruptions, or clusters in periods of 10-70 years (Rincón de la Vieja and Irazú), while others clearly erupted once, and after that, have had long periods of inactivity previous to next eruption, from more than one century (i.e., Turrialba, as today), to several centuries (as Barva) to several thousands years (i.e., Congo). Hazard assessments have focused on the historically (after 1700 AD) active volcanoes (Rincón de la Vieja, Arenal, Poás, Irazú and Turrialba), and lesser on dormant volcanoes (Hule and Barva). Such hazard assessments, though, must be forwarded on other volcanoes without historical activity (like Orosí, Tenorio, Platanar and Porvenir), for a better volcanic risk management. At present, only six volcanoes (Rincón de la Vieja, Miravalles, Arenal, Poás, Irazú and Turrialba) have minimum monitoring systems in operation (seismic stations, geochemical and visual monitoring, geodetic control) for observing “normal” activity and unrest, though most monitoring is not in real time (only seismic records in some cases). Some volcanoes that could be classified as dangerous, and then represent an unpredictable potential hazard for future 1 eruptions, remain poorly understood and virtually unmonitored, situation that must be further tackled in a close future. The necessity for a better volcano knowledge in Costa Rica is mainly because several volcanoes are near densely populated urban areas (>1.5 million people), and also because they have become major destinations for ecologically-curious tourists from throughout the world, who visit the volcanoes, their rain forests, volcanic lakes, hot springs and other related attractions. For instance, about 4.2 x 105 tourists (43% foreign) visit the Costa Rican volcanoes every year. Poás, Irazú and Arenal are the top three spots for tourism. Other volcano-related products have also a tremendous positive impact in Costa Rican society and economy, as the exploitation of aggregates for construction, huge volcanic aquifers, and geothermal energy (up to 15% of the total electrical power produced in the country). Costa Rica has at least 5% of the hot hyperacidic lakes in active volcanoes of the world: Poás (21- 84° C, pH 0-1.8), and Rincón de la Vieja (31-47° C, pH 0.2-1.2), with ever changing colors from milky white to mustard or aquamarine. There are also cold crater lakes, as Irazú presently (13-15° C, pH 3-5) which has been warmer previously (in 1991-92 was 25-29° C, pH 3.0-3.5) due to a mild fumarolic input. Irazú lake has shown as well, drastic changes of colors varying from blood-red, to green to mustard. Other cold crater lakes are Santa María, Tenorio, Chato, Botos, Barva and Danta, located at the summit of dormant volcanoes. There are also lakes residing into the Holocene maars of Hule and Río Cuarto, which have presented overturning events, with sudden changes in their color to reddish, cyclically repeated through the last decades, causing massive fish deaths. Many other lakes in volcanic environments though, have been formed by damming by lava flows, lahars, debris avalanches or other geological processes, as for instance Los Jilgueros, Peje, Cedeño, Copey and Bonilla, among several others. 2 Hydrogeochemical study of Azorean lakes: monitoring active volcanoes P. Antunes , J. Cruz, R. Coutinho, F. Pedro, J. Fontiela Centro Vulcanologia e Avaliação de Riscos Geológicos (CVARG), University of the Azores [email protected] The Azores archipelago is located in the North Atlantic Ocean, about 1600 km from Europe and 2200km from North America, between the latitudes 37º-40ºN and longitudes 25º-31º W. Made by nine islands and several islets of volcanic origin, the archipelago occupies a flat area of approximately 2332 km2 and presents, in general, an WNW-ESE orientation. In the majority of the islands numerous lakes can be observed, whose physical characteristics are conditioned by the specific geologic setting. However, these water bodies are located predominantly inside explosion craters. A total of 88 surface lakes are distributed throughout the islands of São Miguel, Terceira, Faial, Flores and Corvo as well an 2 small cave lakes (Graciosa and Terceira islands). The total water volume stored in the crater lakes is about 90x106 m3, 93% of which in São Miguel island. The lakes on Flores Island contribute with 5% of the total water and the remaining 2% correspond to the lakes located in Terceira, Faial and Corvo islands. Several depth profiles was made between 2002 and 2007 in 6 lakes in São Miguel island, 1 lake in Terceira and Graciosa Island (caves lakes), 6 lakes in Pico Island and 5 lakes in Flores island. In general, sampled water are cold (5.2 ºC – 23.5 ºC) and correspond mainly to sodium chloride and sodium bicarbonate types. The water from Furna do Enxofre cave lake (Graciosa) is mainly from the magnesian bicarbonate type. Some of these lakes are eutrophic and in summer, water density stratification of thermal origin appears, surface pH reaches 10 and the hipolimnion is slightly acid, with the minimum value of 5.93. During this period, the bottom of the lakes shows a maximum concentration of CO2 (80 mg/L in crater lakes and 456 mg/L in Furna do Enxofre lake), and in some cases is coincident with a slight increase of the electric conductivity. Results suggest, in general, three different mineralization processes that occur in these systems: (1) caves lakes of Furnas do Enxofre, Algar do Carvão (Terceira Island) and Furnas lake (São Miguel Island), characterize a group in which the dissolution of silicate minerals controls water chemistry. This process is related with the water contamination by volcanic fluids, situation that is obvious in Furna do Enxofre lake. (2) The multivariate analysis suggests a second group of lakes, without dominant mineralization process [Sete Cidades, Santiago Congro (São Miguel Island), Funda, and Negra lakes (Flores island)]. Nevertheless, water are influenced by sea salts of marine transport, as well as by water-rock interaction. (3) The third group consists of small lakes systems from Pico Island, Flores Island, and Corvo island, except the Fogo Lake (São Miguel Island). This group of lakes have the less mineralized water and the mechanism that control the chemical composition is related, mainly, with contamination of marine salts. 3 Origin of fish kill events at Lake Averno, Campi Flegrei, Italy R. Avino, S. Caliro, G. Chiodini, C. Minopoli Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli, Osservatorio Vesuviano, Naples, Italy Lake Averno is situated in the homonymous crater in the northwestern sector of the Campi Flegrei active volcanic system in Campania region, Italy. The lake was affected in the past by a series of a fish kill events, the last of which occurred in February 2005. The origin of the event was investigated by means of a geochemical survey performed few days after the occurrence of the phenomenon. The survey revealed that the lake water was unstratified chemically and isotopically as a result of lake overturn. In fact, in contrast to the February 2005 results, data collected in October 2005, shows the Lake Averno to be stratified, with an oxic epilimnion (surface to 6 m) and an anoxic hypolimnion (6 m to lake bottom at about 33 m). Chemical and isotopic compositions of Lake Averno waters suggest an origin by mixing of shallow waters with a Na– Cl hydrothermal component coupled with an active evaporation process. The isotopic composition of Dissolved Inorganic Carbon, as well as the composition of the non-reactive dissolved gas species again supports the occurrence of this mixing process. Decreasing levels of SO4 and increasing levels of H2S and CH4 contents in lake water with depth, strongly suggests that anaerobic bacterial processes are occurring through decomposition of organic matter under anoxic conditions in the sediment and in the water column.
Recommended publications
  • Una Teorãła Sobre El Origen De Los Peces De Xiloã€
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Investigations of the Ichthyofauna of Nicaraguan Lakes Papers in the Biological Sciences 1976 Una teoría sobre el origen de los peces de Xiloà Jaime Villa Cornell University Follow this and additional works at: https://digitalcommons.unl.edu/ichthynicar Part of the Aquaculture and Fisheries Commons Villa, Jaime, "Una teoría sobre el origen de los peces de Xiloà" (1976). Investigations of the Ichthyofauna of Nicaraguan Lakes. 12. https://digitalcommons.unl.edu/ichthynicar/12 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Investigations of the Ichthyofauna of Nicaraguan Lakes by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in INVESTIGATIONS OF THE ICHTHYOFAUNA OF NICARAGUAN LAKES, ed. Thomas B. Thorson (University of Nebraska-Lincoln, 1976). Copyright © 1976 School of Life Sciences, University of Nebraska-Lincoln. Reprinted from ENCUENTRO: REv. UNIV. CENTROAMERICANA 1(4):202-214, July-Aug., 1968. J.lme VIII. Una leoria sobre el orlgen• de los peces de Xiloa 1.- INTRODUCCION A finales de 1965 v en conexion con estudios en curso sobre la herpetolo­ g(a nicaragiiense colec te una pequena serie de peces de la Laguna de Xiloa que revela- ron aspectos interesantes y me indujeron a realizar colecciones extensivas en toda la laguna; estas colecciones se realizaron durante 1966-68 y cons tan de varios cien­ tos de ejemplares, depositados en la Universidad de Costa Rica y en mi coleccion particular. El material acumulado durante estos anos y las notas tomadas durante todo el tiempo en que se realizaron han sido suficientes para permitir una serie de conclusiones en diversos aspectos, algunas de las cuales han sido ya publicadas 0 se encuentran en preparacion.
    [Show full text]
  • THE CASE of TURRIALBA VOLCANO (COSTA RICA) Revista Geológica De América Central, Núm
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Bragado-Massa, Esperanza; Marchamalo, Miguel; Rejas, Juan G.; Bonatti, Javier; Martínez-Frías, Jesús MONITORING HYDROTHERMAL ALTERATION IN ACTIVE VOLCANOES USING REMOTE SENSING: THE CASE OF TURRIALBA VOLCANO (COSTA RICA) Revista Geológica de América Central, núm. 51, 2014, pp. 69-82 Universidad de Costa Rica San José, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=45433964003 Revista Geológica de América Central, ISSN (Printed Version): 0256-7024 [email protected] Universidad de Costa Rica Costa Rica How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Revista Geológica de América Central, 51: 69-82, 2014 DOI: 10.15517/rgac.v51i1.16848 ISSN: 0256-7024 MONITORING HYDROTHERMAL ALTERATION IN ACTIVE VOLCANOES USING REMOTE SENSING: THE CASE OF TURRIALBA VOLCANO (COSTA RICA) MONITOREO DE LA ALTERACIÓN HIDROTERMAL EN VOLCANES ACTIVOS MEDIANTE TELEDETECCIÓN: EL CASO DEL VOLCÁN TURRIALBA (COSTA RICA) Esperanza Bragado-Massa1, Miguel Marchamalo1*, Juan G. Rejas1,2, Javier Bonatti3, Jesús Martínez-Frías4 & Rubén Martínez1 1Departamento de Ingeniería y Morfología del Terreno. Universidad Politécnica de Madrid, Spain 2INTA. Instituto Nacional de Técnica Aeroespacia, Spain 3Centro de Investigación en Ciencias Atómicas, Nucleares y Moleculares (CICANUM). Universidad de Costa Rica 4Instituto de Geociencias, IGEO (CSIC-UCM), Facultad de Ciencias Geológicas C/ José Antonio Novais, 2, Ciudad Universitaria 28040 Madrid, Spain *Corresponding author: [email protected] (Recibido: 28/02/2014; aceptado: 7/10/2014) ABSTRACT: Hydrothermal alteration was analyzed in the active Turrialba Volcano, Central Volcanic Range, Costa Rica.
    [Show full text]
  • Amenaza Volcánica Del Área De Managua Y Sus Alrededores (Nicaragua)”
    Parte II.3: Amenaza volcánica 127 Parte II.3 Guía técnica de la elaboración del mapa de “Amenaza volcánica del área de Managua y sus alrededores (Nicaragua)” 128 Parte II.3: Amenaza volcánica Índice 1 Resumen.......................................................................................................................130 2 Lista de figuras y tablas...............................................................................................131 3 Introducción.................................................................................................................132 4 Objetivos.......................................................................................................................132 5 Metodología.................................................................................................................133 5.1 Recopilación de los datos y análisis de los peligros volcánicos existentes............133 5.1.1 Complejo Masaya.............................................................................................133 5.1.1.1 Flujos de lava..............................................................................................134 5.1.1.2 Caída de tefra..............................................................................................134 5.1.1.3 Flujos piroclásticos y Oleadas piroclásticas...............................................135 5.1.1.4 Flujos de lodo y detritos (lahares)..............................................................135 5.1.1.5 Emanaciones de gas....................................................................................136
    [Show full text]
  • Geohazard Supersites and Natural Laboratories Initiative
    Versión 1.0, 14 de octubre de 2015 www.earthobservations.org/gsnl.php Geohazard Supersites and Natural Laboratories Initiative A.1 Proposal Title: Volcano-tectonic Geohazard Interaction within the Nicaraguan Depression Volcanoes: Cosiguina, San Cristóbal, Telica, Cerro Negro, Momotombo, Península de Chiltepe, Masaya and Concepción A.2 Supersite Coordinator Email (Organization only) [email protected] Name: Iris Valeria Surname: Cruz Martínez Position: Director General of Geology and Geophysics Personal website: <In case a personal web page does not exist, please provide a CV below this table> Institución: Instituto Nicaragüense de Estudios Territoriales-INETER- Nicaragua Type of institution Government (Government, Education, other): The institution's web address: https://www.ineter.gob.ni/ Address: Front of Solidarity Hospital City: Managua Postal Code/Postal Code: 2110 Managua, Nicaragua Country: Nicaragua Province, Territory, State or Managua County: Phone number: Tel. +505-22492761 Fax +505-22491082 1 Versión 1.0, 14 de octubre de 2015 A.3 Core Supersite Team Email (Organization only) [email protected] Name: Federico Vladimir Surname: Gutiérrez Corea Position: Director of the Nicaraguan Institute of Territorial Studies-INETER- Nicaragua Personal website: http://www.vlado.es/ http://uni.academia.edu/FedericoVLADIMIRGutierrez/Curriculu mVitae Institution: Nicaraguan Institute of Territorial Studies-INETER-Nicaragua Type of institution Government (Government, Education, others): Institution's web address: https://www.ineter.gob.ni/
    [Show full text]
  • INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio Regional Del
    INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN GEOCIENCIAS APLICADAS Estudio regional del Campo Volcánico de la Cuenca Serdán – Oriental a través de métodos potenciales. Tesis que presenta Nereida de la Paz Pérez Méndez Para obtener el grado de Maestra en Geociencias Aplicadas Director de Tesis Dr. Vsevolod Yutsis San Luis Potosí, SLP. Diciembre de 2017 2 Créditos Institucionales Esta tesis fue elaborada en la División de Geociencias Aplicadas del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección del Dr. Vsevolod Yutsis Durante la realización del trabajo el autor recibió una beca académica del Consejo Nacional de Ciencia y Tecnología (No. 596331) y del Instituto Potosino de Investigación Científica y Tecnológica, A. C. ii A mis padres y hermanos por su apoyo, a Rob, por su infinita ayuda y amistad, a Gerardo por su ánimo y cariño en mis días grises, a mi familia potosina, Lupita Méndez, Juán Guerrero, Norma, J Carlos y Janabanana por quienes siempre me sentí querida y cuidada. iv Agradecimientos A mis Padres por su amor y apoyo incondicional a lo largo de toda mi vida, son mis pilares y mi fuerza. Mis hermanos Nora, Mabel, Teresa y Emmanuel quienes me consienten e inspiran a seguir adelante. A mi amigo y compañero el Mtro. Alejandro Cruz Palafox por su paciencia y ayuda al responder a mis infinitas preguntas y dudas, y por compartir largas jornadas de trabajo conmigo. A Angelina Candia, Rosaira Cruz y Claudia Rigel que siempre estuvieron para mí en todo este proceso, su amistad y conocimiento me motivaron a diario.
    [Show full text]
  • Late Pleistocene to Holocene Temporal Succession and Magnitudes of Highly-Explosive Volcanic Eruptions in West-Central Nicaragua ⁎ S
    Journal of Volcanology and Geothermal Research 163 (2007) 55–82 www.elsevier.com/locate/jvolgeores Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua ⁎ S. Kutterolf a, , A. Freundt a,b, W. Pérez a, H. Wehrmann a, H.-U. Schmincke a,b a SFB 574 at Kiel university/ IFM-GEOMAR, Wischhofstr. 1-3, Gebäude 8A/213, 24148 Kiel, Germany b IFM-GEOMAR/ Research Division 4/Dynamics of the Ocean Floor, Wischhofstr. 1-3, Gebäude 8E/208, 24148 Kiel, Germany Received 2 June 2006; received in revised form 20 February 2007; accepted 23 February 2007 Available online 21 March 2007 Abstract The stratigraphic succession of widespread tephra layers in west-central Nicaragua was emplaced by highly explosive eruptions from mainly three volcanoes: the Chiltepe volcanic complex and the Masaya and Apoyo calderas. Stratigraphic correlations are based on distinct compositions of tephras. The total tephras combine to a total on-shore volume of about 37 km3 produced during the last ∼60 ka. The total erupted magma mass, including also distal volumes, of 184 Gt (DRE) distributes to 84% into 9 dacitic to rhyolitic eruptions and to 16% into 4 basaltic to basaltic–andesitic eruptions. The widely dispersed tephra sheets have up to five times the mass of their parental volcanic edifices and thus represent a significant albeit less obvious component of the arc volcanism. Eruption magnitudes (M=log10(m)−7 with m the mass in kg), range from M=4.1 to M=6.3. Most of the eruptions were dominantly plinian, with eruption columns reaching variably high into the stratosphere, but minor phreatomagmatic phases were also involved.
    [Show full text]
  • DRAFT Environmental Profile the Republic Costa Rica Prepared By
    Draft Environmental Profile of The Republic of Costa Rica Item Type text; Book; Report Authors Silliman, James R.; University of Arizona. Arid Lands Information Center. Publisher U.S. Man and the Biosphere Secretariat, Department of State (Washington, D.C.) Download date 26/09/2021 22:54:13 Link to Item http://hdl.handle.net/10150/228164 DRAFT Environmental Profile of The Republic of Costa Rica prepared by the Arid Lands Information Center Office of Arid Lands Studies University of Arizona Tucson, Arizona 85721 AID RSSA SA /TOA 77 -1 National Park Service Contract No. CX- 0001 -0 -0003 with U.S. Man and the Biosphere Secretariat Department of State Washington, D.C. July 1981 - Dr. James Silliman, Compiler - c /i THE UNITEDSTATES NATION)IL COMMITTEE FOR MAN AND THE BIOSPHERE art Department of State, IO /UCS ria WASHINGTON. O. C. 2052C An Introductory Note on Draft Environmental Profiles: The attached draft environmental report has been prepared under a contract between the U.S. Agency for International Development(A.I.D.), Office of Science and Technology (DS /ST) and the U.S. Man and the Bio- sphere (MAB) Program. It is a preliminary review of information avail- able in the United States on the status of the environment and the natural resources of the identified country and is one of a series of similar studies now underway on countries which receive U.S. bilateral assistance. This report is the first step in a process to develop better in- formation for the A.I.D. Mission, for host country officials, and others on the environmental situation in specific countries and begins to identify the most critical areas of concern.
    [Show full text]
  • Kratzmann Et Al. (2004)
    Reconnaissance Field and Geochemical Analyses of Turrialba Volcano, Costa Rica David Kratzmann1, Ronald Cole2, Jeffrey Thomas2, and Melissa Kammerer2 1 School of Earth Sciences, University of Tasmania, Hobart, Tasmania 7001; 2 Department of Geology, Allegheny College, Meadville, PA 16335, U.S.A. ([email protected]) Published in: Dynamic Earth: past, present and future - Abstracts, Geological Society of Australia, v. 73, p. 276, 2004 Study Area and Tectonic Setting Geochemistry and Regional Implications Basalt There is a progressive southward change along the Central American 8 Sample with adakite characteristics OIB (Hawaii) ) 100 volcanic arc (CAVA) from a depleted mantle source and stronger slab % influence beneath El Salvador and Nicaragua (low La/Yb and high t 6 h E-MORB g Shoshonite Ba/La) (Carr et al. 1990; Reagan et al. 1994; Herrstrom et al. 1995) to i e ine 10 4 alkal an enriched mantle source and a weak slab influence beneath central w alc- N-MORB ( -K c Turrialba Area shown below High O Costa Rica (higher La/Yb, lower Ba/La) (Reagan and Gill, 1989; 2 Volcano line K ka 2 Calc-al 1 Leeman et al. 1994; Herrstrom et al. 1995). In addition, Pb isotope data e t i Basaltic Andesite show that the enriched mantle component beneath central Costa Rica is r Tholeiite d 0 adakite characteristics n similar to the Galapagos plume signature (Abratis and Worner, 2001). o 100 h ) C / % 12 e l t T r Central American a p Guatemala El Salvador Nicaragua Costa Rica h c e h lkalin 10 y A m g 10 B a Trachyte Volcanic Arc i a n t s a 160 ra a d line Filled symbols are data of this study; open symbols e ka c lt e ubal h i s S S (CAVA) y c it are data from Carr (2002) and Patino et al.
    [Show full text]
  • Volcano-Seismology of the Irazú-Turrialba Volcanic Complex
    Master of Sciences in Earth sciences Volcano-seismology of the Irazú-Turrialba volcanic complex Contact persons: Prof. Matteo Lupi, Dr. Francisco J. Pacheco, Elliot Amir Jiwani-Brown Context The active hydrothermal system of the Irazú Turrialba Volcanic Complex (ITVC), Costa Rica plays host to frequent seismic energy from tectonically driven sources, regional seismicity and by active magma migration. All of this occurs within the diverse and unique volcanic setting of two volcanoes linked by possibly similar magmatic sources but varying in physical state, Irazú being a closed system, and the openly venting Turrialba volcano. A network of 20 seismic stations deployed around the ITVC is combined with the current OVSICORI and RSN stations to accurately monitor the seismicity of this system. The network will help to investigate and compare the seismic activity occurring across the ITVC and surrounding regions. Objectives and Methods The objective of this study is to shed light on the seismic sequences taking place at the ITVC and to characterise them in space and in time. The ITVC features a large variety of seismic signals including VT, LP, tornillos, and tremor events [Eyre et al., 2013; Zecevic et al., 2016]. Some of these signals are precursors of volcanic eruptions often occurring at the Turrialba volcanic complex or associated to surface deformation processes (i.e. landslides) driven by intrusive dynamics taking place in the near subsurface. The candidate will use classical and non-conventional seismic methods to study fluid transport processes occurring at shallow and greater depths and to discuss volcanic processes in a broad geological context. Literature Eyre, T.
    [Show full text]
  • Volcanic Activity in Costa Rica in 2012 Official Annual Summary
    Volcanic Activity in Costa Rica in 2012 Official Annual Summary Turrialba volcano on January 18 th , 2012: central photo, the 2012 vent presents flamme due to the combustion of highly oxidant magmatic gas (photo: J.Pacheco). On the right, ash emission by the 2012 vent at 4:30am the same day (photo: G.Avard).On the left, incandescence is visible since then (photo: G.Avard 2-2-2012, 8pm). Geoffroy Avard, Javier Pacheco, María Martínez, Rodolfo van der Laat, Efraín Menjivar, Enrique Hernández, Tomás Marino, Wendy Sáenz, Jorge Brenes, Alejandro Aguero, Jackeline Soto, Jesus Martínez Observatorio Vulcanológico y Sismológico de Costa Rica OVSICORI-UNA 1 I_ Introduction At 8:42 a.m. on September 5 th , 2012, a Mw = 7.6 earthquake occurred 20 km south of Samara, Peninsula de Nicoya, Guanacaste. The maximum displacement was 2.5 m with a maximum vertical motion about 60 cm at Playa Sa Juanillo (OVSICORI Report on September 11 th , 2012). The fault displacement continued until the end of September through postseismic motions, slow earthquakes, viscoelastic response and aftershocks (> 2500 during the first 10 days following the Nicoya earthquake). The seismicity spread to most of the country (Fig.1) Figure 1: Seismicity in September 2012 and location of the main volcanoes. Yellow star: epicenter of the Nicoya seism on September 5 th , 2012 (Mw = 7.6). White arrow: direction of the displacement due to the Nicoya seism (map: Walter Jiménez Urrutia, Evelyn Núñez, y Floribeth Vega del grupo de sismología del OVSICORI-UNA). Regarding the volcanoes, the seism of Nicoya generated an important seismic activity especially in the volcanic complexes Irazú-Turrialba and Poás as well as an unusual seismic activity mainly for Miravalles, Tenorio and Platanar-Porvenir.
    [Show full text]
  • (Aves: Turdidae) Distribution, First Record in Barva Volcano, Costa Rica
    BRENESIA 73-74: 138-140-, 2010 Filling the gap of Turdus nigrescens (Aves: Turdidae) distribution, first record in Barva Volcano, Costa Rica Luis Sandoval1 & Melania Fernández1,2 1. Escuela de Biología, Universidad de Costa Rica. 2060. Costa Rica. [email protected] 2. Jardín Botánico Lankester, Cartago, Costa Rica. (Received: October 22, 2009) KEY WORDS. Sooty Thrush, Barva Volcano, new distribution The Sooty Thrush (Turdus nigrescens) is an glacial periods (Pleistocene epoch) the lowest endemic bird species from Costa Rica and western limit of highland vegetation descended, creating Panama highlands (Ridgely & Gwynne Jr.1989, a continuous belt of suitable habitat for highland Stiles & Skutch 1989). It inhabits open areas, forest birds between Central Volcanic and Talamanca edges and páramo in the Central Volcanic and mountain ranges (Barrantes in press). This Talamanca mountain ranges above 2500 m (Stiles likely allowed birds to move between these two & Skutch 1989, Garrigues & Dean 2007). The mountains ranges. Although evidence of the Central Volcanic mountain range represents an presence of Sooty Thrush in Barva Volcano during east-west oriented row of about 80 km of volcanic this period lacks, the presence of other highland cones, formed by Poás (2708 m), Barva (2900 m), bird species with similar habitat requirements Irazú (3432 m) and Turrialba (3340 m) volcanoes of those of the Sooty Thrush (e.g, Catharus (Alvarado-Induni 2000). gracilirostris, Pezopetes capitalis and Basileuterus This robin is very abundant along all its range melanogenys) in the area suggests that this species distribution, but it has not been previously reported likely also occurred in this massif (Wolf 1976, Stiles in the Barva Volcano, a volcanic massif in the & Skutch 1989, Barrantes 2005, Chavarria 2006, Central Volcanic mountain range (Chavarría 2006, Garrigues & Dean 2007).
    [Show full text]
  • Mechanical Instability Quantification of Slopes at Cofre De Perote Volcano 187 Boletín De La Sociedad Geológica Mexicana
    Mechanical instability quantification of slopes at Cofre de Perote volcano 187 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 60, NÚM. 2, 2008, P. 187-201 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Mechanical instability quantification of slopes at Cofre de Perote volcano, eastern Mexico Rodolfo Díaz Castellón1,*, Gerardo Carrasco Núñez2, Alfonso Álvarez-Manilla Aceves1,3 1Posgrado en Ciencias de la Tierra Centro de Geociencias Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230 2Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230. 3Dirección de Estudios de Posgrado de la Facultad de Ingeniería, Universidad Autónoma de Querétaro, Ciudad Universitaria, Cerro de las Campanas s/n, Querétaro, Qro. 76010 *[email protected]. Abstract Cofre de Perote (CP) volcano is located at the eastern end of the Trans-Mexican Volcanic Belt (TMVB) at 19°30’ Lat N, 97°10’ Long W. At a height of 4,282 m.a.s.l, it comprises one of the most massive structures within the Citlaltépetl – Cofre de Perote volcanic range (CCPVR), which constitutes an important physiographic barrier that separates the central altiplano, also known as Serdán Oriental, from the coastal plains of the Gulf of Mexico. This massive structure has repeatedly collapsed, and at least two of the collapse events occurred long after activity ceased, suggesting that even extinct volcanoes may pose an important hazard to nearby populated areas. In the present work, volcanic instability is approached through both quantitative and descriptive methods that include combined numerical analysis of limit equilibrium, calculated with Bishop’s modified method, and finite element analysis.
    [Show full text]