FOS Approved Customers & Suppliers & Retailers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Anchovy Engraulis Encrasicolus (Linnaeus, 1758) From
European anchovy Engraulis encrasicolus (Linnaeus, 1758) from the Gulf of Annaba, east Algeria: age, growth, spawning period, condition factor and mortality Nadira Benchikh, Assia Diaf, Souad Ladaimia, Fatma Z. Bouhali, Amina Dahel, Abdallah B. Djebar Laboratory of Ecobiology of Marine and Littoral Environments, Department of Marine Science, Faculty of Science, University of Badji Mokhtar, Annaba, Algeria. Corresponding author: N. Benchikh, [email protected] Abstract. Age, growth, spawning period, condition factor and mortality were determined in the European anchovy Engraulis encrasicolus populated the Gulf of Annaba, east Algeria. The age structure of the total population is composed of 59.1% females, 33.5% males and 7.4% undetermined. The size frequency distribution method shows the existence of 4 cohorts with lengths ranging from 8.87 to 16.56 cm with a predominance of age group 3 which represents 69.73% followed by groups 4, 2 and 1 with respectively 19.73, 9.66 and 0.88%. The VONBIT software package allowed us to estimate the growth parameters: asymptotic length L∞ = 17.89 cm, growth rate K = 0.6 year-1 and t0 = -0.008. The theoretical maximum age or tmax is 4.92 years. The height-weight relationship shows that growth for the total population is a major allometry. Spawning takes place in May, with a gonado-somatic index (GSI) of 4.28% and an annual mean condition factor (K) of 0.72. The total mortality (Z), natural mortality (M) and fishing mortality (F) are 2.31, 0.56 and 1.75 year-1 respectively, with exploitation rate E = F/Z is 0.76 is higher than the optimal exploitation level of 0.5. -
The Influence of Depth on Mercury Levels in Pelagic Fishes and Their Prey
The influence of depth on mercury levels in pelagic fishes and their prey C. Anela Choya,1, Brian N. Poppb, J. John Kanekoc, and Jeffrey C. Drazena aDepartment of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI 96822; bDepartment of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822; and cPacMar Inc., 3615 Harding Avenue, Suite 409, Honolulu, HI 96816 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved June 23, 2009 (received for review January 21, 2009) Mercury distribution in the oceans is controlled by complex bio- temperature, algal concentrations) (11), and perhaps most com- geochemical cycles, resulting in retention of trace amounts of this monly, size (12). Despite extensive measurements of mercury in metal in plants and animals. Inter- and intra-specific variations in both the environment and biota, it is still not known why, mercury levels of predatory pelagic fish have been previously irrespective of size, some fish species have elevated mercury linked to size, age, trophic position, physical and chemical envi- concentrations and others do not. ronmental parameters, and location of capture; however, consid- Biogeochemical studies detailing the movement of mercury erable variation remains unexplained. In this paper, we focus on between air, land, and ocean reservoirs have offered insight into differences in ecology, depth of occurrence, and total mercury where mercury may be distributed in the marine environment levels in 9 species of commercially important -
Anatomical Considerations of Pectoral Swimming in the Opah, Lampris Guttatus Author(S): Richard H
Anatomical Considerations of Pectoral Swimming in the Opah, Lampris guttatus Author(s): Richard H. Rosenblatt and G. David Johnson Source: Copeia, Vol. 1976, No. 2 (May 17, 1976), pp. 367-370 Published by: American Society of Ichthyologists and Herpetologists Stable URL: http://www.jstor.org/stable/1443963 Accessed: 02/06/2010 14:24 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asih. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Ichthyologists and Herpetologists is collaborating with JSTOR to digitize, preserve and extend access to Copeia. http://www.jstor.org ICHTHYOLOGICAL NOTES 367 (1936). -
Joey Morrison Ethnographic Fieldschool
Joey Morrison Ethnographic Fieldschool - Peru Dr. Michelle Grocke 7/13/18 Local Knowledge and Global Trends: Fishing, Climate, and Industrialization on the Peruvian Coast Ethnographic research and the discipline-specific methods such as pile sorting and free listing are not only the cornerstone of the field of anthropology, but they complement the research of numerous disciplines ranging from geography to economics and served as the cornerstone for the field of anthropology. Although there has been collaboration in the past, currently, the incorporation of and the collaboration with “ethno” disciplines are on the rise. These schools of thought effectively combine ethnographic methods and anthropological analytical lenses to their long-established discipline-specific methods, resulting in “ethnohistory” or “ethnoecology.” The benefits of these mergers are powerful. Ethnographic methods and the resulting analyses offers intimate, lived- experience, grassroots glimpses into intricate, complex, and previously impenetrable cultural domains. Consequently, these interdisciplinary approaches not only bear the potential to revolutionize the ways in which research disciplines ask questions and approach problems, but they can enhance the robusticity of a research project, complement existing literature, and even dispel assumptions. My research question, in many ways, emerged from assumptions and the potential for ethnography to dispel problematic generalizations will emerge throughout this ethnography. I aim to demonstrate the ways in which ethnographic accounts can enhance and provide a more detailed image into the complexities of climate change and global development at local levels. Due to the myriad ways in which the lives of coastal fisherman are intimately enmeshed with the natural world, in this case, the coast, the lived-experience of these fishermen can yield powerful insights into how global climatic and macroeconomic trends are actually being experienced on a local scale. -
XIV. Appendices
Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS. -
The Peruvian Anchoveta Case
Coupled Ecosystem/Supply Chain Modelling of Fish Products from Sea to Shelf: The Peruvian Anchoveta Case Angel Avadı´1,2*, Pierre Fre´on2, Jorge Tam3 1 Universite´ Montpellier 2– Sciences et Techniques, Montpellier, France, 2 Institut de Recherche pour le De´veloppement (IRD), UMR212 EME IFREMER/IRD/UM2, Se`te, France, 3 Instituto del Mar del Peru´ (IMARPE), Callao, Peru Abstract Sustainability assessment of food supply chains is relevant for global sustainable development. A framework is proposed for analysing fishfood (fish products for direct human consumption) supply chains with local or international scopes. It combines a material flow model (including an ecosystem dimension) of the supply chains, calculation of sustainability indicators (environmental, socio-economic, nutritional), and finally multi-criteria comparison of alternative supply chains (e.g. fates of landed fish) and future exploitation scenarios. The Peruvian anchoveta fishery is the starting point for various local and global supply chains, especially via reduction of anchoveta into fishmeal and oil, used worldwide as a key input in livestock and fish feeds. The Peruvian anchoveta supply chains are described, and the proposed methodology is used to model them. Three scenarios were explored: status quo of fish exploitation (Scenario 1), increase in anchoveta landings for food (Scenario 2), and radical decrease in total anchoveta landings to allow other fish stocks to prosper (Scenario 3). It was found that Scenario 2 provided the best balance of sustainability improvements among the three scenarios, but further refinement of the assessment is recommended. In the long term, the best opportunities for improving the environmental and socio-economic performance of Peruvian fisheries are related to sustainability-improving management and policy changes affecting the reduction industry. -
Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss. -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc. -
A Report on the Guano-Producing Birds of Peru [“Informe Sobre Aves Guaneras”]
PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 197 A report on the guano-producing birds of Peru [“Informe sobre Aves Guaneras”] July 2018* *Original manuscript completed1942 William Vogt1 with translation and notes by David Cameron Duffy2 1 Deceased Associate Director of the Division of Science and Education of the Office of the Coordinator in Inter-American Affairs. 2 Director, Pacific Cooperative Studies Unit, Department of Botany, University of Hawai‘i at Manoa Honolulu, Hawai‘i 96822, USA PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Pacific Cooperative Studies Unit, Department of Botany, University of Hawai‘i at Manoa 3190 Maile Way, St. John 408, Honolulu, Hawai‘i 96822, USA Recommended Citation: Vogt, W. with translation and notes by D.C. Duffy. 2018. A report on the guano-producing birds of Peru. Pacific Cooperative Studies Unit Technical Report 197. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 198 pages. Key words: El Niño, Peruvian Anchoveta (Engraulis ringens), Guanay Cormorant (Phalacrocorax bougainvillii), Peruvian Booby (Sula variegate), Peruvian Pelican (Pelecanus thagus), upwelling, bird ecology behavior nesting and breeding Place key words: Peru Translated from the surviving Spanish text: Vogt, W. 1942. Informe elevado a la Compañia Administradora del Guano par el ornitólogo americano, Señor William Vogt, a la terminación del contracto de tres años que con autorización del Supremo Gobierno celebrara con la Compañia, con el fin de que llevara a cabo estudios relativos a la mejor forma de protección de las aves guaneras y aumento de la produción de las aves guaneras. -
Taxonomic Status of Engraulis Nattereri Steindachner, 1880 (Osteichthyes: Clupeiformes: Engraulidae)
Zootaxa 3941 (2): 299–300 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3941.2.11 http://zoobank.org/urn:lsid:zoobank.org:pub:C678D597-6515-41F2-8771-ED72618D67D4 Taxonomic status of Engraulis nattereri Steindachner, 1880 (Osteichthyes: Clupeiformes: Engraulidae) MARINA VIANNA LOEB & NAÉRCIO AQUINO MENEZES Museu de Zoologia da Universidade de São Paulo. Caixa Postal 42494, 04218-970. São Paulo, SP, Brazil. E-mail: [email protected] Engraulis nattereri Steindachner, 1880 was described on the basis of five specimens collected in Pará during the Nathaniel Thayer Expedition. Later on, the species was assigned to Anchoviella by Fowler (1941). Including Anchoviella nattereri (Steindachner, 1880), Anchoviella comprises 17 small to medium-sized valid species (20–160 mm standard length), nine of them distributed in freshwaters of the Amazon, Essequibo, Corantijn and Orinoco river basins, and other eight brackish and marine species distributed along the Atlantic and Pacific coasts of North, Central and South America (Loeb & Figueiredo, 2014). Although the generic-level classification of E. nattereri within Anchoviella does not show any controversy, the characteristics provided by Steindachner (1880) in the original description of Engraulis nattereri do not allow its proper synonymization with any valid species of the Engraulidae. Thus, herein we discuss the taxonomic status of Engraulis nattereri, poiting out the reasons -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
TROTA FARIO Salmo (Trutta) Trutta R.T.I
ASSESSORATO ALL’AGRICOLTURA, CACCIA E PESCA Direzione Agroambiente, Programmazione e Gestione Ittica e Faunistico-Venatoria CARTA ITTICA REGIONALE AI SENSI DELLA DDR N. 188 DEL 23 ottobre 2018 PRESENTAZIONE SULLO STATO DEI POPOLAMENTI SALMONICOLI DEL VENETO Marzo 2020 AQUAPROGRAM srl BIOPROGRAMM soc. Coop. Dr. THOMAS BUSATTO Vicenza Padova - Treviso Venezia www.aquaprogram.it www.bioprogramm.it mandante mandante capogruppo mandataria I SALMONIDI IN ITALIA FAMIGLIA NOMENCLATURA AIIAD (V. CORRENTE) NOME COMUNE ORIGINE Salmonidae Coregonus lavaretus (Linnaeus, 1758) Coregone o Lavarello Alloctona Salmonidae Coregonus oxyrinchus (Linnaeus, 1758) Bondella Alloctona Salmonidae Oncorhynchus kisatch (Walbaum, 1792) Salmone argentato Alloctona Salmonidae Oncorhynchus mykiss (Walbaum, 1792) Trota iridea Alloctona raramente acclimatata Salmonidae Oncorhynchus tshawytscha (Walbaum in Artedi, 1792) Chinook Alloctona non acclimatata Salmonidae Salmo carpio (Linnaeus, 1758) Carpione del Garda Autoctona lago di Garda (endemica) Salmonidae Salmo cettii (Rafinesque, 1810) Trota mediterranea Autoctona Sicilia sud-orientale Salmonidae Salmo fibreni (Zerunian & Gandolfi, 1990) Carpione del Fibreno Autoctona lago Posta Fibreno (endemica) Salmonidae Salmo ghigii (Pomini, 1940) Trota mediterranea Autoctona Appennino e Alpi occidentali Salmonidae Salmo marmoratus (Cuvier, 1829) Trota marmorata Autoctona distretto P.V. (endemica) Salmonidae Salmo trutta (Linnaeus, 1758) Trota fario Alloctona Salmonidae Salmo salar (Linnaeus, 1758) Salmone atlantico Alloctona non