Bustamante Et Al 2014.Pdf (939.4Kb)

Total Page:16

File Type:pdf, Size:1020Kb

Bustamante Et Al 2014.Pdf (939.4Kb) Journal of Fish Biology (2014) doi:10.1111/jfb.12517, available online at wileyonlinelibrary.com Not all fish are equal: functional biodiversity of cartilaginous fishes (Elasmobranchii and Holocephali) in Chile C. Bustamante*†‡, C. Vargas-Caro*† and M. B. Bennett* *School of Biomedical Sciences, The University of Queensland, St Lucia, Qld 4072, Australia and †Programa de Conservación de Tiburones (Chile), Valdivia, Chile (Received 27 November 2013, Accepted 29 July 2014) A review of the primary literature on the cartilaginous fishes (sharks, skates, rays and chimaeras), together with new information suggests that 106 species occur in Chilean waters, comprising 58 sharks, 30 skates, 13 rays and five chimaeras. The presence of 93 species was confirmed, although 30 species were encountered rarely, through validated catch records and sightings made in artisanal and com- mercial fisheries and on specific research cruises. Overall, only 63 species appear to havearange distribution that normally includes Chilean waters. Actual reliable records of occurrence are lacking for 13 species. Chile has a cartilaginous fish fauna that is relatively impoverished compared with the global species inventory, but conservative compared with countries in South America with warm-temperate waters. The region of highest species richness occurs in the mid-Chilean latitudes of c. 30–40∘ S. This region represents a transition zone with a mix of species related to both the warm-temperate Peru- vian province to the north and cold-temperate Magellan province to the south. This study provides clarification of species occurrence and the functional biodiversity of Chile’s cartilaginous fish fauna. © 2014 The Fisheries Society of the British Isles Key words: checklist; chimaera; shark; skate; south-east Pacific Ocean; species richness. INTRODUCTION The influence of sharks, rays, skates (class Elasmobranchii) and chimaeras (class Holocephali) in ecosystems is under increasing threat owing to continuing population declines of many species as a result of overfishing and by-catch mortality (Stevens et al., 2000; Ferretti et al., 2010). Knowledge of national and regional elasmobranch and holocephalan biodiversity is necessary to formulate management plans and con- servation actions (Compagno, 1999; CPPS, 2009). Species richness is one of the most commonly used indices for assessing biodiversity in ecological studies (Whittaker, 1972; Magurran, 2003; Sahney et al., 2010), but in some cases even this basic infor- mation lacks scientific rigour and leads to interpretation errors when management and conservation measures are implemented (Novacek, 2001; Mejía-Falla et al., 2007; Rozzi et al., 2008). This paper reviews Chile’s national elasmobranch and holocephalan species inven- tory. Existing records, new descriptions and recent taxonomic changes at the species ‡Author to whom correspondence should be addressed. Tel.: +61 (7) 33467975 email: c.bustamantediaz@ uq.edu.au 1 © 2014 The Fisheries Society of the British Isles 2 C. BUSTAMANTE ET AL. level are examined through application of specific criteria, to assess the functional diversity and distributions of these cartilaginous fishes within the south-eastern Pacific Ocean. Species are highlighted where there are taxonomic issues, or records are rare or of uncertain validity. The resulting validated species inventory contributes to an under- standing of the diversity of cartilaginous fishes off the coast of South America that should aid future management and conservation planning. MATERIALS AND METHODS Historic and recent literature was reviewed for any reference to cartilaginous fishes (Class Elasmobranchii and Holocephali, sensu Eschmeyer & Fong, 2011) in Chilean waters that would complement the species inventories of Pequeño (1989, 1997) and Lamilla & Bustamante (2005). Additionally, an extensive survey comprising 10 localities along the Chilean coast was con- ducted in 2009 to assess cartilaginous fish by-catch in coastal artisanal (medium and small scale) fisheries and semi-industrial oceanic fleets. Descriptions of the variables surveyed and adetailed sampling methodology are provided by Lamilla et al. (2010). On-board operations and landings were observed in commercial fisheries with a history of interaction; where interaction is defined as an ‘historical or recent record of catch and landing of at least one cartilaginous fish during a commercial trip’ (Lamilla et al., 2010). For each landing site and on-board survey, all carti- laginous fishes caught and landed were recorded and identified to species. Localities alongthe Chilean coast [Fig. 1(a)] and the sampling effort for landing site visits and on-board surveys are provided in Table I. Table II presents information about each fishery evaluated during this research. The 10 localities span c.33∘ of latitude and represent four zones (north, central, south and aus- tral south) that are independent of bathymetric reference and the biographic provinces described by Camus (2001). North includes localities between Iquique (20⋅2∘ S) and Caldera (27⋅0∘ S), central localities between Coquimbo (29⋅9∘ S) and Valparaiso (33⋅0∘ S), south localities between Concepción (36⋅9∘ S) and Puerto Montt (41⋅5∘ S) and austral south includes localities between Aysén (45⋅4∘ S) and Punta Arenas (53⋅1∘ S). The oceanic islands zone is treated separately and includes species reported around insular territories within the Chilean exclusive economic zone, such as Nazca and Sala y Gómez submarine ridges, Juan Fernández Islands, Desventuradas Islands and Easter Island [Fig. 1(b)]. To assess cartilaginous fishes of Chile on a meaningful basis, specific criteria are usedto ensure that only those species reported and confirmed within circumscribed geographical areas within the political boundaries are considered (Mejía-Falla et al., 2007). For this purpose, con- firmed species are defined as those that meet the following criteria: (1) identification hasbeen validated scientifically, and there are no reasonable doubts about a species’ identity, (2) thereare reports of its presence, capture and sale from fishing or scientific expeditions and (3) records do not indicate a haphazard or anecdotal encounter of a species that has a low natural abundance. The modern classification of extant Elasmobranchii and Holocephali and comparative values of global biodiversity were extracted from Eschmeyer & Fong (2011) and Ebert et al. (2013). RESULTS A total of 106 cartilaginous species occur in Chilean waters (58 sharks, 30 skates, 13 rays and five chimaeras), represented in 58 genera (37 shark, nine skate, nine ray and three chimaera genera) and 29 families (16 shark, six skate, four ray and three chimaera families). This represents an increase in the reported biodiversity of cartilaginous fishes in Chile with 14 species added to the known ichthyofauna, these are brown lanternshark Etmopterus unicolor (Engelhardt 1912), pocket shark Mollisquama parini Dolganov 1984, frog shark Somniosus longus (Tanaka 1912), © 2014 The Fisheries Society of the British Isles, Journal of Fish Biology 2014, doi:10.1111/jfb.12517 BIODIVERSITY OF CARTILAGINOUS FISHES IN CHILE 3 Fig. 1. Map of South America showing the location of study area (inset boxes), indicating (a) main localities in Chile, zones and biogeographic provinces on the latitudinal gradient and (b) oceanic islands zone. Contour lines ( ) indicate 2000 m isobath on (b). Biogeographic provinces modified from Camus (2001). smalltooth sand tiger shark Odontaspis ferox (Risso 1810), longfin mako Isurus paucus Guitart 1966, crocodile shark Pseudocarcharias kamoharai (Matsubara 1936), silky shark Carcharhinus falciformis (Müller & Henle 1839), scalloped hammerhead Sphyrna lewini (Griffith & Smith 1834), Chilean guitarfish Tarsistes philippii Jordan 1919, joined-fins skate Bathyraja cousseauae Díaz de Astarloa & Mabragaña 2004, dark-belly skate Bathyraja meridionalis Stehmann 1987, cuphead skate Bathyraja scaphiops (Norman 1937), spinetail mobula Mobula japanica (Müller & Henle 1841) and eastern Pacific black ghostshark Hydrolagus melanophasma James, Ebert, Long & Didier 2009. While this total of 106 species is indicative of overall diversity, it is not a good index of functional biodiversity as many species identifications are based on anecdotal or single verified observations, and as such, information about their distributions is poor or absent. A total of 6450 specimens of sharks, rays, skates and chimaeras were examined from 138 landing and 286 on-board surveys, which confirmed the presence of 40 cartilagi- nous fish species. Bibliographic records provide a further 53 species that meetthe confirmed species criterion resulting in 93 confirmed species, of which 30 speciesare © 2014 The Fisheries Society of the British Isles, Journal of Fish Biology 2014, doi:10.1111/jfb.12517 4 C. BUSTAMANTE ET AL. Table I. Localities of landing sites and bases for on-board surveys with an indication of relative observer effort. Days-at-sea observed during on-board surveys are indicated in parentheses Locality Zone Landing site visits On-board surveys Iquique North 26 33 (46) Antofagasta North 0 9 (15) Caldera North 7 30 (69) Coquimbo Central 2 48 (68) Valparaíso Central 1 39 (45) Concepción South 70 24 (36) Valdivia South 18 76 (88) Puerto Montt South 10 21 (52) Aysén Austral south 0 6 (27) Punta Arenas Austral south 4 0 relatively rarely encountered. The situation for the other 13 species reported to occur in Chilean waters is less clear. The species reported in Chilean waters and
Recommended publications
  • Urobatis Halleri, U. Concentricus, and U. Maculatus As Subspecies by Scot
    Resolving Relationships: Urobatis halleri, U. concentricus, and U. maculatus as Subspecies By Scott Heffernan Evolutionary Biology and Ecology, University of Colorado at Boulder Defense Date: October 31, 2012 Thesis Advisor: Dr. Andrew Martin, Evolutionary Biology and Ecology Defense Committee: Dr. Andrew Martin, Evolutionary Biology and Ecology Dr. Barbara Demmig‐Adams, Evolutionary Biology and Ecology Dr. Nicholas Schneider, Astrophysical, Planetary, and Atmospheric Sciences Abstract Hybridization is the interbreeding of separate species to create a novel species (hybrid). It is important to the study of evolution because it complicates the biological species concept proposed by Ernst Mayr (1963), which is widely adopted in biology for defining species. This study investigates possible hybridization between three stingrays of the genus Urobatis (Myliobatiformes: Urotrygonidae). Two separate loci were chosen for investigation, a nuclear region and the mitochondrial gene NADH2. Inability to resolve three separate species within the mitochondrial phylogeny indicate that gene flow has occurred between Urobatis maculatus, Urobatis concentricus, and Urobatis halleri. Additionally, the lack of divergence within the nuclear gene indicates that these three species are very closely related, and may even be a single species. Further investigation is recommended with a larger sample base and additional genes. Introduction There are many definitions for what constitutes a species, though the most widely adopted is the biological species concept, proposed by Ernst Mayr in 1963. Under this concept, members of a species can “actually and potentially interbreed” (Mayr 1963), whereas members of different species cannot. While this concept is useful when comparing members of distantly related species, it breaks down when comparing members of closely related species (for example horses and donkeys), especially when these species have overlapping species boundaries.
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • New Record of the Deepwater Stingray Plesiobatis Daviesi from Korea
    52KOREAN Byeong JOURNAL Yeob Kim, OF IMaengCHTHY JinOLOG KimY and, Vol. Choon 28, N o.Bok 1, Song52-56, March 2016 Received: November 30, 2015 ISSN: 1225-8598 (Print), 2288-3371 (Online) Revised: February 29, 2016 Accepted: March 28, 2016 New Record of the Deepwater Stingray Plesiobatis daviesi from Korea By Byeong Yeob Kim, Maeng Jin Kim1 and Choon Bok Song* College of Ocean Sciences, Jeju National University, Jeju 63243, Korea 1West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Korea ABSTRACT A single specimen (700 mm in disc length) of Plesiobatis daviesi, belonging to the family Plesiobatididae, was firstly collected in the north-eastern coastal waters of Jejudo Island, Korea by using a bottom trawl on 24 October 2010. This species was characterized by having five pairs of gill openings, tail with one to three large spines, long snout length, long caudal fin, and pleated margin of nasal curtain. It is morphologically similar to Urolophus aurantiacus, but the former is distinguished from the latter by having longer caudal fin and snout length. We add P. daviesi to the Korean fish fauna and suggest the new Korean names, “Gin-kko-ri-huin-ga-o-ri-gwa”, “Gin-kko-ri-huin-ga-o-ri-sok” and “Gin-kko-ri-huin-ga-o-ri” for the family, genus and species, respectively. Key words: New record, Plesiobatididae, Plesiobatis daviesi, Korea INTRODUCTION no. 110). Here, we describe the morphological characters of P. daviesi as an addition to the list of Korean fishes. The family Plesiobatididae, belonging to order Mylio­ bastiformes consists of a single species worldwide (Jeong, 2000; Nelson, 2006; Ebert, 2014).
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Urotrygonidae Mceachran Et Al., 1996 - Round Stingrays Notes: Urotrygonidae Mceachran, Dunn & Miyake, 1996:81 [Ref
    FAMILY Urotrygonidae McEachran et al., 1996 - round stingrays Notes: Urotrygonidae McEachran, Dunn & Miyake, 1996:81 [ref. 32589] (family) Urotrygon GENUS Urobatis Garman, 1913 - round stingrays [=Urobatis Garman [S.], 1913:401] Notes: [ref. 1545]. Fem. Raia (Leiobatus) sloani Blainville, 1816. Type by original designation. •Synonym of Urolophus Müller & Henle, 1837 -- (Cappetta 1987:165 [ref. 6348]). •Valid as Urobatis Garman, 1913 -- (Last & Compagno 1999:1470 [ref. 24639] include western hemisphere species of Urolophus, Rosenberger 2001:615 [ref. 25447], Compagno 1999:494 [ref. 25589], McEachran & Carvalho 2003:573 [ref. 26985], Yearsley et al. 2008:261 [ref. 29691]). Current status: Valid as Urobatis Garman, 1913. Urotrygonidae. Species Urobatis concentricus Osburn & Nichols, 1916 - spot-on-spot round ray [=Urobatis concentricus Osburn [R. C.] & Nichols [J. T.] 1916:144, Fig. 2] Notes: [Bulletin of the American Museum of Natural History v. 35 (art. 16); ref. 15062] East side of Esteban Island, Gulf of California, Mexico. Current status: Valid as Urobatis concentricus Osburn & Nichols, 1916. Urotrygonidae. Distribution: Eastern Pacific. Habitat: marine. Species Urobatis halleri (Cooper, 1863) - round stingray [=Urolophus halleri Cooper [J. G.], 1863:95, Fig. 21, Urolophus nebulosus Garman [S.], 1885:41, Urolophus umbrifer Jordan [D. S.] & Starks [E. C.], in Jordan, 1895:389] Notes: [Proceedings of the California Academy of Sciences (Series 1) v. 3 (sig. 6); ref. 4876] San Diego, California, U.S.A. Current status: Valid as Urobatis halleri (Cooper, 1863). Urotrygonidae. Distribution: Eastern Pacific: northern California (U.S.A.) to Ecuador. Habitat: marine. (nebulosus) [Proceedings of the United States National Museum v. 8 (no. 482); ref. 14445] Colima, Mexico. Current status: Synonym of Urobatis halleri (Cooper, 1863).
    [Show full text]
  • Redalyc.First Record of Morphological Abnormality in Embryos Of
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Mejía-Falla, Paola A.; Navia, Andrés F.; Muñoz, Luis A. First record of morphological abnormality in embryos of Urotrygon rogersi (Jordan & Starks, 1895) (Myliobatiformes: Urotrygonidae) in the Tropical Eastern Pacific Latin American Journal of Aquatic Research, vol. 39, núm. 1, 2011, pp. 184-188 Pontificia Universidad Católica de Valparaíso Valparaiso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175018816019 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 39(1): 184-188, 2011 Lat. Am. J. Aquat. Res. 184 DOI: 10.3856/vol39-issue1-fulltext-19 Short Communication First record of morphological abnormality in embryos of Urotrygon rogersi (Jordan & Starks, 1895) (Myliobatiformes: Urotrygonidae) in the Tropical Eastern Pacific Paola A. Mejía-Falla1, Andrés F. Navia1 & Luis A. Muñoz1 1Colombian Foundation for Research and Conservation of Sharks, Skates and Rays SQUALUS Carrera 79 No 6-37 Cali, Valle del Cauca, Colombia ABSTRACT. This is the first report of morphological abnormalities in embryos of Roger's roundray Urotrygon rogersi in the Tropical Eastern Pacific. The embryos of two pregnant females caught in artisanal shrimp trawl nets had incomplete, deformed pectoral fins that were separated from the head along the anterior margin. Moreover, one of the embryos presented a fin-like extension in the dorsal surface.
    [Show full text]
  • First Observation on the Mating Behaviour of the Marbled Ray, Taeniurops Meyeni, in the Tropical Eastern Pacific
    Environ Biol Fish https://doi.org/10.1007/s10641-018-0818-z First observation on the mating behaviour of the marbled ray, Taeniurops meyeni, in the tropical Eastern Pacific C. Arnés-Urgellés & E. M. Hoyos-Padilla & F. Pochet & P. Salinas-de-León Received: 11 May 2018 /Accepted: 28 September 2018 # Springer Nature B.V. 2018 Abstract Elasmobranch reproductive behaviour re- males swim in a close formation chasing an individual mains understudied, particularly for batoids (rays). Most female; (2) pre-copulatory biting: oral grasping of the of the information available originates from opportunistic female’s posterior pectoral fin by the males, with anterior observations of mating scars in the wild and/or from bending of one clasper and rotation of the pelvic region individuals held in captivity. Here we describe the first towards the female’s cloaca; (3) copulation/ insertion of complete mating sequence of the marbled ray the male’s clasper followed by ‘ventral to ventral’ position (Taeniurops meyeni) in the wild. The event was filmed and energetic thrusting of the male’s pelvic region; (4) at Isla del Coco National Park in Costa Rica, in the post-copulatory behaviour: the male removes its clasper Tropical Eastern Pacific. The complete sequence lasted from the female’s cloaca while releasing her posterior approximately 3 hrs and is defined by the following pectoral fin and (5) separation: the male sets the female behaviours: (1) close following or chasing: a group of free and separates himself from the group. The mating behaviour described here shares some similarities with the few other studies of batoids in the wild and highlights Electronic supplementary material The online version of this the need to further understand their mating system to article (https://doi.org/10.1007/s10641-018-0818-z)contains guide conservation plans for this vulnerable species.
    [Show full text]
  • And Their Functional, Ecological, and Evolutionary Implications
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv
    [Show full text]
  • Migratory Sharks Complete 3 0 0.Pdf
    CMS Technical Series No. 15 Review of Migratory Chondrichthyan Fishes Review of Migratory Chondrichthyan Fishes Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat • CMS Technical Series No. 15 CMS Technical UNEP/CMS Secretariat Public Information Hermann-Ehlers-Str. 10 53113 Bonn, Germany T. +49 228 815-2401/02 F. +49 228 815-2449 www.cms.int Review of Chondrichthyan Fishes IUCN Species Survival Commission’s Shark Specialist Group December 2007 Published by IUCN–The World Conservation Union, the United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). Review of Chondrichthyan Fishes. 2007. Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat. Cover photographs © J. Stafford-Deitsch. Front cover: Isurus oxyrinchus Shortfin mako shark. Back cover, from left: Sphyrna mokarran Great hammerhead shark, Carcharodon carcharias Great white shark, Prionace glauca Blue shark. Maps from Collins Field Guide to Sharks of the World. 2005. IUCN and UNEP/ CMS Secretariat, Bonn, Germany. 72 pages. Technical Report Series 15. This publication was prepared and printed with funding from the CMS Secretariat and Department for the Environment, Food, and Rural Affairs, UK. Produced by: Naturebureau, Newbury, UK. Printed by: Information Press, Oxford, UK. Printed on: 115gsm Allegro Demi-matt produced from sustainable sources. © 2007 IUCN–The World Conservation Union / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made.
    [Show full text]
  • (TED) in Reducing the Bycatch of Elasmobranchs in the Atlantic Seabob (Xiphopenaeus Kroyeri) Industrial Trawl Fishery of Guyana
    CERMES Technical Report No. 87 The effectiveness of a modified turtle excluder device (TED) in reducing the bycatch of elasmobranchs in the Atlantic seabob (Xiphopenaeus kroyeri) industrial trawl fishery of Guyana A. GARSTIN, H.A. OXENFORD AND D. MAISON Centre for Resource Management and Environmental Studies (CERMES) Faculty of Science and Technology, The University of the West Indies Cave Hill Campus, Barbados 2017 ABSTRACT The Atlantic seabob (Xiphopenaeus kroyeri) trawl fishery is extremely important to Guyana, with some 88 licensed industrial trawling vessels harvesting around 15,000 mt per year, almost all of which is exported to the US and EU, representing Guyana’s most valuable seafood export. The key player in this industry, the Guyana Association of Private Trawler Owners and Seafood Processors (GAPTO&SP) is taking pro-active steps in pursuing Marine Stewardship Council certification for the seabob trawl fishery to ensure top market prices and long-term sustainability of the seabob stock. To this end, all commercial vessels in the fleet are using turtle excluder devices (TEDs) and bycatch reduction devices (BRDs) in their trawl nets. However, the effectiveness of these devices in reducing the bycatch of vulnerable sharks and rays has not yet been examined. This study, requested by GAPTO&SP, represents the first attempt to document the bycatch of these discarded species by the seabob trawl fleet, and to compare the effectiveness of two different TED designs. Over the period July-August 2014, five trips were taken on three different seabob vessels to document the species, sizes and condition of all sharks and rays landed and discarded during the normal 24 hour-day operation of the vessels.
    [Show full text]
  • The Conservation Status of North American, Central American, and Caribbean Chondrichthyans the Conservation Status Of
    The Conservation Status of North American, Central American, and Caribbean Chondrichthyans The Conservation Status of Edited by The Conservation Status of North American, Central and Caribbean Chondrichthyans North American, Central American, Peter M. Kyne, John K. Carlson, David A. Ebert, Sonja V. Fordham, Joseph J. Bizzarro, Rachel T. Graham, David W. Kulka, Emily E. Tewes, Lucy R. Harrison and Nicholas K. Dulvy L.R. Harrison and N.K. Dulvy E.E. Tewes, Kulka, D.W. Graham, R.T. Bizzarro, J.J. Fordham, Ebert, S.V. Carlson, D.A. J.K. Kyne, P.M. Edited by and Caribbean Chondrichthyans Executive Summary This report from the IUCN Shark Specialist Group includes the first compilation of conservation status assessments for the 282 chondrichthyan species (sharks, rays, and chimaeras) recorded from North American, Central American, and Caribbean waters. The status and needs of those species assessed against the IUCN Red List of Threatened Species criteria as threatened (Critically Endangered, Endangered, and Vulnerable) are highlighted. An overview of regional issues and a discussion of current and future management measures are also presented. A primary aim of the report is to inform the development of chondrichthyan research, conservation, and management priorities for the North American, Central American, and Caribbean region. Results show that 13.5% of chondrichthyans occurring in the region qualify for one of the three threatened categories. These species face an extremely high risk of extinction in the wild (Critically Endangered; 1.4%), a very high risk of extinction in the wild (Endangered; 1.8%), or a high risk of extinction in the wild (Vulnerable; 10.3%).
    [Show full text]