First Observation on the Mating Behaviour of the Marbled Ray, Taeniurops Meyeni, in the Tropical Eastern Pacific

Total Page:16

File Type:pdf, Size:1020Kb

First Observation on the Mating Behaviour of the Marbled Ray, Taeniurops Meyeni, in the Tropical Eastern Pacific Environ Biol Fish https://doi.org/10.1007/s10641-018-0818-z First observation on the mating behaviour of the marbled ray, Taeniurops meyeni, in the tropical Eastern Pacific C. Arnés-Urgellés & E. M. Hoyos-Padilla & F. Pochet & P. Salinas-de-León Received: 11 May 2018 /Accepted: 28 September 2018 # Springer Nature B.V. 2018 Abstract Elasmobranch reproductive behaviour re- males swim in a close formation chasing an individual mains understudied, particularly for batoids (rays). Most female; (2) pre-copulatory biting: oral grasping of the of the information available originates from opportunistic female’s posterior pectoral fin by the males, with anterior observations of mating scars in the wild and/or from bending of one clasper and rotation of the pelvic region individuals held in captivity. Here we describe the first towards the female’s cloaca; (3) copulation/ insertion of complete mating sequence of the marbled ray the male’s clasper followed by ‘ventral to ventral’ position (Taeniurops meyeni) in the wild. The event was filmed and energetic thrusting of the male’s pelvic region; (4) at Isla del Coco National Park in Costa Rica, in the post-copulatory behaviour: the male removes its clasper Tropical Eastern Pacific. The complete sequence lasted from the female’s cloaca while releasing her posterior approximately 3 hrs and is defined by the following pectoral fin and (5) separation: the male sets the female behaviours: (1) close following or chasing: a group of free and separates himself from the group. The mating behaviour described here shares some similarities with the few other studies of batoids in the wild and highlights Electronic supplementary material The online version of this the need to further understand their mating system to article (https://doi.org/10.1007/s10641-018-0818-z)contains guide conservation plans for this vulnerable species. supplementary material, which is available to authorized users. C. Arnés-Urgellés (*) : P. Salinas-de-León Keywords Elasmobranch Batoids Reproduction Charles Darwin Research Station, Charles Darwin Foundation, Life-history. Isla del coco Galapagos, Ecuador e-mail: [email protected] E. M. Hoyos-Padilla Introduction Pelagios Kakunjá, Sinaloa 1540, 23070 La Paz, B.C.S., C.P, Mexico Mating sequences in elasmobranchs (sharks and rays) have been rarely documented in the wild. Most available E. M. Hoyos-Padilla Fins Attached: Marine Research and Conservation, 19675 Still information on the reproductive behaviour of this group Glen Drive, Colorado Springs, CO 80908, USA of species has been obtained from opportunistic observations of mating scars in females in the wild F. Pochet or from individuals held in captivity (Henningsen 2000; Undersea Hunter Group, San Jose, Costa Rica Kajiura et al. 2000; Chapman et al. 2003; Henningsen P. Salinas-de-León et al. 2004; Whitney et al. 2004) with limited direct Pristine Seas, National Geographic Society, Washington, DC, observations of courtship and mating recorded for wild USA populations (but see Tricas 1980;Nordell1994; Environ Biol Fish Chapman et al. 2003;Yanoetal.1999;Pierceetal. BVulnerable^. However, despite its significant popula- 2009; Salinas-de-León et al. 2017b). tion reduction and evident vulnerability (White et al. Most of the research describing elasmobranch repro- 2015), little is known about its biology and no specific duction has been conducted on sharks, and very little on information on its reproduction has been produced in the rays (batoids). Only eight species of batoids, out of the TEP. In this study, we provide the first detailed descrip- approximately 600 recorded, have been observed copu- tion of a complete mating event sequence for the mar- lating in the wild (Chapman et al. 2003;Mulletal. bled ray in the wild. 2010). Despite this lack of data on their reproductive behaviour, large numbers of batoid species are highly Observations exploited by target and non-target fisheries around the world (Worm et al. 2013;Oliveretal.2015). In the The mating event was recorded at Manuelita Coral Tropical Eastern Pacific (TEP) marine ecoregion Garden, Isla del Coco, Costa Rica, in June 2016 (Spalding et al. 2007) batoids are frequently caught as (Fig. 1). A group of approximately 26 marbled rays by-catch in commercial fisheries, mainly shrimp were initially seen swimming in a compact formation trawling, making up for a significant proportion (> close to the sandy bottom at 30 m depth (Fig. 2a). The 40%) of fishing landings (Gómez and Mejía-Falla group was significantly male-biased, with just one fe- 2008; Smith et al. 2009; Mejía-Falla et al. 2012). male being chased by all the males. This group chase Additionally, these species commonly occur in marine concluded with three males closing in on the single coastal habitats where they are permanently ex- female high up in the water column at a depth of 12 m posed to anthropogenic stressors like artisanal and (Fig. 2b). At midwater, two males successfully bit and recreational fishing, habitat destruction, and pollu- grasped the female on the posterior margins of its pec- tion (Gómez and Mejía-Falla 2008;Mulletal.2010). toral disc, with one male on each pectoral fin (Fig. 2c). Thus, understanding their reproductive strategies and Soon after, a third male also grasped the female by the life-history becomes critical for population management rear edge of its left pectoral fin (Fig. 2c). Male 1 and conservation. positioned itself at the right side of the female and The marbled ray or blotched fantail ray, Taeniurops flexed one of its claspers forward (Fig. 2d), man- meyeni (Müller & Henle 1841), is a large batoid species aging to insert the right clasper into the female’scloaca reaching up to 1.8 m in disc width and 3.3 m in total (Fig. 2e). Clasper insertion occurred at a shallower depth length (Last et al. 2016). Marbled rays are widely dis- range from 5 to 10 m. tributed across the Indo-Pacific Ocean. However, in the After successfully achieving clasper insertion, male 1 TEP they are only known at two oceanic islands: Isla del flipped over and adopted a ‘ventral to ventral’ position Coco in Costa Rica and the Galapagos Islands in (Yano et al. 1999; Chapman et al. 2003) with the female, Ecuador, both considered elasmobranch hotspots while maintaining a grip of its pectoral fin (Fig. 2f). (McCosker and Rosenblatt 2010; Friedlander et al. Male 1 actively thrusted its pelvic region for approxi- 2012; Salinas-de-León et al. 2016). The mating se- mately one minute while maintaining ‘ventral to ventral’ quence described here was documented at Isla del position. During this rapid motion, sperm is being trans- Coco located approximately 550 km off the Pacific ferred from the urogenital papilla to the clasper groove Coast of Costa Rica. Isla del Coco was designated a of the male into the female’s genital tract (Luer and National Park in 1978 and recognized as a UNESCO Gilbert 1985; Pratt and Tanaka 1994). Subsequently, World Heritage Site in 1997 (Cortés-Núñez 2008). Even male 1 removed its right clasper from the female’s though batoid populations are protected from fisheries cloaca and stopped biting its pectoral fin. After separat- in this marine protected area (MPA), the marbled ray is ing from the female, a cloud of sperm was clearly visible still targeted by unregulated fisheries in many parts of in the water column (Fig. 2g). the world for the consumption of its meat (Stobutzki After separating from the female, male 1 shook its et al. 2002; Smith et al. 2009; Kyne and White 2015). claspers and these appeared to return to their natural Considering that this species is highly affected by relaxed position (Fig. 2h). Throughout the entire copu- overfishing (White et al. 2015; Kyne and White 2015) lation event that lasted approximately 2 min, from the the International Union for Conservation of Nature time male 1 inserted its clasper, both male 2 and male 3 (IUCN) Red List has the marbled ray listed as continued to hold on to the female by oral grip. After Environ Biol Fish Fig. 1 Isla del Coco Island, Costa Rica, detailing the location of Manuelita Coral Garden (blue dot) around Manuelita Islet, where the copulation event was recorded male 1 swam away, the rest of the group started to sink anterior bending of one of the claspers and rotation of to the bottom (at approximately 30 m) and observations the pelvic region towards the female’s cloaca; (3) of other males successfully achieving clasper insertion Copulation: the insertion of the male’s clasper followed with the same female were not witnessed. The female by ventral to ventral position and energetic thrusting of remained passive and did not engage in any avoidance the male’s pelvic region; 4) Post-copulatory behaviour: behaviour during the entire sequence. The complete the male removes its clasper from the female’scloaca mating event described here, from swimming as a while releasing his posterior pectoral fin; (5) group, the chase, matting, and final separation, lasted Separation: the male separates from the group approximately three hours observed over consecutives (Fig. 2a-h). During step 5, a cloud of sperm was clearly SCUBA dives (Supplementary material 1). visible in the water column. The mating sequence de- scribed for T. meyeni follows a similar sequence report- ed for other batoids in the wild, such as, the white Discussion spotted eagle ray, Aetobatus narinari (Tricas 1980), the yellow stingray, Urobatis jamaicensis (Young In this study, we provide the first detailed description of 1993), the round stingray, Urobatis halleri (Nordell the mating behaviour of the marbled ray T. meyeni. 1994), the giant manta ray, Mobula birostris (Yano Behavioural patterns observed here can be summarized et al. 1999) and the southern stingray, Hypanus as follows: (1) Close following or chasing: males chase americanus (Chapman et al.
Recommended publications
  • Urobatis Halleri, U. Concentricus, and U. Maculatus As Subspecies by Scot
    Resolving Relationships: Urobatis halleri, U. concentricus, and U. maculatus as Subspecies By Scott Heffernan Evolutionary Biology and Ecology, University of Colorado at Boulder Defense Date: October 31, 2012 Thesis Advisor: Dr. Andrew Martin, Evolutionary Biology and Ecology Defense Committee: Dr. Andrew Martin, Evolutionary Biology and Ecology Dr. Barbara Demmig‐Adams, Evolutionary Biology and Ecology Dr. Nicholas Schneider, Astrophysical, Planetary, and Atmospheric Sciences Abstract Hybridization is the interbreeding of separate species to create a novel species (hybrid). It is important to the study of evolution because it complicates the biological species concept proposed by Ernst Mayr (1963), which is widely adopted in biology for defining species. This study investigates possible hybridization between three stingrays of the genus Urobatis (Myliobatiformes: Urotrygonidae). Two separate loci were chosen for investigation, a nuclear region and the mitochondrial gene NADH2. Inability to resolve three separate species within the mitochondrial phylogeny indicate that gene flow has occurred between Urobatis maculatus, Urobatis concentricus, and Urobatis halleri. Additionally, the lack of divergence within the nuclear gene indicates that these three species are very closely related, and may even be a single species. Further investigation is recommended with a larger sample base and additional genes. Introduction There are many definitions for what constitutes a species, though the most widely adopted is the biological species concept, proposed by Ernst Mayr in 1963. Under this concept, members of a species can “actually and potentially interbreed” (Mayr 1963), whereas members of different species cannot. While this concept is useful when comparing members of distantly related species, it breaks down when comparing members of closely related species (for example horses and donkeys), especially when these species have overlapping species boundaries.
    [Show full text]
  • Florida, Caribbean, Bahamas by Paul Humann and Ned Deloach
    Changes in the 4th Edition of Reef Fish Identification - Florida, Caribbean, Bahamas by Paul Humann and Ned DeLoach Prepared by Paul Humann for members of Reef Environmental Education Foundation (REEF) This document summarizes the changes, updates, and new species presented in the 4th edition of Reef Fish Identification- Florida, Caribbean, and Bahamas by Paul Humann and Ned DeLoach (1st printing, released June 2014). This document was created as reference for REEF volunteer surveyors. Chapter 1 – no significant changes Chapter 2 - Silvery pg 64-5t – Redfin Needlefish – new species pg 68-9m – Ladyfish – new species pg 72-3m – Harvestfish – new species pg 72-3b – Longspine Porgy – new species pg74-5 – Silver Porgy & Spottail Pinfish – 2 additional pictures of young and more information on distinguishing between the two species pg 84-5b – Bigeye Mojarra – new species pgs 90-1 & 92-3t – Chubs new species – there are now 4 species of chub in the book – Topsail Chub and Brassy Chub are easily distinguishable. Brassy Chub is the updated ID of Yellow Chub. Bermuda Chub and Gray Chub are lumped due to difficulties in underwater ID (Gray Chub, K biggibus, replaced Yellow Chub in this lumping). Chapter 3 – Grunts & Snappers pg 106-7b and 108-9t – Boga and Bonnetmouth are both now in the Grunt Family (Haemulidae), the Bonnetmouth Family, Inermiidae, is no longer valid. Chapter 4 – Damselfish & Hamlets pgs 132-3 & 134-5 – Cocoa Damselfish and Beaugregory, new pictures and tips for distinguishing between the species pg 142m – Yellowtail Reeffish - new picture of older adult brown variation has been added, which looks of strikingly different from the younger adult pg 147-8b – Florida Barred Hamlet – new species (distinctive from regular Barred Hamlet) pg 153-4t – Tan Hamlet – official species has now been described (Hypoplectrus randallorum), differs from previously included “Tan Hypoplectrus sp.”.
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • Fish Species and for Eggs and Larvae of Larger Fish
    BATIQUITOS LAGOON FOUNDATION F I S H Fishes of the Lagoon There were only a few species of fish in Batiquitos Lagoon (just five!) BATIQUITOS LAGOON FOUNDATION before it was opened to the ocean and tides at the end of 1996. High temperatures in the summer, low oxygen levels, and wide ranges of ANCHOVY salinity did not allow the ecosystem to flourish. Since the restoration of tidal action to the lagoon, the fish populations have significantly increased in numbers and diversity and more than sixty-five species have been found. Lagoons serve as breeding and nursery areas for a wide array of coastal fish, provide habitat and food for resident species TOPSMELT and serve as feeding areas for seasonal species. Different areas of the lagoon environment provide specific habitat needs. These include tidal creeks, sandy bottoms, emergent vegetation, submergent vegetation, nearshore shallows, open water, saline pools and brackish/freshwater areas. These habitats are defined by water YELLOWFIN GOBY characteristics including salinity, water temperature, water velocity and water depth. The lagoon bottom varies with the type of substrate such as rock, cobble, gravel, sand, clay, mud and silt. Tidal creeks and channels provide refuges for small fish species and for eggs and larvae of larger fish. Species in tidal creeks include ROUND STINGRAY gobies and topsmelt. Sandy bottoms provide important habitat for bottom-dwelling fish species such as rays, sharks and flatfish. The sandy areas provide important refuges for crustaceans, which are prey to many fish species within the lagoon. The burrows of ghost shrimp are utilized by the arrow goby.
    [Show full text]
  • Stingray Injuries
    Stingray Injuries FINDLAY E. RUSSELL, M.D. inflicted by stingrays are com¬ the integumentary sheath surrounding the INJURIESmon in several areas of the coastal waters spine is ruptured and the venom escapes into of North America (1-4). Approximately 750 the victim's tissues. In withdrawing the spine, people a year along our coasts are stung by the integumentary sheath may be torn free and these elasmobranchs. The largest number of remain in the wound. stings are reported from southern California, Unlike the injuries inflicted by many venom¬ the Gulf of California, the Gulf of Mexico, and ous animals, wounds produced by the stingray the south Atlantic coast (5). may be large and severely lacerated, requiring Of 1,097 stingray injuries reported over a 5- extensive debridement and surgical closure. A year period in the United States (5, tf), 232 sting no wider than 5 mm. may produce a were seen by a physician at some time during wound 3.5 cm. long (#), and larger stings may the course of the recovery of the victim. Sixty- produce wounds 7 inches long (7). Occasion¬ two patients were hospitalized; the majority of ally, the sting itself may be broken off in the these required surgical closure of their wounds wound. or treatment for secondary infection, or both. The sting, or caudal spine, is a bilaterally ser¬ At least 10 of the 62 victims were hospitalized rated dentinal structure located on the dorsal for treatment for overexuberant first aid care. surface of the animal's tail. The sharp serra¬ Only eight patients were hospitalized for the tions are curved cephalically and as such are treatment of the systemic effects produced by responsible for the lacerating effects as the sting the venom.
    [Show full text]
  • Insight Into Shark Magnetic Field Perception from Empirical
    www.nature.com/scientificreports OPEN Insight into shark magnetic feld perception from empirical observations Received: 13 February 2017 James M. Anderson 1,2, Tamrynn M. Clegg1, Luisa V. M. V. Q. Véras3 & Kim N. Holland1,4 Accepted: 24 August 2017 Elasmobranch fshes are among a broad range of taxa believed to gain positional information and Published: xx xx xxxx navigate using the earth’s magnetic feld, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making signifcantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S−). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic feld, with no diference seen in approaches to the target under the S+ and S− conditions (p = 0.375). We provide quantifed detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic feld perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks. Many animals from several taxa are able to perceive the earth’s magnetic feld and discriminate changes in that feld1.
    [Show full text]
  • Species Diversity of Rhinebothrium Linton, 1890 (Eucestoda
    Zootaxa 4300 (1): 421–437 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4300.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:EE5688F1-3235-486C-B981-CBABE462E8A2 Species diversity of Rhinebothrium Linton, 1890 (Eucestoda: Rhinebothriidea) from Styracura (Myliobatiformes: Potamotrygonidae), including the description of a new species BRUNA TREVISAN1,2 & FERNANDO P. L. MARQUES1 1Laboratório de Helmintologia Evolutiva, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, travessa 14, Cidade Universitária, São Paulo, SP, 05508-090 2Corresponding author. E-mail: [email protected] Abstract The present study contributes to the knowledge of the cestode fauna of species of Styracura de Carvalho, Loboda & da Silva, which is the putative sister taxon of freshwater potamotrygonids—a unique group of batoids restricted to Neotro- pical freshwater systems. We document species of Rhinebothrium Linton, 1890 as a result of the examination of newly collected specimens of Styracura from five different localities representing the eastern Pacific Ocean and the Caribbean Sea. Overall, we examined 33 spiral intestines, 11 from the eastern Pacific species Styracura pacifica (Beebe & Tee-Van) and 22 from the Caribbean species S. schmardae (Werner). However, only samples from the Caribbean were infected with members of Rhinebothrium. Rhinebothrium tetralobatum Brooks, 1977, originally described from S. schmardae—as Hi- mantura schmardae (Werner)—off the Caribbean coast of Colombia based on six specimens is redescribed. This rede- scription provides the first data on the microthriches pattern, more details of internal anatomy (i.e., inclusion of histological sections) and expands the ranges for the counts and measurements of several features.
    [Show full text]
  • New Record of the Deepwater Stingray Plesiobatis Daviesi from Korea
    52KOREAN Byeong JOURNAL Yeob Kim, OF IMaengCHTHY JinOLOG KimY and, Vol. Choon 28, N o.Bok 1, Song52-56, March 2016 Received: November 30, 2015 ISSN: 1225-8598 (Print), 2288-3371 (Online) Revised: February 29, 2016 Accepted: March 28, 2016 New Record of the Deepwater Stingray Plesiobatis daviesi from Korea By Byeong Yeob Kim, Maeng Jin Kim1 and Choon Bok Song* College of Ocean Sciences, Jeju National University, Jeju 63243, Korea 1West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Korea ABSTRACT A single specimen (700 mm in disc length) of Plesiobatis daviesi, belonging to the family Plesiobatididae, was firstly collected in the north-eastern coastal waters of Jejudo Island, Korea by using a bottom trawl on 24 October 2010. This species was characterized by having five pairs of gill openings, tail with one to three large spines, long snout length, long caudal fin, and pleated margin of nasal curtain. It is morphologically similar to Urolophus aurantiacus, but the former is distinguished from the latter by having longer caudal fin and snout length. We add P. daviesi to the Korean fish fauna and suggest the new Korean names, “Gin-kko-ri-huin-ga-o-ri-gwa”, “Gin-kko-ri-huin-ga-o-ri-sok” and “Gin-kko-ri-huin-ga-o-ri” for the family, genus and species, respectively. Key words: New record, Plesiobatididae, Plesiobatis daviesi, Korea INTRODUCTION no. 110). Here, we describe the morphological characters of P. daviesi as an addition to the list of Korean fishes. The family Plesiobatididae, belonging to order Mylio­ bastiformes consists of a single species worldwide (Jeong, 2000; Nelson, 2006; Ebert, 2014).
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]