United States Patent (10) Patent No.: US 8,883,847 B2 Hellerstein Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (10) Patent No.: US 8,883,847 B2 Hellerstein Et Al USOO8883847B2 (12) United States Patent (10) Patent No.: US 8,883,847 B2 Hellerstein et al. (45) Date of Patent: Nov. 11, 2014 (54) COMPOSITIONS AND METHODS OF FOREIGN PATENT DOCUMENTS TREATMENT USING MODULATORS OF JP A2001-72589 3, 2001 MOTONEURON DISEASES JP A2002-5223.87 T 2002 JP A2003-525854 9, 2003 (75) Inventors: Marc K. Hellerstein, Kensington, CA WO WO 2004/078144 9, 2004 (US); Patrizia A. Fanara, Oakland, CA WO WO 2005/081943 A2 9, 2005 (US) WO WO 2005,115372 12/2005 WO WO 2006/017812 A1 2, 2006 WO WO 2006/091728 A 8, 2006 (73) Assignee: KineMed, Inc., Emeryville, CA (US) WO WO 2007/081910 A2 7, 2007 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 398 days. Argyriou, A.A. et al., 2005. “Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial.”. (21) Appl. No.: 11/650,020 Neurology, vol. 64, No. 1, pp. 26-31. Bruce, K.M. et al., 2004, "Chemotherapy delays progression of (22) Filed: Jan. 5, 2007 motor neuron disease in the SOD1 G93A transgenic mouse', vol. 50, No. 3, pp. 138-142. (65) Prior Publication Data Kozhevnikova, E.V. et al., 1999, “Neuroprotective activity of US 2007/0238773 A1 Oct. 11, 2007 angiotensin-converting enzyme inhibitors during cerebral ischemia', Bulletin of Experimental Biology and Medicine, vol. 128, No. 5, pp. 1122-1124. O O Landen, J. et al., 2004, “Noscapine crosses the blood-brain barrier Related U.S. Application Data and inhibits glioblastoma CE Clinical Cancer Research, vol. (60) Provisional application No. 60/756,836, filed on Jan. 10, No. 15. 5, 2006, provisional application No. 60/756,952, filed Landen, J., et al 2002, “Noscapine alters microtubule dynamics in On Jan. 5, 2006. living cells and inhibits the progression of melanoma', vol. 62, No. s 14, pp. 4109-41 14. (51) Int. Cl. Mooraki, A., et al 2005, "Noscapine suppresses angiotensin con A6 IK3I/353 (2006.01) y inhibitors-induced cough', Nephrology, vol. 10, No. A6 IK3I/55 (2006.01) Stubblefield, M.D. et al., 2005, “Glutamine as a Neuroprotective A6IP 25/14 (2006.01) Agent in High-dose Paclitaxel-induced Peripheral Neuropathy: A A6IP 25/6 (2006.01) Clinical and Electrophysiologic Study”. Clinical Oncology, vol. 17. GOIN33/68 (2006.01) No. 4, pp. 271-276. A6 IK3I/35 (2006.01) (Continued) A6 IK3I/4748 (2006.01) CO7D 407/04 (2006.01) A6 IK3I/474 (2006.01) Primary Examiner — Sreeni Padmanabhan A6 IK3I/40 (2006.01) Assistant Examiner — Sahar Javanmard A6 IK 45/06 (2006.01) (74) Attorney, Agent, or Firm — Moran, Lewis & Bockius (52) U.S. Cl. LLP CPC ............ G0IN33/6896 (2013.01); A61 K3I/35 40704(2013.01); (2013.01); A61 K3I/4748 A61K 31/4741 (2013.01); (2013.01); C07D (7) ABSTRACT A61K 31/40 (2013.01); A61K 45/06 (2013.01) The invention disclosed herein describes a novel therapeutic USPC ....................... 514/454: 514/280: 514/211.01 target for motoneuron diseases (altered dynamics of micro (58) Field of Classification Search tubules in neurons); a method for measuring the state of USPC .......... 514/410, 411,422,454, 269.7, 71,90, activity of this therapeutic target in subjects with established, 514/385, 355, 280, 211.01 incipient, or potential motoneuron disease; the discovery of See application file for complete search history. drug agents that modulate neuronal microtubule dynamics in living Subjects with motoneuron diseases; the discovery that (56) References Cited administration of Such agents, alone or in combinations, can provide marked neuroprotective therapy for living Subjects U.S. PATENT DOCUMENTS with motoneuron diseases including delay in Symptoms and 4,818,539 A * 4, 1989 Shaw et al. ................... 424/441 prolongation of survival; and the discovery that monitoring of 5,229,394 A * 7/1993 Salazar-Grueso ............ 514,289 neuronal microtubule dynamics in Subjects with motoneuron 5,780.489 A * 7/1998 Brooks ......................... 514,369 diseases, in response to therapeutic interventions, allows 6,524,629 B1* 2/2003 Christen ....................... 424,752 diagnostic monitoring for optimization of therapeutic regi 7,572,762 B1 8/2009 Spruce et al. 2003. O166670 A1 9, 2003 BrookS-Korn men and strategy for individual Subjects or for drug trials. 2003/0228259 A1 12, 2003 Hellerstein 2006.0020440 A1 1/2006 Hellerstein 2008, OO14267 A1 1/2008 Giordano et al. 8 Claims, 25 Drawing Sheets US 8,883,847 B2 Page 2 (56) References Cited taxanes.” Journal of Biological Chemistry vol. 279, No. 48, pp. 499.40-49947. OTHER PUBLICATIONS Fanara et al., "Stabilization of Hyperdermic Microtubles is Neuroprotective in Mayotrophic Lateral Sclerosis' J. Bio. Chem. Baqiri, R. et al. "Kinesin-2 Differentially Regulates the Anterograde vol. 282, No. 32, pp. 23465-23472, 2007. Axonal Transports of Acetylcholinesterase and Choline Feit. Howard et al., “Is Tubulin a Glycoprotein’?” Biochem Biophys Acetyltransferase in Drosophila', 2006, J. Neurobiology, vol. 66, Res Comm 66:, No. 3, 1975, pp. 920-927. Trojanowski, John Q. et al., “Microtuble-stabilising drugs for therapy No. 4, pp. 378-392. of Alzheimer's disease and other neurodegenerative disorders with Ratner, N. et al. "A Role for Cyclin-Dependant Kinase(s) in the axonal transport impairments.” Expert Opin. Pharmacother: (2005) Modulation of Fast Anterograde Axonal Transport: Effects Defined 6(5):683-686. by Olomoucine and the APC Tumor Suppressor Protein' 1998, J. Wacker, Irene et al., “Microtuble-dependent transport of secretary Neuroscience, vol. 18(19):7717-1726. vesicles visualized in real time with a GFP-tagged secretory protein'. Van Laar, J.M. et al., Tweaking Microtubles to Treat Scleroderma, J. of Cell Science 110, 1453-1463 (1997). PLOS Medicine, (2005) vol. 2, p. 1230-1231. Hino, Mizuki, "Glycosylation of the Alpha and Beta Tubulin by Zeeberg B. et al., 1980, “Exchange of tuburlin dimer into rings in Sialyioligosaccharides”, Zoological Science 20: 709-715 (2003). microtuble assembly-dissasemnly.” Biochemistry vol. 19, No. 22, pp. Galbraith, J.A. et al., “Axonal transport of tubulin and actin.” Journal 5078-5086. of Neurocytology, 2000, vol. 29, pp. 889-911. Fanara, Patrizia et al., 2004, “In vivo measurement of microtuble dynamics using stable isotope labeling with heavy water. Efect of * cited by examiner U.S. Patent Nov. 11, 2014 Sheet 2 of 25 US 8,883,847 B2 CH, COO CH COO Leucine:ina XH-CH,- /-H TA CH, -CH, c / CH, Nii, CH, O ho F.G. 1B U.S. Patent Nov. 11, 2014 Sheet 3 of 25 US 8,883,847 B2 C10 e-R' H H. ROH 18 &Oy ''O18 - CC-R Cc-R SynthesisProtein Vp-R \ / / \ Y NH NH Eno (Free amino acid) (18O labeled c free amino acid) / HN \ (Protein-bound 18O-labeled free amino acid) F.G. 1C U.S. Patent Nov. 11, 2014 Sheet 4 of 25 US 8,883,847 B2 Tubulin 2H-Dimer Tubulin 2H-Polymer H2O -> OO = Dinner - MTPA Flux of Dinner 21 Polymer into Polymer - - - - - - T Polymer + MTPA Time FIG. 2 U.S. Patent Nov. 11, 2014 Sheet 5 Of 25 US 8,883,847 B2 A) 2HO Label followed by Brain Dissection Cytosolic Extract MAP2 antibody High-speed Centrifugation Microtubule fraction Soluble Tubulin Tau antibody TAU Antibody Coupledgel Unbound Pure Tubulin OOut Bound (MAP2- and fraffi CS- fractions) (Tau-fraction) GC-MS Pure Tubulin Pure Tubulin GC-MS GC-MS C) 25 COrtex 25 HippocampuS 20 Dimer - 20 SS -1. SS Dimer E 15 S 15 C o i 10 - POFolymer gs 10 Polymer o (tau-MTs) s (tau-MTs) 5 --- S. Polymer g 5 Polymer (tau-nonassociated (tau-nonassociated 0 MTs) U- O MTs) O 5 10 15 20 25 O 5 10 15 20 25 Time (h) Time (h) FIG 3 U.S. Patent Nov. 11, 2014 Sheet 6 of 25 US 8,883,847 B2 Tau-MTS STOP-MTS (growth cone) (axonal shaft) 5 WT 2 4 SOD1 G93A 3 5 2 1 d O 0 a 6 Tal-MS 6 STOP-MTS (axonal shaft) S. 5 (growth cone) 5 WT 4 SOD1 GA 3 3 2 2 1 1 0 O Ta-Ms STOPMTs g (growth cone) (axonal shaft) s 5 As WT a 4 SOD1 Gig 3 2 e O123456 FIG. 4 U.S. Patent Nov. 11, 2014 Sheet 7 of 25 US 8,883,847 B2 6 S 5 Sl -o- Wild type E. 4 -A- SOD1 G93A C 3 s of 2 6 8 10 12 14 16 18 Age (Weeks) FIG. 5 U.S. Patent Nov. 11, 2014 Sheet 8 of 25 US 8,883,847 B2 -o- Wild type All SOD1 G93A treated (MK801) -A - SOD1 G93A 6 5 5 C -- Wildtype 4 - SOD1 G93A - 3 treated (NoScapine) -- SOD1 G93A 2 1 6 8 10 12 14 16 18 6 5 5 -o- Wildtype 4 SOD1 G93A 5 treated (MK801/NoScapine) 3 -Al SOD1 G93A s i 2 e1 1 6 8 10 12 14 16 18 Age (Weeks) FIG. 6 U.S. Patent Nov. 11, 2014 Sheet 9 of 25 US 8,883,847 B2 WT Tal-MTS (Er SOD1 G93AUntreated S. Co withSOD1 MK801/Noscapine Treated 3 1 FIG. 7 U.S. Patent Nov. 11, 2014 Sheet 11 of 25 US 8,883,847 B2 NMDA-Receptor Antagonists is co,h N 1. co C Honoquinolinic Acid POH, SPO, O C 3. NCO, HN Co, 1 "Co.H OC HN1 co, (R)-AP5 (R)-CPP-ene PBPDa COCC CH, C "AllNH, CH, C.HNbi, MK-8) Memantine Ketamine FOO C iO C Coro H C 1 "co,H L-701,3243 L-689,560 GW196771A2S pH C Ro 25-698 HO C."Olu?) s C Ifenprodil O HO NS OH Co.
Recommended publications
  • Accepted Manuscript
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Nocturnal gamma-hydroxybutyrate reduces cortisol awakening response and morning kyrunenine pathway metabolites in healthy volunteers Dornbierer, Dario A ; Boxler, M ; Voegel, C D ; Stucky, Benjamin ; Steuer, A E ; Binz, T M ; Baumgartner, M R ; Baur, Diego M ; Quednow, B B ; Kraemer, T ; Seifritz, E ; Landolt, Hans-Peter ; Bosch, O G Abstract: Background Gamma-hydroxybutyrate (GHB; or sodium oxybate) is an endogenous GHB- /GABAB receptor agonist. It is approved for the application in narcolepsy and has been proposed for potential treatment of Alzheimer’s and Parkinson’s disease, fibromyalgia, and depression, all of which involve neuro-immunological processes. Tryptophan catabolites (TRYCATs), the cortisol awakening re- sponse (CAR), and brain derived neurotrophic factor (BDNF) have been suggested as peripheral biomark- ers of neuropsychiatric disorders. GHB has been shown to induce a delayed reduction of T helper and natural killer cell counts and alter basal cortisol levels, but GHB’s effects on TRYCATs, CAR and BDNF are unknown. Methods Therefore, TRYCAT and BDNF serum levels as well as CAR and the affec- tive state (Positive and Negative Affect Schedule, PANAS) were measured in the morning after asingle nocturnal dose of GHB (50 mg/kg body weight) in 20 healthy male volunteers in a placebo-controlled, balanced, randomized, double-blind, cross-over design. Results In the morning after nocturnal GHB administration, the TRYCATs indolelactic acid, kynurenine, kynurenic acid, 3-hydroxykynurenine, and quinolinic acid, the 3-hydroxykynurenine to kynurenic acid ratio and the CAR were significantly re- duced (p<0.05-0.001, Benjamini-Hochberg corrected).
    [Show full text]
  • Cannabinoid As Potential Aromatase Inhibitor Through Molecular Modeling and Screening for Anti-Cancer Activity
    Cannabinoid as Potential Aromatase Inhibitor Through Molecular Modeling and Screening for Anti-Cancer Activity Sudipta Baroi1, Achintya Saha2, Ritesh Bachar3 and Sitesh C Bachar4 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka Dhaka-1000, Bangladesh 2Department of Chemical Technology, Pharmaceutical & Fine Chemical Technology Division University of Calcutta, India 3Department of Pharmacy, School of Science and Engineering, University of Information Technology and Sciences (UITS), Dhaka-1212, Bangladesh 4Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh (Received: April 15, 2020; Accepted: June 2, 2020; Published (web): June 28, 2020) ABSTRACT: Inhibition of aromatase (CYTP450), a key enzyme in the estrogen biosynthesis, could result in regression of estrogen-dependent tumors and even prevent the promotion of breast cancer. The present research has been designed for searching a potent chemical moiety from natural sources to inhibit aromatase enzyme, the over- functionality of which causes the breast cancer. Cannabis sativa contains a very much promising group of cannabinoids with more than 66 compounds with reported anticancer property and for the search of a target specific potent aromatase inhibitor, 61 cannabinoids from C. sativa were selected. The Structures Data File (SDF) of these ligand molecules were subjected to docking studies at the binding site of aromatase X-ray crystallographic structure based on lower resolution of the protein crystal structure and higher docking accuracy, predicted by calculating the correlation between experimental activities and Glide dock scores and compared with the standard aromatase ligand androstenedione and aromatase inhibitor fadrozole with existing drug for breast cancer treatment. The best docked pose of each ligand was selected on the basis of the highest dock score related to the binding free energies of the internal dataset compounds as compared to their observed activities.
    [Show full text]
  • CBD (Cannabidiol)
    TRANSPORTATION RESEARCH BOARD Driving Toward the Truth - Dispelling the Myths About Cannabis Products February 10, 2021 @NASEMTRB #TRBwebinar PDH Certification The Transportation Research Board has met the standards and Information: requirements of the Registered Continuing Education Providers •1.5 Professional Development Program. Credit earned on completion Hour (PDH) – see follow-up of this program will be reported to email for instructions RCEP. A certificate of completion will •You must attend the entire be issued to participants that have registered and attended the entire webinar to be eligible to receive session. As such, it does not include PDH credits content that may be deemed or •Questions? Contact Reggie construed to be an approval or Gillum at [email protected] endorsement by RCEP. #TRBwebinar Learning Objectives 1. Identify impacts of the Farm Bill on use of THC and CBD products 2. Describe the toxicology of THC and CBD products 3. Discuss how THC and CBD products affect driving performance and crash risk #TRBwebinar TRB Standing Committee on Impairment in Transportation (ACS50) TRB Webinar: Driving Toward the Truth - Dispelling the Myths About Cannabis Products Dr. Barry K. Logan Executive Director, Center for Forensic Science Research and Education (CFSRE); Senior Vice President of Forensic Sciences, and Chief Scientist at NMS Labs Michelle Peace, Ph.D. Associate Professor and PI, Laboratory for Forensic Toxicology Research Department of Forensic Science, Virginia Commonwealth University Dr. Darrin Grondel Vice President,
    [Show full text]
  • Medical Marijuana: High Expectations
    Medical Marijuana: High Expectations Dr. Ally Dering-Anderson, RP University of Nebraska College of Pharmacy August 2019 What we know What we don’t Speaker Contact Information Dr. Ally Dering-Anderson, RP Clinical Associate Professor of Pharmacy University of Nebraska College of Pharmacy 986145 Medical Center College of Pharmacy Department of Pharmacy Practice Omaha, NE 68198-6145 [email protected] Speaker Disclosures Dr. Ally is on the faculty of the University of Nebraska College of Pharmacy Department of Pharmacy Practice She is the Senior Partner of BBfN, a health and safety consulting company She has no conflict in regard to medical use of cannabinoids “Off Label Use” In order to assure that there are no problems with the accreditation of this program nor problems caused for the accrediting body here goes: There are 3 approved products containing one or more chemicals found in the marijuana plant. Epidiolex (cannabidiol) Marinol Cesamet We will NOT discuss uses for these 3 approved products beyond the labeling. We will discuss cannabinoids not found in drug products currently approved by the FDA. The concept of being “off label” for these products is illogical, as there is no label to follow. Got it? Bibliography: #’s 1, 2, 3 A note from the CE clinical reviewers … “Medical marijuana is considered a controversial topic in CME. When a CME activity includes information about an approach to diagnosis or treatment that is not generally accepted, it is allowable to facilitate debate and discussion about the approach, but it is not allowable to advocate for the test or treatment, or teach clinicians how or when to use it.” Trust me, I am not advocating for any test - - in fact, I’m going to slam one.
    [Show full text]
  • Functional Heterogeneity Within Rat Orbitofrontal Cortex in Reward Learning and Decision Making
    The Journal of Neuroscience, November 1, 2017 • 37(44):10529–10540 • 10529 Viewpoints Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making X Alicia Izquierdo Department of Psychology, Brain Research Institute, Integrative Center for Learning and Memory, and Integrative Center for Addictions, Universityof California at Los Angeles, Los Angeles, California 90095 Rat orbitofrontal cortex (OFC) is located in the dorsal bank of the rhinal sulcus, and is divided into the medial orbital area, ventral orbital area, ventrolateral orbital area, lateral orbital area, dorsolateral orbital area, and agranular insular areas. Over the past 20 years, there has been a marked increase in the number of publications focused on the functions of rat OFC. While collectively this extensive body of work has provided great insight into the functions of OFC, leading to theoretical and computational models of its functions, one issue that has emerged relates to what is defined as OFC because targeting of this region can be quite variable between studies of appetitive behavior, evenwithinthesamespecies.AlsoapparentisthatthereisanoversamplingandundersamplingofcertainsubregionsofratOFCforstudy, andthiswillbedemonstratedhere.TheintentoftheViewpointistosummarizestudiesinratOFC,giventhediversityofwhatgroupsrefer to as “OFC,” and to integrate these with the findings of recent anatomical studies. The primary aim is to help discern functions in reward learning and decision-making, clearing the course for future empirical work. Key words: basolateral amygdala; cognitive flexibility; devaluation; OFC; prefrontal cortex; reversal learning Introduction 2014), confidence estimates (Kepecs et al., 2008), imagination Over the past 20 years, there has been a marked increase in the and insight (Takahashi et al., 2013; Lucantonio et al., 2014, 2015), number of publications focused on the functions of the orbito- Bayesian belief (Jang et al., 2015), cognitive map of task space frontal cortex (OFC) (Fig.
    [Show full text]
  • Crosstalk Between Cannabinoid Receptors and Epidermal
    CROSSTALK BETWEEN CANNABINOID RECEPTORS AND EPIDERMAL GROWTH FACTOR RECEPTOR IN NON-SMALL CELL LUNG CANCER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By JANANI RAVI Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2015 Dissertation Committee: Dr. Ramesh Ganju, Advisor Dr. Kalpana Ghoshal Dr. Xianghong Zou Dr. Sujit Basu Copyright by Janani Ravi 2015 Abstract (i) The endocannabinoid anandamide (AEA), a neurotransmitter was shown to have anti- cancer effects. Fatty acid amide hydrolase (FAAH) metabolizes AEA and decreases its anti-tumorigenic activity. In this study, we have analyzed the role of FAAH inhibition in non-small cell lung cancer (NSCLC). We have shown that FAAH and CB1 receptor which is activated by AEA are expressed in lung adenocarcinoma patient samples and NSCLC cell lines A549 and H460. Since the synthetic analogue of anandamide (Met-F- AEA) did not possess significant anti-tumorigenic effects, we used Met-F-AEA in combination with FAAH inhibitor URB597 which significantly reduced EGF (epidermal growth factor)-induced proliferative and chemotactic activities in vitro when compared to anti-tumorigenic activity of Met-F-AEA alone. Further analysis of signaling mechanisms revealed that Met-F-AEA in combination with URB597 inhibits activation of EGFR and its downstream signaling ERK, AKT and NF-kB. In addition, it inhibited MMP2 secretion and stress fiber formation. We have also shown that the Met-F-AEA in combination with URB597 induces G0/G1 cell cycle arrest by downregulating cyclin D1 and CDK4 expressions, ultimately leading to apoptosis via activation of caspase-9 and PARP.
    [Show full text]
  • What Is Delta-8 THC?? Cannabinoid Chemistry 101
    What is Delta-8 THC?? Cannabinoid Chemistry 101 National Conference on Weights and Measures Annual Meeting - Rochester, NY Matthew D. Curran, Ph.D. July 21, 2021 Disclaimer Just to be clear… • I am a chemist and not a lawyer so: • This presentation will not discuss the legal aspects of Δ8-THC or DEA’s current position. • This presentation will not discuss whether Δ8-THC is considered “synthetic” or “naturally occurring.” • This is not a position statement on any issues before the NCWM. • Lastly, this should only be considered a scientific sharing exercise. Florida Department of Agriculture and Consumer Services 2 Cannabis in Florida Cannabis Syllabus • What is Cannabis? • “Mother” Cannabinoid • Decarboxylation • Relationship between CBD and THC • What does “Total” mean? • Dry Weight vs. Wet Weight • What does “Delta-9” mean? • Relationship between “Delta-8” and “Delta-9” • CBD to Delta-8 THC • Cannabinoid Chemistry 202… Florida Department of Agriculture and Consumer Services 3 Cannabis Cannabis • Cannabis sativa is the taxonomic name for the plant. • The concentration of Total Δ9-Tetrahydrocannabinol (Total Δ9-THC) is critical when considering the varieties of Cannabis sativa. • Hemp – (Total Δ9-THC) 0.3% or less • Not really a controversial term, “hemp” • Marijuana/cannabis – (Total Δ9-THC) Greater than 0.3% • Controversial term, “marijuana” • Some states prohibit the use of this term whereas some states have it in their laws. • Some states use the term “cannabis.” • Not italicized • Lower case “c” Florida Department of Agriculture and
    [Show full text]
  • 2 Cannabis Sativa L
    CANNABIS SATIVA 29 2 Cannabis sativa L. Common Names Almindelig hamp Denmark Harilik kanep Slovenia Asa Japan Haschischpflanze Germany Bang Egypt Hash United Kingdom Bhaang India Hashas Turkey Bhaango Nepal Hashish Morocco Canamo indico Spain Hemp United Kingdom Canapa indica Italy Hennep Netherlands Canhamo Portugal Hind kinnabi Turkey Cares Nepal Huo ma cao China Chanvre cultive France Huo ma China Chanvre de l’Inde France Indian hemp United Kingdom Chanvre France Indische hennep Netherlands Chanvrier sauvage France Indischer hanf Germany Charas India Indisk hamp Sweden Churras India Kannabis Finland Da ma cao China Kannabisu Japan Da ma ren China Kerp Albania Da ma China Kinnab Turkey Dagga South Africa Konopie siewne Poland Dansk pot Denmark Konopie Poland Echter hanf Germany Konoplja Slovenia Esrar Turkey Kultur hanf Germany Gaanjaa Nepal Maconha Portugal Gajiimaa Nepal Marihana Netherlands Ganja Guyana Marihouava Greece Ganja India Marihuana Poland Grifa Spain Marihuana Bulgaria Hachis Spain Marihuana Croatia Hamp Denmark Marihuana Czech Republic Hamp Norway Marihuana Denmark Hampa Sweden Marihuana France Hampjurt Iceland Marihuana Germany Hamppu Finland Marihuana Hungary Hanf Germany Marihuana Mexico From: Medicinal Plants of the World, vol. 3: Chemical Constituents, Traditional and Modern Medicinal Uses By: I. A. Ross © Humana Press Inc., Totowa, NJ 29 30 MEDICINAL PLANTS OF THE WORLD Marihuana Russia Porkanchaa Thailand Marihuana Serbia Pot Denmark Marihuana Spain Qinnib Arabic countries Marihuana Ukraine Riesen hanf Germany Marihuana United States Seruma erva Portugal Marijuana France Taima Japan Marijuana Italy Til Arabic countries Marijuana Mexico Vrai chanvre France Marijuana Portugal Weed Guyana Marijuana Sweden Xian ma China Mashinin Japan Ye ma China Navadna konoplja Slovenia BOTANICAL DESCRIPTION types of plants are numerous varieties that Cannabis sativa is an annual herb of the differ from the main one in height, extent MORACEAE family that grows to 5 m tall.
    [Show full text]
  • Product Update Price List Winter 2014 / Spring 2015 (£)
    Product update Price list winter 2014 / Spring 2015 (£) Say to affordable and trusted life science tools! • Agonists & antagonists • Fluorescent tools • Dyes & stains • Activators & inhibitors • Peptides & proteins • Antibodies hellobio•com Contents G protein coupled receptors 3 Glutamate 3 Group I (mGlu1, mGlu5) receptors 3 Group II (mGlu2, mGlu3) receptors 3 Group I & II receptors 3 Group III (mGlu4, mGlu6, mGlu7, mGlu8) receptors 4 mGlu – non-selective 4 GABAB 4 Adrenoceptors 4 Other receptors 5 Ligand Gated ion channels 5 Ionotropic glutamate receptors 5 NMDA 5 AMPA 6 Kainate 7 Glutamate – non-selective 7 GABAA 7 Voltage-gated ion channels 8 Calcium Channels 8 Potassium Channels 9 Sodium Channels 10 TRP 11 Other Ion channels 12 Transporters 12 GABA 12 Glutamate 12 Other 12 Enzymes 13 Kinase 13 Phosphatase 14 Hydrolase 14 Synthase 14 Other 14 Signaling pathways & processes 15 Proteins 15 Dyes & stains 15 G protein coupled receptors Cat no. Product name Overview Purity Pack sizes and prices Glutamate: Group I (mGlu1, mGlu5) receptors Agonists & activators HB0048 (S)-3-Hydroxyphenylglycine mGlu1 agonist >99% 10mg £112 50mg £447 HB0193 CHPG Sodium salt Water soluble, selective mGlu5 agonist >99% 10mg £59 50mg £237 HB0026 (R,S)-3,5-DHPG Selective mGlu1 / mGlu5 agonist >99% 10mg £70 50mg £282 HB0045 (S)-3,5-DHPG Selective group I mGlu receptor agonist >98% 1mg £42 5mg £83 10mg £124 HB0589 S-Sulfo-L-cysteine sodium salt mGlu1α / mGlu5a agonist 10mg £95 50mg £381 Antagonists HB0049 (S)-4-Carboxyphenylglycine Competitive, selective group 1
    [Show full text]
  • Invited Review Article การใช้กัญชาเพื่อประโยชน์ทางการแพทย์
    Medical Uses of Cannabis IJPS Sripanidkulchai B. Vol. 15 No. 4 October – December 2019 _______________________________________________________________________________________________ Invited Review Article การใช้กัญชาเพื่อประโยชน์ทางการแพทย์ 1 บงั อร ศรีพานิชกลุ ชยั * 1 ศูนย์วิจัยและพัฒนาผลิตภัณฑ์สุขภาพจากสมุนไพร คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น ต.ในเมือง อ.เมือง จ.ขอนแก่น 40002 * ติดต่อผนู้ ิพนธ ์ : ศูนย์วิจัยและพัฒนาผลิตภัณฑ์สุขภาพจากสมุนไพร คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น ต.ในเมือง อ.เมือง จ.ขอนแก่น 40002 อีเมล: [email protected] บทคดั ย่อ การใช้กัญชาเพื่อประโยชน์ทางการแพทย์ บังอร ศรีพานิชกุลชัย1* ว. เภสัชศาสตร์อีสาน 2562; 15(4) : 1-26 รับบทความ : 11 กันยายน 2562 แก้ไขบทความ: 21 ตุลาคม 2562 ตอบรับ: 14 พฤศจิกายน 2562 กัญชาเป็นพืชในวงศ์แคนนาบาซีที่ขึ้นได้ดีในเขตอากาศร้อน เช่น ประเทศไทย และจัดเป็นพืชเสพติดที่เคยใช้เป็นยารักษาโรค แต่ต่อมามกี ารหา้ มใชเ้ น่ืองจากทา ใหเ้ กดิ การเสพตดิ การศกึ ษาต่อมาพบว่าสารสา คญั กลุ่มแคนนาบนิ อยดม์ ฤี ทธติ์ ่อร่างกายหลายประการ โดยที่สารสาคัญที่อยู่ในความสนใจคือ ทีเอชซี (delta-9-tetracannabinol, THC) ซง่ึ มฤี ทธติ์ ่อจติ ประสาทและซบี ดี ี (cannabidiol, CBD) ที่ ไม่มฤี ทธติ์ ่อจติ ประสาท ปัจจุบนั มผี ลงานวจิ ยั ช้แี นะว่าสารทงั้ สองชนิดสามารถน ามาใช้เป็นยารกั ษาโรคและอาการแสดงไดห้ ลายชนิด ได้แก่ อาการปวดประสาท อาการหดเกร็งของกล้ามเนื้อ ต้านการชัก อาการคลื่นไส้อาเจียน เพิ่มความอยากอาหาร โดยมีกลไกการทางาน ผ่านตัวรับเอนโดแคนตาบินอยด์ที่มีบทบาทสาคัญในการควบคุมภาวะโฮมิโอสิสของร่างกาย บทความนี้จึงมีวัตถุประสงค์ที่จะรวบรวมสรุป องค์ความรู้ที่เป็นปัจจุบันเกี่ยวกับกัญชาเพื่อให้เกิดความเข้าใจที่ถูกต้องในด้านการน ากัญชามาใช้เป็นประโยชน์ทางการแพทย์
    [Show full text]
  • Table of Natural Cannabinoids
    Table of Natural Cannabinoids Scientific research continues to develop and further identify individual cannabinoids in cannabis strains and how they affect symptoms of illnesses suffered by patients. The table below identifies the chemical properties of the natural cannabinoids found in the average strains of cannabis. Levels of each of these chemicals will vary with varietal strain, growing method, and plant age. Individual cannabinoids can be enhanced or eliminated depending on need. Cannabigerol- type (CBG) Cannabigerol Cannabigerol Cannabigerovarin (E)-CBG-C monomethyl (E)-CBGV-C 5 Cannabinerolic 3 ether acid A (E)-CBGM-C 5 (Z)-CBGA-C A A 5 Cannabigerolic Cannabigerolic Cannabigerovarinic acid acid A acid A A (E)-CBGA-C5 A monomethyl (E)-CBGVA-C3 A ether (E)-CBGAM- C5 A Cannabichrom ene-type (CBC) (±)- (±)- Cannabichromen (±)- Cannabivarichromene, (±)- e Cannabichrome (±)- Cannabichrome CBC-C5 nic acid A Cannabichromevarin varinic CBCA-C5 A CBCV-C3 acid A CBCVA-C3 A Cannabidiol- type (CBD) 1 | Page (−)-Cannabidiol Cannabidiol Cannabidiol-C4 (−)- Cannabidiorc CBD-C5 momomethyl CBD-C4 Cannabidivarin ol ether CBDV-C3 CBD-C1 CBDM-C5 Cannabidiolic Cannabidivarini acid c acid CBDA-C5 CBDVA-C3 Cannabinodiol- type (CBND) Cannabinodiol Cannabinodivar CBND-C5 in CBND-C3 Tetrahydrocan nabinol-type (THC) 9 9 9 Δ - Δ - Δ - Δ9- Tetrahydrocanna Tetrahydrocan Tetrahydrocannabivarin 9 Tetrahydrocan binol nabinol-C4 Δ -THCV-C3 9 9 nabiorcol Δ -THC-C5 Δ -THC-C4 9 Δ -THCO-C1 9 9 Δ -Tetrahydro- Δ9-Tetrahydro- Δ -Tetrahydro- Δ9-Tetrahydro- cannabinolic
    [Show full text]
  • Ligand-Gated Ion Channels
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels. British Journal of Pharmacology (2015) 172, 5870–5903 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Ligand-gated ion channels Stephen PH Alexander1, John A Peters2, Eamonn Kelly3, Neil Marrion3, Helen E Benson4, Elena Faccenda4, Adam J Pawson4, Joanna L Sharman4, Christopher Southan4, Jamie A Davies4 and CGTP Collaborators L 1 School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, N 2Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/ doi/10.1111/bph.13350/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage- gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets.
    [Show full text]