The Early Robots Classes of Robots
The Early Robots Classes of Robots Slave manipulator teleoperated by a human master Limited-Sequence manipulator Teach-replay robot Computer-controlled robot Intelligent robot Research Issues Hardware (out of scope) Motor Control Mobility Surfaces – smooth or rough, indoor or outdoor, stairs/holes, obstacles Wheels, legs, tracks Manipulation gripper design, force-feedback, grasp pose Sensing contact/non-contact sensors, laser range-finders, visible light cameras, structured light, sonar Planning representation and mapping of 3D world, navigation, path with workspace, task satisfaction, obstacle avoidance Control integration of motor control, , sensing, navigation, communication, execution monitoring, failure detection/correction Communication human interface, results, monitoring, task specification Outline Lecture 1; Bristol’s Tortoise (1948-1949) Johns Hopkins’ Ferdinand & Beast (1960) Stanford Cart (1970-1979) SRI’s Shakey (1966 – 1972) Max Planck Tubingen’s Braitenburg’s Vehicles (1984) U Munich’s VaMoRs (1986+) Lecture 2: Honda’s P3 (1986+) MIT’s Subsumption Robots (1986+) CMU’s Dante II (1994-1999) MIT’s Kismet (1998-2000) JPL’s CLARAty and Rocky 7 (2000) Walter’s tortoises (1948-9) • Grey Walter wanted to prove that rich connections between a small number of brain cells could give rise to very complex behaviors - essentially that the secret of how the brain worked lay in how it was wired up. • His first robots, which he used to call "Machina Speculatrix" and named Elmer and Elsie, were constructed between 1948 and 1949 and were often described as tortoises due to their shape and slow rate of movement - and because they 'taught us’ about the secrets of organisation and life. • The three-wheeled tortoise robots were capable of phototaxis, by which they could find their way to a recharging station when they ran low on battery power.
[Show full text]