Open Research Online Oro.Open.Ac.Uk

Total Page:16

File Type:pdf, Size:1020Kb

Open Research Online Oro.Open.Ac.Uk Open Research Online The Open University’s repository of research publications and other research outputs Phylogenetics and Phylogeography in the Planktonic Diatom Genus Chaetoceros Thesis How to cite: De Luca, Daniele (2019). Phylogenetics and Phylogeography in the Planktonic Diatom Genus Chaetoceros. PhD thesis The Open University. For guidance on citations see FAQs. c 2019 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.00010bf4 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk THE OPEN UNIVERSITY, MILTON KEYNES (UK) STAZIONE ZOOLOGICA ANTON DOHRN, NAPLES (IT) School of Life, Health and Chemical Sciences Doctor of Philosophy (Ph.D.) Phylogenetics and Phylogeography in the Planktonic Diatom Genus Chaetoceros Daniele De Luca (M.Sc.) Personal ID: F3576948 Director of Studies External Supervisor Dr. Wiebe H.C.F. Kooistra Prof. Dr. Christine A. Maggs Stazione Zoologica Anton Dohrn, IT Bournemouth University, UK Internal Supervisor Dr. Diana Sarno Stazione Zoologica Anton Dohrn, IT September 2019 II Abstract The initial aims of this thesis were to assess the systematics of the planktonic diatom genus Chaetoceros and the phylogeographic patterns of selected species in this genus across spatial and temporal scales. As expected in every experiment, some initial ideas have been pursued as they were; others have taken a different route and led to different questions. Consequently, the systematics of Chaetoceros has become a multigene phylogeny and a revision of the classical taxonomic scheme for the family Chaetocerotaceae (Chapter II). Then, the phylogeographic approach, initially meant as a Sanger sequencing of a few genes from specimens collected around the world, turned into the analysis of the C. curvisetus cryptic species complex by using an approach which combines haplotype networks and metabarcoding data (Chapter IV). The mapping of this complex against a temporal metabarcoding dataset (MareChiara, Gulf of Naples, IT) has become a story of concerted evolution and has been extended to different Chaetoceros species and supported by a single strain 18S-V4 high throughput sequencing (Chapter V). Amid these experiments, the potential of metabarcoding data for biological recording was explored and tested in the whole genus Chaetoceros to assess diversity and distribution (Chapter III). Such data were integrated with classical ones from public repositories and literature and used to produce, among the other results, distribution maps of Chaetoceros species. III IV To my Mom, For having taken on so many burdens, allowing me to fully dedicate myself to this thesis For having endured me during my rainy days For having surrendered to the constant entry of books in the house: one day all these books will drive us away. V VI Acknowledgements It is almost impossible to thank all the people who made my time at the SZN an unforgettable and great experience. Most of them contributed with a simple “buongiorno”, a smile, or a chat on the terrace, and to them goes my gratitude. Others occupy a more special place in my heart. Therefore, my “special” thanks go… …To my Director of Studies, Dr. Wiebe Kooistra, who gave me the opportunity to carry out my Ph.D. research and the freedom to develop my ideas, showing me the way, provide guidance and alternative routes, and not dictating the rules. This is the best gift I could have ever received. … To my internal supervisor, Dr. Diana Sarno, for the taxonomic knowledge she shared with me, and her passion for diatoms, which she transmitted to me and which inspired me to immerse myself fully into the diversity of diatoms and, in particular, Chaetoceros. … To my external supervisor, Prof. Dr. Christine A. Maggs, for the time spent together during her visits at the SZN, talking about my project, science in general and ordinary life. Her suggestions and enthusiasm were pure positive energy that prompted me to do better and better. …To Dr. Roberta Piredda, for the invaluable time she invested in me teaching, discussing, listening and for her friendship. Thanks to her, I have domesticated the untamed beasts of “Linux”, “batching”, “server” and “big data”, I was introduced to the –omics world, and looked with new eyes to the ecology of communities. I own her everything I know about metabarcoding and much more about evolutionary methods for the study of biodiversity. Someone said: “together you are war machines”. Nothing more true. … To Carmen Minucci, for the training in the lab and the constant help in carrying it on. VII … To Dr. Grazia Quero, for being my friend and the best office partner I could ever have desired. Thank you for introducing me to the metagenomics world and for the constant help every time the machine took control over the man. … To Dr. Isabella D’Ambra, for the morning chats and the courage with which she faces life every day. You are an example of success. … To the old and new people of the Procaccini lab, my first house at the SZN: Gabriele, Miriam, Chiara, Emanuela, Domenico, Gaetano, Lazaro, Marlene, Lucia, Roberto, Jessica... Among you are head of departments, researchers, post-docs, but there is no “Dr” because you will be always my second family first, and then the brilliant scientists and lovely persons I have ever met. I am proud to have been a Procaccinidae. … To Dr. Graziano Fiorito, my first “official” mentor at SZN for the esteem and affection he has always shown to me. I was proud to be “his compulsive student”. … To Pamela, Elena, Giovanna, Ruth, Caitlin, Paola and Andrea of the “OctoLab” for being my friends and all the lunches and “mozzarella days” we had together. Pam, we started this adventure almost together several years ago and I am proud of how far you went. The spirit of my “Pam!” along the corridors will accompany your for many years to come. … To the people of the SBM: the big boss, Dr. Elio Biffali, who made me a better molecular biologist with his original way of teaching; Dr. Pasquale De Luca, for adopting me as “cousin” and witnessing all my feats; Elvira Mauriello and Raimondo Pannone, for all the support in molecular biology techniques and the chats and laughs together. I own you thousands of DNA sequences! … To Gabriella Grossi and Daniela Consiglio for the support in the life as Ph.D. student and student’s representative the first, and as reference student for the invited speakers the latter. Thanks for the passion you have for your work and the kindness showed. VIII Table of Contents Chapter I - Introduction 1.1. Diversity, the hallmark of living organisms 3 1.1.1. Diatom diversity and evolution 5 1.2. The species problem 8 1.2.1. Species concepts in diatoms 11 1.3. Do species really exist? 14 1.4. The need for classification 16 1.5. DNA barcoding 18 1.6. From barcodes to metabarcodes 20 1.6.1. DNA barcoding and metabarcoding in diatoms 21 1.7. Case study: the planktonic diatom family Chaetocerotaceae, with emphasis on the genus Chaetoceros 24 1.7.1. Fossil record of Chaetoceros 27 1.7.2. The ecological and evolutionary importance of Chaetoceros 28 1.7.3. Aim of Ph.D. thesis 30 References 31 Chapter II - Inferring the evolutionary history of Chaetocerotaceae 2.1. Introduction 55 2.1.1. Systematics of Chaetocerotaceae 55 2.2. Materials and methods 58 2.2.1. Taxon sampling, outgroups selection and DNA extraction 58 2.2.2. Selection of genes, amplification and sequencing 59 2.2.3. Sequence editing and alignment 61 2.2.4. Nucleotide composition and substitution saturation analyses 62 IX 2.2.5. Model selection and phylogenetic inference 62 2.2.6. Morphological sections and species assignment 63 2.3. Results 64 2.3.1. Dataset characteristics 64 2.3.2. Assignment of species to sections 67 2.3.3. Nuclear, plastid and mitochondrial phylogenies 67 2.3.4. Concatenated phylogenies 68 2.3.5. Comparison between morphological sections and molecular clades 70 2.4. Discussion 73 2.4.1. General comments to the dataset 73 2.4.2. Phylogenetic position of the genera Bacteriastrum and Chaetoceros 75 2.4.3. Subgeneric division 75 2.4.4. The sectional division 77 2.4.5. Future directions 83 References 84 Appendix II 95 Chapter III - Assessing diversity and distribution in Chaetoceros: integration of classical and novel strategies 3.1. Introduction 129 3.1.1. Primary Biodiversity Data: recording the occurrence of species 129 3.1.2. Primary Biodiversity Data for planktonic species 130 3.1.3. Aim of this work 133 3.2. Materials and methods 134 X 3.2.1. Data collected from available public repositories, literature and checklists 134 3.2.2. Data generated from molecular sources 136 3.3. Results 138 3.3.1. Data collected from available public repositories, literature and checklists 138 3.3.2. Data generated from molecular sources 142 3.4. Discussion 146 3.4.1. Global distribution of Chaetoceros 146 3.4.2. Abundance of Chaetoceros at global scale 148 3.4.3. Integration of literature and metabarcoding data: three study cases in Chaetoceros 149 3.4.4. Assessing species distribution in Chaetoceros 151 3.4.5. Future directions 151 References 152 Appendix III 163 Chapter IV - Resolving the Chaetoceros curvisetus cryptic species complex 4.1. Introduction 177 4.1.1. Cryptic species complexes: origin, distribution and methodology of study 177 4.1.2.
Recommended publications
  • Redalyc.Marine Diatoms from Buenos Aires Coastal Waters (Argentina). V
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Sunesen, Inés; Hernández-Becerril, David U.; Sar, Eugenia A. Marine diatoms from Buenos Aires coastal waters (Argentina). V. Species of the genus Chaetoceros Revista de Biología Marina y Oceanografía, vol. 43, núm. 2, agosto, 2008, pp. 303-326 Universidad de Valparaíso Viña del Mar, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=47943208 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista de Biología Marina y Oceanografía 43(2): 303-326, agosto de 2008 Marine diatoms from Buenos Aires coastal waters (Argentina). V. Species of the genus Chaetoceros Diatomeas marinas de aguas costeras de Buenos Aires (Argentina). V. Especies del género Chaetoceros Inés Sunesen1, David U. Hernández-Becerril2 and Eugenia A. Sar1, 3 1Departamento Científico Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900, La Plata, Argentina 2Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apdo. postal 70-305, México, D. F. 04510, México 3Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina [email protected] Resumen.- El género Chaetoceros es un componente Abstract.- The genus Chaetoceros is an important importante del plancton marino, de amplia distribución mundial component of the marine plankton all over the world in terms en términos de diversidad y biomasa.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Checklist of Diatoms (Bacillariophyceae) from The
    y & E sit nd er a iv n g Licea et al., J Biodivers Endanger Species 2016, 4:3 d e o i r e B d Journal of DOI: 10.4172/2332-2543.1000174 f S o p l e a c ISSN:n 2332-2543 r i e u s o J Biodiversity & Endangered Species Research Article Open Access Checklist of Diatoms (Bacillariophyceae) from the Southern Gulf of Mexico: Data-Base (1979-2010) and New Records Licea S1*, Moreno-Ruiz JL2 and Luna R1 1Universidad Nacional Autónoma de México, Institute of Marine Sciences and Limnology, Mexico 04510, D.F., Mexico 2Universidad Autónoma Metropolitana-Xochimilco, C.P. 04960, D.F., Mexico Abstract The objective of this study was to compile a coded checklist of 430 taxa of diatoms collected over a span of 30 years (1979-2010) from water and net-tow samples in the southern Gulf of Mexico. The checklist is based on a long-term survey involving the 20 oceanographic cruises. The material for this study comprises water and net samples collected from 647 sites. Most species were identified in water mounts and permanent slides, and in a few cases a transmission or scanning electron microscope was used. The most diverse genera in both water and the net samples were Chaetoceros (44 spp.), Thalassiosira (23 spp.), Nitzschia (25 spp.), Amphora (16 spp.), Diploneis (16 spp.), Rhizosolenia (14 spp.) and Coscinodiscus (13 spp.). The most frequent species in net and water samples were, Actinoptychus senarius, Asteromphalus heptactis, Bacteriastrum delicatulum, Cerataulina pelagica, Chaetoceros didymus, C. diversus, C. lorenzianus, C.
    [Show full text]
  • 50-15-516 Final Pakistan
    Pak. J. Bot ., 48(2): 799-811, 2016. DISTRIBUTION AND ABUNDANCE OF DIATOM SPECIES FROM COASTAL WATERS OF KARACHI, PAKISTAN FARAH NAZ KHOKHAR, ZAIB-UN-NISA BURHAN, PERVAIZ IQBAL, JAVED ABBASI AND PIRZADA JAMAL AHMED SIDDIQUI* Centre of Excellence in Marine Biology, University of Karachi, Karachi -75270, Pakistan *Corresponding author’s email: jamal.siddiqui@ yahoo.com Abstract This is the first comprehensive study on the distribution and abundance of diatom species from the coastal and near- shore waters of Karachi, Pakistan, bordering northern Arabian Sea. A total of 20 genera are recorded in high abundance (Cerataulina, Chaetoceros, Coscinodiscus, Cylindrotheca, Eucampia, Guinardia, Haslea, Hemiaulus, Lauderia, Lennoxia, Leptocylindrus, Navicula, Nitzschia, Trieres, Planktoniella, Pleurosigma, Pseudo-nitzschia, Rhizosolenia, Thalassionema and Thalassiosira ). The most abundant genera were observed Guinardia , Chaetoceros , Leptocylindrus , Nitzschia and Lennoxia at all stations. Manora coastal station (MI-1) had high abundance corresponding with high Chlorophyll a (130µgL - l) values. Minimum abundance and low chlorophyll a value (0.05µgL -l) were observed at Mubarak Village coastal station (MV-1). Diatom abundance showed significant correlation with Chlorophyll a. In present study 12 centric and 8 pennate forms were recorded and similarly high diversity of centric taxa was observed compared to pennate forms. A total of 134 species are recorded of which 40 species were observed at four stations, 31species at three stations, 23 at two stations and 40 species only at one station. The total phytoplankton and diatom peak abundance was observed during NE monsoon (winter season) associated with nutrient loading through up-sloping of nutrient rich water upwelled off of Oman during South West monsoon.
    [Show full text]
  • Redalyc.The Phytoplankton Biodiversity of the Coast of the State
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Villac, Maria Célia; Aparecida de Paula Cabral-Noronha, Valéria; Oliveira Pinto, Thatiana de The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil Biota Neotropica, vol. 8, núm. 3, julio-septiembre, 2008, pp. 151-173 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199114295015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 8, no. 3, Jul./Set. 2008 The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil Maria Célia Villac1,2, Valéria Aparecida de Paula Cabral-Noronha1 & Thatiana de Oliveira Pinto1 1Departamento de Biologia, Universidade de Taubaté – UNITAU, Av. Tiradentes, 500, CEP12030-180, Taubaté, SP, Brazil 2Corresponding author: Maria Célia Villac, e-mail: [email protected] VILLAC, M.C., CABRAL-NORONHA, V.A.P. & PINTO, T.O. 2008. The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil. Biota Neotrop. 8(3): http://www.biotaneotropica.org.br/v8n3/en/ abstract?article+bn01908032008. Abstract: The objective of this study is to compile the inventory of nearly 100 years of research about the phytoplankton species cited for the coast of the state of São Paulo, Brazil. A state-of-the-art study on the local biodiversity has long been needed to provide a baseline for future comparisons.
    [Show full text]
  • Phd Thesis the Taxa Are Listed Alphabetically Within the Bacteriastrum Genera and Each of the Chaetoceros Generic Subdivision (Subgenera)
    FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY INTERDISCIPLINARY DOCTORAL STUDY IN OCEANOLOGY Sunčica Bosak TAXONOMY AND ECOLOGY OF THE PLANKTONIC DIATOM FAMILY CHAETOCEROTACEAE (BACILLARIOPHYTA) FROM THE ADRIATIC SEA DOCTORAL THESIS Zagreb, 2013 PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK INTERDISCIPLINARNI DOKTORSKI STUDIJ IZ OCEANOLOGIJE Sunčica Bosak TAKSONOMIJA I EKOLOGIJA PLANKTONSKIH DIJATOMEJA IZ PORODICE CHAETOCEROTACEAE (BACILLARIOPHYTA) U JADRANSKOM MORU DOKTORSKI RAD Zagreb, 2013 FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY INTERDISCIPLINARY DOCTORAL STUDY IN OCEANOLOGY Sunčica Bosak TAXONOMY AND ECOLOGY OF THE PLANKTONIC DIATOM FAMILY CHAETOCEROTACEAE (BACILLARIOPHYTA) FROM THE ADRIATIC SEA DOCTORAL THESIS Supervisors: Dr. Diana Sarno Prof. Damir Viličić Zagreb, 2013 PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK INTERDISCIPLINARNI DOKTORSKI STUDIJ IZ OCEANOLOGIJE Sunčica Bosak TAKSONOMIJA I EKOLOGIJA PLANKTONSKIH DIJATOMEJA IZ PORODICE CHAETOCEROTACEAE (BACILLARIOPHYTA) U JADRANSKOM MORU DOKTORSKI RAD Mentori: Dr. Diana Sarno Prof. dr. sc. Damir Viličić Zagreb, 2013 This doctoral thesis was made in the Division of Biology, Faculty of Science, University of Zagreb under the supervision of Prof. Damir Viličić and in one part in Stazione Zoologica Anton Dohrn in Naples, Italy under the supervision of Diana Sarno. The doctoral thesis was made within the University interdisciplinary doctoral study in Oceanology at the Department of Geology, Faculty of Science, University of Zagreb. The presented research was mainly funded by the Ministry of Science, Education and Sport of the Republic of Croatia Project No. 119-1191189-1228 and partially by the two transnational access projects (BIOMARDI and NOTCH) funded by the European Community – Research Infrastructure Action under the FP7 ‘‘Capacities’’ Specific Programme (Ref. ASSEMBLE grant agreement no. 227799). ACKNOWLEDGEMENTS ... to my Croatian supervisor and my boss, Prof.
    [Show full text]
  • Response to Changing Oceanography in the Dove Time Series: a Northumberland Plankton Community Study
    Response to Changing Oceanography in the Dove Time Series: a Northumberland Plankton Community Study Malcolm Charles Baptie Submitted for Doctor of Philosophy School of Marine Science and Technology November 2013 Abstract The Dove Time Series is a plankton monitoring station in the Northumberland coastal sea which has been sampled since 1969. Over the 20th century, major changes have occurred in the North Sea plankton which have in part correlated with oscillation in atmospheric mass over the Northern Hemisphere, the North Atlantic Oscillation (NAO). Westerly winds when the NAO is positive phase block northern low pressure systems and transport warm Atlantic water into the North Sea extending stratification, leading to greater phytoplankton biomass. Phytoplankton biomass in the central North Sea reached a sustained higher level after 1985. Phytoplankton, zooplankton and ichthyoplankton datasets were created or extended from the Dove Time Series to study the effect of oceanographic change at this location. There was a change to a high abundance community 10 years later, in 1995. The most important predictor of phytoplankton abundance was not the NAO index, but the Atlantic Meridional Oscillation (AMO), which exhibits 60-100 year and subordinate 11 and 14 year periodicity, describing a deviation from the long term sea surface temperature (SST) mean in the North Atlantic. Phytoplankton periodicity partly matched the 14 year period in the AMO, which correlates with a feedback mechanism of westerly versus northerly wind in the North Atlantic, regulating ocean-atmosphere heat flux. Zooplankton abundance was predicted by SST and ratio of maximum to minimum abundance by phytoplankton/AMO. Oceanographic conditions that were contemporary with the state of the AMO anomaly after 1995 promoted higher spring phytoplankton abundance and neritic copepod abundance peaks.
    [Show full text]
  • Supplementary Material 2
    The following supplement accompanies the article Phases of microalgal succession in sea ice and the water column in the Baltic Sea from autumn to spring Sara Enberg*, Markus Majaneva, Riitta Autio, Jaanika Blomster, Janne-Markus Rintala *Corresponding author: [email protected] Marine Ecology Progress Series 599: 19–34 (2018) 20 15 25 10 20 5 15 0 -5 10 Percipitation (mm) Air temperature (°C) -10 5 -15 -20 0 X XI XII I II III IV V Month Fig. S1. Mean air temperature (°C, black line) and precipitation (mm, blue bars) throughout the cold-water season from the beginning of October until the end of May at Tvärminne weather station (Finnish Meteorological Institute). 1 Fig. S2. Water temperature (°C) throughout the cold-water season from the beginning of October until the end of May at Krogarviken (site A) in the 0–3-m layer (a) and Storfjärden (site B) in the 0–15-m layer (b). The period from the beginning of January to the end of April represents the ice-covered season. 2 Fig. S3. Water salinity throughout the cold-water season from the beginning of October until the end of May at Krogarviken (site A) in the 0–3-m layer (a) and Storfjärden (site B) in the 0–15-m layer (b). The period from the beginning of January to the end of April represents the ice-covered season. 3 Fig. S4. Seasonal succession of the number (N) of OTUs in ice (a, b), under-ice water (UIW; c, d), the 0–3-m layer (e) and 0–15-m layer at Krogarviken (A) and Storfjärden (B), October−May.
    [Show full text]
  • Distr. GENERAL UNEP/CBD/EBSA/WS/2015/3/2 12
    CBD Distr. GENERAL UNEP/CBD/EBSA/WS/2015/3/2 12 December 2015 ENGLISH ONLY REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS (EBSAs) IN THE SEAS OF EAST ASIA, AND TRAINING SESSION ON EBSAs Xiamen, China, 13-18 December 2015 COMPILATION OF THE RELEVANT SCIENTIFIC INFORMATION SUBMITTED BY PARTIES, OTHER GOVERNMENTS AND RELEVANT ORGANIZATIONS IN SUPPORT OF THE WORKSHOP OBJECTIVES Note by the Executive Secretary 1. The Executive Secretary is circulating herewith a compilation1 of relevant scientific information in support of the Regional Workshop to Facilitate the Description of Ecologically or Biologically Significant Marine Areas in the Seas of East Asia, and Training Session on EBSAs. The scientific and technical preparation for this workshop was assisted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), as commissioned by the Secretariat of the Convention on Biological Diversity with financial resources provided by the European Commission. 2. The present compilation was prepared drawing on information submitted by Parties, organizations and workshop participants in response to notification 2015-093 (https://www.cbd.int/doc/notifications/2015/ntf-2015-093-ebsa-ch-en.pdf), dated 17 August 2015. Submissions were received from Cambodia, China, Japan, Malaysia, Thailand, Timor-Leste, Viet Nam, the Action Plan for the Protection and Development of the Marine Environment and Coastal Areas of the East Asian Seas Region (COBSEA), the Action Plan for the Protection, Management and Development of the Marine and Coastal Environment of the Northwest Pacific Region (NOWPAP), the East Asian - Australasian Flyway Partnership (EAAF), and the World Wide Fund for Nature (WWF).
    [Show full text]
  • See the Article As a PDF
    90 Bulgarian Journal of Agricultural Science, 21 (Supplement 1) 2015, 90–99 Agricultural Academy PHYTOPLANKTON TAXONOMY IN THE BULGARIAN COASTAL WATERS (2008–2010) D. PETROVA* and D. GERDZHIKOV Institute of Fish Resources, BG – 9000 Varna, Bulgaria Abstract PETROVA, D. and D. GERDZHIKOV, 2015. Phytoplankton taxonomy in the Bulgarian coastal waters (2008– 2010). Bulg. J. Agric. Sci., Supplement 1, 21: 90–99 The purpose of the study was to explore the dynamics of phytoplankton taxonomic composition in the Bulgarian coastal waters (2008–2010). In the analyzed total of 389 samples were identifi ed 204 species and forms of microalgae distributed into 14 classes.The largest share belonged to classes Dinophyceae (40.20%) and Bacillariophyceae (31.86%). The remaining mi- croalgae were distributed into the other 27.94%. The change in dominance between peridineas and diatoms during the hydro- biological seasons demonstrated well-defi ned cyclic recurrence. Throughout the study period the highest diversity of species was registered in June and September; the poorest species composition – in April, July and December. Key words: Black sea, coastal waters, pelagial, phytoplankton, taxonomical composition, biodiversity Introduction more than the 230 species identifi ed for the period 1954- 1980. Although a part of this change is associated with a Species composition of hydro-biocoenoses carries in- better strategy for collection of samples, quality of the mi- formation about the nature and amount of the elements that croscopic technique, frequency and regions of sampling, a make up the system. They are distinguished by their belong- share also hold the changing environmental conditions and ing to one or other systematic, taxonomic category.
    [Show full text]
  • Marine Diatoms from Buenos Aires Coastal Waters (Argentina). V
    Revista de Biología Marina y Oceanografía 43(2): 303-326, agosto de 2008 Marine diatoms from Buenos Aires coastal waters (Argentina). V. Species of the genus Chaetoceros Diatomeas marinas de aguas costeras de Buenos Aires (Argentina). V. Especies del género Chaetoceros Inés Sunesen1, David U. Hernández-Becerril2 and Eugenia A. Sar1, 3 1Departamento Científico Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900, La Plata, Argentina 2Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apdo. postal 70-305, México, D. F. 04510, México 3Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina [email protected] Resumen.- El género Chaetoceros es un componente Abstract.- The genus Chaetoceros is an important importante del plancton marino, de amplia distribución mundial component of the marine plankton all over the world in terms en términos de diversidad y biomasa. El presente trabajo está of diversity and biomass. The present work is devoted to the abocado a la morfología, taxonomía y distribución de las especies morphology, taxonomy, and distribution of the diatom species pertenecientes al género Chaetoceros encontradas en aguas belonging to the genus Chaetoceros found in the marine coastal costeras marinas de la Provincia de Buenos Aires, Argentina. waters of Buenos Aires Province, Argentina. Phytoplanktonic Las muestras fitoplanctónicas fueron recolectadas desde samples were collected from November 1994 to September noviembre de 1994 hasta septiembre de 2000 en siete estaciones 2000 at seven sampling stations along the coast between ubicadas a lo largo de la costa bonaerense entre los paralelos 36º20’ y 37°20’ S.
    [Show full text]
  • Scientific Report – Joint Black Sea Surveys 2016 – Annex
    National Pilot Monitoring Studies and Joint Open Sea Surveys in Georgia, Russian Federation and Ukraine, 2016 Final Scientific Report - ANNEXES DECEMBER 2017 Scientific Report – ANNEXES– Joint Black Sea Surveys 2016 This document has been prepared in the frame of the EU/UNDP Project: Improving Environmental Monitoring in the Black Sea – Phase II (EMBLAS-II) ENPI/2013/313-169 Disclaimer: This report has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of authors and can be in no way taken to reflect the views of the European Union. 2 Scientific Report – ANNEXES– Joint Black Sea Surveys 2016 Contents Annex 1: Chemical Inercomparisons ............................................................................................ 4 Annex 2: Phytoplankton Intercomparison ................................................................................. 16 Annex 2.1 Taxonomic comparison ......................................................................................... 22 Annex 2.2 Phytoplankton sample analysis_GE_St1.15m ....................................................... 28 Annex 2.3 Phytoplankton sample analysis_JOSS St.12.35m .................................................. 34 Annex 2.4 Phytoplankton sample analysis_UA St.2 65m.xlsx ................................................ 41 Annex 3: Chlorophyl-a Intercomparison .................................................................................... 55 Annex 4: Zooplankton Intercomparison ...................................................................................
    [Show full text]