Pak. J. Bot ., 48(2): 799-811, 2016.

DISTRIBUTION AND ABUNDANCE OF FROM COASTAL WATERS OF KARACHI, PAKISTAN

FARAH NAZ KHOKHAR, ZAIB-UN-NISA BURHAN, PERVAIZ IQBAL, JAVED ABBASI AND PIRZADA JAMAL AHMED SIDDIQUI*

Centre of Excellence in Marine Biology, University of Karachi, Karachi -75270, Pakistan *Corresponding author’s email: jamal.siddiqui@ yahoo.com

Abstract

Thisisthefirstcomprehensivestudyonthedistributionandabundanceofdiatomspeciesfromthecoastalandnear shorewatersofKarachi,Pakistan,borderingnorthernArabianSea.Atotalof20generaarerecordedinhighabundance (Cerataulina, , Coscinodiscus, Cylindrotheca, Eucampia, Guinardia, Haslea, Hemiaulus, Lauderia, Lennoxia, Leptocylindrus, Navicula, Nitzschia, Trieres, Planktoniella, Pleurosigma, Pseudo-nitzschia, Rhizosolenia, Thalassionema and Thalassiosira ). The most abundant genera were observed Guinardia , Chaetoceros , Leptocylindrus , Nitzschia and Lennoxia atallstations.Manoracoastalstation(MI1)hadhighabundancecorrespondingwithhighChlorophyll a (130µgL l)values.Minimumabundanceandlowchlorophyll avalue(0.05µgL l)wereobservedatMubarakVillagecoastalstation (MV1).DiatomabundanceshowedsignificantcorrelationwithChlorophyll a.Inpresentstudy12centricand8pennate formswererecordedandsimilarlyhighdiversityofcentrictaxawasobservedcomparedtopennateforms.Atotalof134 speciesarerecordedofwhich40specieswereobservedatfourstations,31speciesatthreestations,23attwostationsand40 speciesonlyatonestation.ThetotalphytoplanktonanddiatompeakabundancewasobservedduringNEmonsoon(winter season)associatedwithnutrientloadingthroughupslopingofnutrientrichwaterupwelledoffofOmanduringSouthWest monsoon. Overall higher diversity was observed at Manora coastal and nearshore stations (MI1, MI2) indicating the influenceoforganicpollutionloadingfromLayariandMalirrivers . Key words: Diatomspecies,Diversity,Abundance,Coastalwaters,NorthernArabianSea,Pakistan. Introduction nutrientrich watersandenhanceprimaryproductivityin thenorthernArabianSea(Parab et al., 2006).Variations In marine ecosystem are considered as the in environmental condition determine the distribution, most successful group among other autotrophic abundance and diversity of diatoms and dinoflagellates, eukaryotes (phytoplankton) population (Dorgham et al., and diatoms become abundant in spring and 1987; Dorgham & Moftah, 1989; Jacob & AlMuzaini, dinoflagellatesinsummer(Mariani,2013). 1990;SubbaRao&Alyamani,1998;Thompson,1998). A few reports on phytoplankton blooms and They are dominantly found in diverse range of habitats chlorophyll a distribution with respect to seasons in (fresh,marine,warm,cold,acidic,basicwatersandmoist northernArabianSeaareavailable(Banse&McClain, places)andacrossthecontinents(Muruganantham et al., 1986;Banse,1987;Brock et al .,1991).However,there 2012). Their role as bioindicator of ecological health is is a paucity of data regarding seasonal abundance and wellknown(Laskar&Gupta,2009).Diatomshavehigh distributionofdiatomsinPakistaniwaters(10mand50 speciesdiversity10,000to100,000taxa(Werner,1977; m contour line). Most studies carried out on diatoms Gordon & Drum 1994; Norton et al ., 1996) and fromcoastalandnearshorewaterswereontaxonomic consideredassuitablegroupforbiodiversityassessments assessment (Chaghtai & Saifullah, 1992; Tabassum & (Admiraal & Harry, 1980; Mann, 1999; Stevenson & Saifullah, 2010, 2011; Naz et al., 2012a, 2012b) and Smol, 2003). Physicochemical conditions, including someontheirdistribution(Saifullah&Moazzam,1978; nutrient levels, hydrographic conditions, spatial and Chaghtai&Saifullah,1992;Shameel&Tanaka,1992; temporal variations, precipitation, freshwater flux, tidal Saifullah,1994;Ghazalaet al.,2006;Naz et al., 2010, incursion,windspattern,currentsandbiologicalprocesses 2012b, 2013a, 2013b; Tabassum & Saifullah, 2011, (e.g. grazing, growth) generally regulate the distribution 2012; Latif et al ., 2013). The present work was and abundance of diatom species (Patrick & Reimer, therefore,designedtoinvestigateandcompareseasonal 1966; Dugdale, 1967; Kinne, 1970; Ryther & Dunstan, variationsincomposition,distributionandabundanceof 1971; Smayda, 1980; Kristiansen, 1996; Raibole & diatomsinrelationtowaterparametersfromthecoastal Singhi, 2011; Amarnath et al ., 2013; Naz et al. , 2010; andnearshorewatersofKarachi. Mariani et al., 2013). Seasonal reversal of monsoons in the Arabian Sea is most pronounced and maximum Study area: Four stations were selected along the seasonal variability is observed in this oceanic basin Karachi coast (Fig. 1): Station 1 (MI1; 24°45'4.75"N, (Dietrich, 1973; Banse, 1987). Arabian Sea is the only 66°59'9.29"E), 10m depth, off Manora Island (MI); ocean to reverse its circulation completely on a semi Station 2 (MV1; 24°52'6.18"N, 66°37'21.86"E), 10m annual basis. The phenomenon results in intense depth, off Mubarak Village (MV); Station 3 (MV2; upwelling causing nutrient rich surface waters (Qasim, 24°45'39.12"N, 66°26'13.38"E), 50m depth, off MV; 1977;Banse,1987).Summer(SWmonsoon;MaytoSep) Station 4 (MI2; 24°35'5.91"N, 66°46'26.34"E), 50m and winter(NEmonsoon;OcttoApr)reversalofwinds depth, off MI (Fig. 1). MI1 & MV1 are referred as impact the water circulation which causes upwelling of coastalwatersandMV2andMI2asnearshorewaters. 800 FARAHNAZKHOKHAR ET AL .,

Fig.1.MapofKarachicoastshowinglocationinthecoastalandnearshorewatersoffofManoraIsland(MI1;10mcontourlineand MI2;50mcontourline)andMubarakVillage(MV1;10mcontourlineandMV2;50mcontourline).

Materials and Method Meteorological Department Pakistan (Anon., 2014; [http://www.pmd.gov.pk]). Statistical parameters (Pearson Water samples were collected every month from each correlation)werecalculatedusingcomputersoftwareMinitab stationintriplicatefrom1mbelowsurfaceusingNiskinbottle (Version5). (1.7 Liter) during day time, samples were fixed in 1% acid Lugol’s solution and stored in brown bottles at 4°C. Cell Results density was analyzed using previously described settling method(Utermohl,1958).Sampleswereallowedtosettlefor Seasonal abundance: Phytoplankton cell abundance 24hoursinsettlingchamber(50ml;HydroBios,Germany). showed fluctuatingdataranging froma minimum valueof Cells werecounted using aninverted microscope ( Olympus, 1.1 x 10 3cells L l (MV1) to a maximum value of 656.17 IX51, Japan). Identification of species was based on x10 3cellsL l (MI1).Generallyhighervalueswererecorded morphological characteristics (Subrahmanyan, 1946; Wood, duringOcttoJan(Fig.3)withsomeyearlydifferences.Itis 1963;Tomas,1997).Currentnamesofspecieswerechecked interestingtonotethatcoastalstations(MI1,56x10 3Ll; from three data bases including World Register of Marine MV1, 14.9 x 10 3 Ll) exhibit higher cell abundance as Species(Anon.,2014)[http://marinespecies.org],AlgaeBase comparedtocorrespondingnearshorestations(MV2,10.06 (Guiry & Guiry, 2014) [http://algaebase.org;] and Index x10 3Ll,MI2,18.4x10 3Ll). Nominum Algarum (Anon., 2014) [http://ucjeps. Diatom abundance (Fig. 3) data also reflect high berkeley.edu/ina/img]. abundance during winter season (NE Monsoon). Percent Forthemeasurementofchlorophyll(Chl a),2501000ml contributionofdiatominthetotalphytoplanktonpopulation of samples were filtered through GF/F (0.7 µm; Whatman), (Fig.3)evidentlyreflectsthatdiatomsgenerallysharemore extracted with 90% acetone and absorbance was recorded than 50% of phytoplankton abundance except for a few (ShimadzuUVvisiblespectrophotometer)inaccordancewith instances.Withrespecttostationsthereisnoclearpatternof Strickland & Parsons (1972). Water and air temperatures diatom proportions in phytoplankton abundance. Stations (mercurythermometer),salinity(Refractometer),transparency MI1(80%;coastalwatersMI)andMV2(67%;nearshore (Secchidisc),dissolveoxygen(DO;HANNAC100)andpH off MV) showed lower average contribution of diatom (Hanna, HI9023) were also recorded. Humidity data was comparedtostationsMV1(89%;coastalwaters)andMI2 obtained from National Weather Forecasting Centre, (91%;nearshore;Fig.3). DISTRIBUTION&ABUNDANCEOFDIATOMSPECIESFROMCOASTALWATERS 801

Fig.2.Seasonalvariationsinwaterparameters(airandwatertemperature(ºC),salinity(PSU),pH,humidity(%),transparency(m), dissolvedoxygen(mgL l) &chlorophyll a (µgL l)concentrationsobservedinthecoastal(Ml1&MV1)andnearshore(MV1& MV2)waters. 802 FARAHNAZKHOKHAR ET AL .,

Fig.3.Seasonalvariationsinthetotalabundance(Cellsx10 3Ll)ofphytoplanktonanddiatomandpercentcontributionofdiatomin thetotalphytoplanktonpopulationrecordedfromthecoastal(MI1&MV1)andnearshore(MV2&MI2)waters. Abundance and distribution: genera: A total of 20 21x10 3 Ll), Navicula (Nov2009,17x10 3 Ll), Nitzschia dominant genera were recorded (12 centric and 8 pennate (Feb2010,12x10 3 Ll),and Pseudo-nitzschia (Nov2009, forms) in samples from all stations (Table 1). The data 16.21 x 10 3 Ll) were dominant at MI2. Minimum cell reveals again that stations MI1 and MI2 had diverse and abundance was recorded for genus Navicula from station abundantpopulationofdiatomscomparedtostationsMV1 MI1 (Feb 2009 and 2010 0.35 x 10 3 Ll), and genus andMV2.Totalabundanceof20dominantgeneraatMI1 3 l 3 l Planktoniella atthestationsMV1,MV2,MI2(Feb2009, and MI2 was higher (4.6 x10 L and 2.1x10 L , 3 l 3 l 3 3 l 0.07x10 L ;Jan2010,0.16x10 L ;Feb2009,0.09x10 respectively) compared to MV1 and MV2 (1.79 x10 L l 3 l L respectively; Table 1, Fig. 4). Maximum percent and0.88x10 L ,respectively).Sixgenerawererecordedin contributionofeachdominantgenus,shownin(Fig.4)was abundance from MI1 including Leptocylindrus (Jan 2010, 54%for Chaetoceros spp.;MV1),followedby Guinardia 68 x10 3Ll), Nitzschia (Jan 2010, 67 x10 3 Ll), Guinardia spp. (40%; MI1), Leptocylindrus spp. (16%; MV1), (Nov 2008; 26 x10 3Ll), Trieres (Nov 2008; 12.3 x10 3Ll), Eucampia spp., Navicula spp. (6%; MV2 and MI2 Thalassionema (Jan2010,18x10 3 Ll),and Coscinodiscus (Nov2009,11.19x10 3Ll).Table1. respectively), Pseudo-nitzschia spp. (14%; MI2 and 6 ThreegenerawerefoundabundantatMV1,namely, 10%;MI1andMI2), Nitzschia spp.& Lennoxia sp.(9%; Chaetoceros (Nov 2009, 156 x10 3 Ll), Leptocylindrus MI1), Thalassionema spp. (6%; MI2 and 4%; MV2, (Nov2009,34x10 3Ll),and Pseudo-nitzschia (Nov2009, respectively), Haslea spp. (5%; MI1). Coscinodiscus, 16x10 3 Ll), while only one genus Guinardia (Oct 2008, Cerataulina, Trieres, Rhizosolenia Hemiaulus, 35x10 3Ll) was dominant at MV2. Five genera including Cylindrotheca, Lauderia , Planktoniella and Thalassiosira Chaetoceros (Nov2009,25x10 3Ll) Guinardia (Nov2009, hadvariablelowpercentcontributionatallstations(Fig.4). DISTRIBUTION&ABUNDANCEOFDIATOMSPECIESFROMCOASTALWATERS 803

Table 1. Maximum mean abundance (Cells x10 3 L-l) of diatom genera distributed in the coastal (MI-1 & MV-1) and near- shore (MV-2 & MI-2) waters. Month of occurrence, temperature & salinity are given in the parenthesis. Stations Genera MI-1 MI-2 MV-1 MV-2 5.15(Jan2010, 2.80(Nov2009, 0.367(Jan2009, 0.813(Jan2010, Cerataulina 21°C,38PSU) 25°C,37PSU) 20°C,38PSU) 21°C,38PSU) 5.47(Feb2010, 24.84(Nov2009, 156.45(Nov2009, 3.89(Jan2010, Chaetoceros 20°C,37PSU) 25°C,37PSU) 24°C,37PSU) 21°C,38PSU) 11.19(Nov2009, 0.44(Apr2008, 0.34(July2009, 0.48(Nov2008, Coscinodiscus 26°C,38PSU) 25°C,38PSU) 19°C,38PSU) 26°C,37PSU) 1.56(Dec2009, 4.58(Nov2009, 0.337(July2009, 0.65(Dec2008, Cylindrotheca 19°C,37PSU) 25°C,37PSU) 23°C,39PSU) 28.3°C,37PSU) 5.45(Nov2009, 2.00(Nov2008, 0.913(May2009, 4.51(Jan2010, Eucampia 26°C,38PSU) 28°C,40PSU) 28°C,38PSU) 21°C,38PSU) 26.27(Nov2008, 20.83(Nov2009, 4.614(Nov2009, 34.86(Oct2008, Guinardia 29°C,39PSU) 25°C,37PSU) 24°C,37PSU) 28.5°C,40PSU) 0.36(Feb200910, 0.31(Dec2008, 0.313(Dec2008, 0.581(Oct2009, Haslea 20°C,37PSU) 19°C,37PSU) 19°C,37PSU) 26°C,37PSU) 3.95(Jan2010, 3.43(Nov2009, 1.953(Dec2008, 0.64(Dec2009, Hemiaulus 21°C,38PSU) 25°C,37PSU) 19°C,37PSU) 21°C,37PSU) 0.89(Aug2008, 1.06(Apr2008, 0.547(Dec2009, 0.31(Sep2009, Lauderia 21°C,42PSU) 25°C,38PSU) 19°C,37PSU) 27°C,38PSU) 42.19(Jan2010, 5.47(Jan2010, 0.513(Oct2008, 1.74(Oct2008, Lennoxia 21°C,38PSU) 19°C,37PSU) 19°C,37PSU) 28.5°C,40PSU) 67.7(Jan2010, 3.3(Nov2009, 33.98(Nov2009, 1.6(Oct2008, Leptocylindrus 21°C,38PSU) 25°C,37PSU) 24°C,37PSU) 28.5°C,40PSU) 0.35(Feb200910, 16.78(Nov2009, 0.17(Aug2008, 0.42(Oct2008, Navicula 20°C,37PSU) 25°C,37PSU) 21°C,38PSU) 28.5°C,40PSU) 66.78(Jan2010, 11.95(Feb2010, 5.333(Nov2008, 1.52(Nov2009, Nitzschia 21°C,38PSU) 19.3°C,37PSU) 25°C,38PSU) 26°C,37PSU) 12.3(Nov2008, 6.59(Dec2009, 0.52(Mar2010, 0.5(Dec2008, Trieres 29°C,39PSU) 20°C,38PSU) 23°C,39PSU) 28.3°C,37PSU) 0.66(Jan2010, 0.09(Feb2009, 0.073(Feb2009, 0.16(Jan2010, Planktoniella 21°C,38PSU) 19.3°C,37PSU) 19.2°C,38PSU) 21°C,38PSU) 1.5(Dec2009, 0.14(Apr2009, 0.147(Dec2009, 0.49(Nov2009, Pleurosigma 19°C,37PSU) 25°C,37PSU) 19°C,37PSU) 26°C,37PSU) 0.52(Apr2009, 16.21(Nov2009, 16.21(Nov2009, 2.97(Oct2009, Pseudo-nitzschia 25°C,37PSU) 25°C,37PSU) 24°C,37PSU) 26°C,37PSU) 0.98(Nov2009, 1(Nov2008, 0.434(Nov2008, 1.167(Apr2008, Rhizosolenia 26°C,38PSU) 28°C,40PSU) 25°C,38PSU) 29°C,39PSU) 18.1(Jan2010, 4.38(Dec2008, 4.387(Dec2008, 1.10(Nov2009, Thalassionema 21°C,38PSU) 19°C,37PSU) 19°C,37PSU) 26°C,37PSU) 0.69(Feb2010, 1.07(Apr2008, 0.126(Nov2008, 0.181(Nov2008, Thalassiosira 20°C,37PSU) 25°C,38PSU) 25°C,38PSU) 26°C,37PSU)

Abundance and distribution: species: StationsMI1and abundant(observedatthreestations),23specieswere MI2 appear to have high species diversity exhibiting 91 common (occurring at two stations) and 40 species and94species,respectively.Ontheotherhand,MV1(84 were rare (found at only at one station). It may be spp.) and MV2 (76 spp.) showed comparatively low notedthatoccurrenceandabundanceofspeciesvary withrespecttostation(Table2).Withrespecttocell diversity (Table. 2). Species diversity in each genus was abundance a total of 3 species were dominant more or less similar at all four stations. However, genus (>75x10 3cellsL l)recordedonlyatMI1 (Guinardia Chaetoceros showed high diversity at all stations (1722 delicatula , Leptocylindrus minimus and spp.) followed by genera having 610 species Pseudonitzschia fraudulenta ), whereas, abundantly (Pleurosigma , Rhizosolenia and Thalassiosira ) and those occurringspecies(2575x10 3cellsL l)were6(MI1), having 46 species ( Coscinodiscus, Nitzschia ). Remaining 2(MI2)and1(MV1andMV2),respectively.Large 14generahad15species(Table2). numberofspecieswerecommon(125x10 3 cells L l) In the selected 20 dominant genera a total 134 atstationMI1(39),MI2(33),MV1(27)andMV2 species were recorded. On the basis of their (21). Similarly, a large number of rare species (1 occurrence 40 species were considered as dominant 1x10 3 cells L l)wererecordedfromMI1(43),MI2 (recorded from all four stations), 31species were (59),MV1(62)andMV2(54)(Table2). 804 FARAHNAZKHOKHAR ET AL .,

Environmental conditions & diatom abundance: The were3.4mgL 1to10mgL 1.Itappearsthatgenerally seasonaldataofwaterqualityparametersdeterminedat high DO (>5.0 mg L 1) concentration prevails at the thetimeofcollectionisdepictedinFig.2.Theairand study sites and only at four instances low DO values water temperature fluctuated between a minimum of were recorded (3.4 mg L 1, MV1, Feb.; 4.4 mg L 1, 19.0 ºC(Dec.2008,Jan2009,2010)andamaximumof MV1,Dec.;4.5mgL 1,MI1,Apr.and4.9mgL 1,MI 30 ºC 31 ºC (Apr2008). Salinity values varied with a 2, May). Chlorophyll a content in water, indicating narrowrangebetween3742PSUatallfourstations. primary production had values ranged from 0.05–130 Highsalinity(42PSU)wasrecordedatMI1inAug.At gL1; highestvalue(Jan2010)beingatMI1andthe MV1,MV2andMI2salinitypeaksappearedinJun, lowest(Jul2009)atMV1(Fig.2). Oct and Nov, respectively. Values for pH varied Pearson correlation was applied to investigate between7.0and8.0andpercenthumidityvaluesranged relationshipbetweentotalabundanceofdiatomspecies from 50% 78% during study period. Transparency and water parameters (Table 3). Total abundance of (Secchi depth) ranged between 0.9 – 14m (Fig. 2). It diatom species showed significant positive relationship maybenotedthatstationsoffofManoraIslandhadlow with Chlorophyll aatallstations.Totalabundancehas transparency (0.9 4.57m MI1 and 7.39.4m MI2) week positive correlation with salinity (MI1, MV2), compared to other two corresponding station (5.4 11.27m MV1 and 7.6214.0m MV2, respectively). DO(MV1,MV2,MI2),transparency(MV1,MV2), Overall dissolved oxygen values ranged at all stations pH(MV1,MV2,MI2)andtemperature(MV2).

Fig.4.Abundanceandpercentagecontributionoftwentydominantdiatomgenerainthecoastal(MI1&MV1)andnearshore(MV 2&MI2)waters. DISTRIBUTION&ABUNDANCEOFDIATOMSPECIESFROMCOASTALWATERS 805

Table 2. List of diatom species identified from coastal (MI-1 & MV-1) and near-shore (MV-2 & MI-2) waters (Apr 2008 - Mar 2010) showing distribution and abundance (cells L -l) for recorded species (Rare:1-1000 = +, Common: 1001-25000 = ++, Abundant: 25001 - 75,000 = +++ and Dominant: >75,001 = ++++). Stations Dominant genera Species MI1 MI2 MV1 MV2 Cerataulina Cerataulina sp.1 + + (4spp.) Cerataulina sp.2 + + ++ Cerataulina dentata Hasle1980 + + Cerataulina pelagica (Cleve)Hendey,1937 ++ ++ ++ ++ 3 4 2 2 Chaetoceros Chaetoceros sp.1 ++ ++ ++ + (30spp.) Chaetoceros sp.2 ++ + Chaetoceros sp.3 ++ ++ ++ ++ Chaetoceros affinis Lauder,1864 + Chaetoceros anastomosans Grunow,1882 ++ +++ ++ + Chaetoceros atlanticus Cleve,1873 ++ ++ + Chaetoceros atlanticus var. neapolitanus (Schroeder)Hustedt,1930 ++ + ++ Chaetoceros borealis Bailey,1854 + Chaetoceros brevis F.Schütt,1895 ++ + ++ Chaetoceros coarctatus Lauder,1864 ++ + ++ ++ Chaetoceros castracanei Karsten,1905 ++ ++ ++ ++ Chaetoceros compressus Lauder,1864 ++ ++ ++ ++ Chaetoceros convolutus Castracane,1886 ++ + Chaetoceros costatus Pavillard,1911 + + ++ Chaetoceros curvisetus Cleve,1889 ++ ++ ++ + Chaetoceros danicus Cleve,1889 ++ + + Chaetoceros decipiens Cleve,1873 ++ ++ + Chaetoceros densus (Cleve)Cleve,1899 + + + Chaetoceros diversus Cleve,1873 + ++ + + Chaetoceros eibenii Grunow,1882 + Chaetoceros granii (Cleve)Nomen,1899 + Chaetoceros laciniosus F.Schütt,1895 + + + Chaetoceros lauderi Ralfs,1864 + Chaetoceros lorenzianus Grunow,1863 + ++ +++ + Chaetoceros neglectus Karsten,1905 + Chaetoceros peruvianus Brightwell,1856 + Chaetoceros pseudocurvisetus Mangin,1910 + ++ + Chaetoceros radicans F.Schütt,1895 ++ + Chaetoceros socialis H.S.Lauder,1864 + ++ ++ Chaetoceros teres Cleve,1896 + 21 22 20 17 Coscinodiscus Coscinodiscus sp.1 ++ + + + (10spp.) Coscinodiscus argus Ehrenberg,1839 + Coscinodiscus asteromphalus Ehrenberg,1844 + Coscinodiscus centralis Ehrenberg,1844 + + + Coscinodiscus concinnus W.Smith,1856 + Coscinodiscus granii Gough,1905 + + + Coscinodiscus marginatus Ehrenberg,1844 ++ + + Coscinodiscus oculus-iridis (Ehrenberg)Ehrenberg,1840 + + Coscinodiscus radiatus Ehrenberg,1840 + + Coscinodiscus wailesii Gran&Angst,1931 + 4 6 6 5 Cylindrotheca Cylindrotheca sp.1 + + + + (3spp.) Cylindrotheca sp.2 +++ ++ ++ ++ Cylindrotheca fusiformis Reimann&J.C.Lewin,1964 + 2 2 2 3 806 FARAHNAZKHOKHAR ET AL .,

Table 2. (Cont’d.) Stations Dominant genera Species MI1 MI2 MV1 MV2 Eucampia Eucampia sp.1 + + + (3spp.) Eucampia cornuta (Cleve)Grunow,1883 ++ ++ + Eucampia zodiacus Ehrenberg,1839 ++ ++ ++ ++ 3 3 2 2 Guinardia Guinardia delicatula (Cleve)Hasle,1997 ++++ +++ ++ ++ (3spp.) Guinardia flaccida (Castracane)H.Peragallo,1892 +++ ++ ++ ++ Guinardia striata (Stolterfoth)Hasle,1996 ++ ++ ++ +++ 3 3 3 3 Haslea Haslea sp.1 + (5spp.) Haslea sp.2 +++ + + + Haslea sp.3 ++ + + Haslea trompii (Cleve)Simonsen,1974 + + + Haslea wawrikae (Husedt)Simonsen,1974 ++ ++ + + 4 4 3 4 Hemiaulus Hemiaulus sp.1 + + (4spp.) Hemiaulus hauckii GrunowexVanHeurck,1882 ++ Hemiaulus membranaceus Cleve1873 ++ ++ ++ ++ Hemiaulus sinensis Greville,1865 ++ ++ + + 3 3 2 3 Lauderia Lauderia annulata Cleve,1873 ++ ++ ++ ++ (2spp.) Lauderia borealis Gran,1900 ++ + 2 1 2 1 Lennoxia Lennoxia faveolata H.A.Thomsen&K.R.Buck,1993 +++ ++ ++ ++ (1spp.) 1 1 1 1 Leptocylindrus Leptocylindrus danicus Cleve,1889 ++ ++ ++ ++ (3spp.) Leptocylindrus mediterraneus (H.Peragallo)Hasle,1975 + + ++ + Leptocylindrus minimus Gran,1915 ++++ ++ +++ ++ 3 3 3 3 Navicula sp.1 ++ + + + Navicula Navicula directa (W.Smith)Ralfs,1861 ++ + + + (5spp.) Navicula distans (W.Smith)Ralfs,1861 + + + Stauroneis granii E.Jorgensen,1905 + + Navicula transitans Cleve,1883 + 3 5 4 2 Nitzschia Nitzschia sp.1 +++ ++ ++ ++ (6spp.) Nitzschia sp.2 +++ ++ ++ + Nitzschia cf .sigma (Kützing)W.Smith,1853 + Nitzschia longissima (Brébisson)Ralfs,1861 + ++ + + Nitzschia lorenziana Grunow,1879 + + + + Nitzschia robusta Hustedt,1949 + + 6 5 4 4 Trieres Trieres mobiliensis (J.W.Bailey)M.P.Ashworth&E.C.Theriot,2013 + + + + (3spp.) Trieres regia (M.Schultze)M.P.Ashworth&E.C.Theriot,2013 + + Trieres sinensis (Greville)M.P.Ashworth&E.C.Theriot,2013 ++ ++ + + 3 3 2 2 Planktoniella Planktoniella sol (C.G.Wallich)Schütt,1892 ++ + + + (1spp.) 1 1 1 1 Pleurosigma Pleurosigma sp.1 + + + + (11spp.) Pleurosigma sp.2 + + + Pleurosigma sp.3 + + Pleurosigma acutum NormanexRalfs,1861 + + Pleurosigma elongatum W.Smith,1852 + + + + DISTRIBUTION&ABUNDANCEOFDIATOMSPECIESFROMCOASTALWATERS 807

Table 2. (Cont’d.) Stations Dominant genera Species MI1 MI2 MV1 MV2 Pleurosigma strigosum W.Smith,1852 + + + Pleurosigma directum Grunow,1880 + Pleurosigma elongatum W.Smith,1852 ++ + + Pleurosigma formosum W.Smith,1852 ++ + + Pleurosigma macrum W.Smith,1853 + Pleurosigma normanii Ralfs,1861 + + + + 9 7 8 6 Pseudonitzschia Pseudonitzschia sp.1 ++ ++ ++ ++ (4spp.) Pseudo-nitzschia fraudulenta (Cleve)Hasle,1993 ++++ Pseudo-nitzschia seriata (Cleve)H.Peragallo,1899 + + ++ ++ Pseudo-nitzschia subcurvata (G.R.Hasle)G.A.Fryxell,1993 + 3 2 3 2 Rhizosolenia Rhizosolenia sp.1 + + (18spp.) Rhizosolenia sp.2 + + + ++ Rhizosolenia sp.3 + + Rhizosolenia sp.4 + + + Rhizosolenia sp.5 + Rhizosolenia sp.6 + Rhizosolenia sp.7 + Rhizosolenia hebetata Bailey,1856 + + + Rhizosolenia acuminata (H.Peragallo)H.Peragallo,1907 + Rhizosolenia bergonii H.Peragallo,1892 + + Rhizosolenia clevei var. communis Sundström,1984 + Rhizosolenia hyalina Ostenfeld,1901 + Rhizosolenia imbricata Brightwell,1858 + + + Rhizosolenia longiseta O.Zacharias1893 + Rhizosolenia setigera Brightwell,1858 ++ + Rhizosolenia simplex Karsten,1905 + + Rhizosolenia striata Greville,1864 ++ Rhizosolenia styliformis T.Brightwell,1858 + + 9 10 7 7 Thalassionema Thalassionema frauenfeldii (Grunow)Tempère&Peragallo,1910 ++ ++ + ++ (2spp.) Thalassionema nitzschioides (Grunow)Mereschkowsky,1902 ++ ++ ++ ++ 2 2 2 2 Thalassiosira Thalassiosira sp.1 + + + (16spp.) Thalassiosira sp.2 + + + Thalassiosira sp.3 + + Thalassiosira anguste-lineata (A.Schmidt)G.Fryxell&Hasle,1977 ++ Thalassiosira delicatula Ostenfeld,1908 + + + Thalassiosira eccentrica (Ehrenberg)Cleve,1904 + Thalassiosira gracilis (Karsten)Hustedt,1958 + Thalassiosira hyalina (Grunow)Gran,1897 + Thalassiosira leptopus (GrunowexVanHeurck)Hasle&G.Fryxell,1977 + Thalassiosira lineata Jousé,1968 + Thalassiosira mediterranea (Schröder)Hasle,1972 + Thalassiosira minima Gaarder,1951 + + Thalassiosira oestrupii (Ostenfeld)Hasle,1972 + + Thalassiosira pacifica Gran&Angst,1931 + Thalassiosira punctigera (Castracane)Hasle,1983 + Thalassiosira gravida Cleve,1896 + + 6 7 7 6 Genera: 20 Species: 134 91 94 84 76

808 FARAHNAZKHOKHAR ET AL .,

Table 3. Pearson correlation between diatom abundance and water parameters recorded at coastal (MI-1 and MV-1) and near-shore (MI-2 and MV-2) stations. MI1 Abundance Chl a DO Temp Salinity Trans Chl a 0.603* DO 0.091 0.296 Temp. 0.12 0.193 0.012 Salinity 0.089 0.051 0.279 0.042 Trans 0.134 0.304 0.037 0.276 0.262 pH 0.174 0.372 0.187 0.235 0.276 0.007 MI2 Abundance Chl a DO Temp. Salinity Trans Chl a 0.770* DO 0.234 0.208 Temp. 0.196 0.503 0.159 Salinity 0.163 0.358 0.09 0.379 Trans 0.087 0.365 0.503 0.566 0.103 pH 0.065 0.079 0.172 0.389 0.054 0.44 MV1 Abundance Chl a DO Temp. Salinity Trans Chl a 0.986* DO 0.068 0.078 Temp. 0.006 0.076 0.202 Salinity 0.217 0.248 0.048 0.165 Trans 0.155 0.096 0.221 0.601 0.074 pH 0.104 0.184 0.274 0.061 0.428 0.089 MV2 Abundance Chl a DO Temp Salinity Trans Chl a 0.899* DO 0.467 0.498 Temp. 0.11 0.078 0.264 Salinity 0.021 0.6 0.096 0.0457 Trans 0.155 0.16 0.367 0.44 0.21 pH 0.113 0.168 0.522 0.457 0.689 0.345 Chl a=chlorophylla;DO=dissolvedoxygen;Temp=Temperature;Trans=Transparency. *=Significantcorrelation(p>0.05)

Discussion present data also shows that high chl a concentration during northeast monsoon in coastal and nearshore The present study provides data on the distribution waters corresponds significantly to high diatom andabundanceofmajordiatomgenerainrelationtothe abundancedata.Highvaluesofchl awerealsoreported environmental parameters from the coastal waters of earlierduringnortheastmonsoon(Dey et al .,2003).The Karachi. The phytoplankton abundance appears to vary restofthewaterparametershadnosignificantcorrelation with seasons showing a unimodal distribution peak with diatom abundance. This allows us to generally betweenOctoberandFebruary(northeastmonsoon).This assume that nutrient distribution in the area regulates maybeduetotheprevalenceofstrongupwellinginthe phytoplanktonabundance. centralandnorthernArabianSeawhichenhanceprimary Coastal waters are also influenced by the influx of productivity and control distribution pattern and dissolvednutrientthroughriversintermsofhighprimary abundance of phytoplankton in the region (Brock et al ., productivity (Cebrián & Valiela, 1999). The study area 1991; Marra & Barber, 2005; Tegen & Fung, 1995; alongthecoastalbeltreceivesdischargesfromLyariand Tarran et al ., 1999; Levy et al ., 2007). Although the Malir rivers (drains in Manora channel and Korangi upwellingisnotknownalongthecoastofPakistanbutthe Creek, respectively) carrying high loads of domestic, wind induced convective mixing and upsloping of agricultural and industrial effluents (Beg et al ., nutrientrichwaterareresponsibleforhighproductivityin 1984,1992)whichparticularlyseemstoinfluencestations the northern Arabian Sea during northeast (winter) (MI1 & MI2) located off of Karachi. These stations monsoon period (Banse, 1968, 1986; Kuzmenko, 1975; showed high cell abundance compared to the Saifullah, 1979; Sournia et al ., 1987; Del Amo et al ., corresponding coastal and nearshore stations off of 1997;Rousseau et al .,2002;Dey&Sing,2003;Banzon Mubarak village (MV1 & MV2, respectively) towards et al .,2004;Marra&Barber,2005;Schapira et al .,2008; Baluchistan coast away from the above mentioned two Tabassum et al ., 2010; Naz et al ., 2013a, 2013b). The rivers. High nutrient availability at two stations off of DISTRIBUTION&ABUNDANCEOFDIATOMSPECIESFROMCOASTALWATERS 809

Karachi also supports higher species diversity. In the Acknowledgements coastal and nearshore waters, diatoms share higher proportion in the total phytoplankton abundance Authors wish to acknowledge financial support throughouttheyearexceptforafewinstances.Thisisin (Senior Research Fellowship) to FN from the Center of agreement with many previous studies showing that ExcellenceinMarineBiology,UniversityofKarachiand diatoms form an abundant group in different waters researchgranttoPJASfromDFID,UK,DelPHEproject. (Wang et al ., 2006; Harnstrom et al., 2009; Schiebel et We are grateful to Dr. Y. V. B. Sarma, King Abdullah al .,2001,2004;Karthiket al .,2012). University of Science and Technology, Jeddah, Saudi In the present study, some 20 genera of diatom were Arabia, for his help and valuable suggestions for the observed which showed regular seasonal occurrence and improvementofthemanuscript. high abundance in coastal and nearshore waters. Among References them Chaetoceros, Coscinodiscus, Guinardia, Lennoxia, Leptocylindrus, Nitzschia, Pseudo-nitzschia and Admiraal, W. and H. Peletier. 1980. Distribution of diatom Thalassionema appeared in blooming conditions during speciesonanestuarinemudflatandexperimentalanalysis northeastmonsoonperiod.Occurrenceandhighabundance oftheselectiveeffectofstress. J. Experi. Mar. Biol. Ecol., of dominant genera have also been reported earlier in the 46(2):157175. AlHashmi,A.K.Goes,J.Claereboudt,M.Piontkovski,S.A.Al same region and time (Tabassum & Saifullah, 2010; AzriandA.Smith.2014.Variabilityofdinoflagellatesand Tabassum & Saifullah, 2012). Thomas et al ., 2013 also diatoms in the surface waters of Muscat, Sea of Oman: reported the diatom species ( Thalassiosira, Thalassionema , comparisonbetweenenclosedandopenecosystem. Inter. J. Pseudo-nitzschia , Leptocylindrus and Lauderia ) from up Ocen. Oceanogr .,8(2):137152. welledcoastalwatersofsoutheasternArabianSea.Similar Amarnath,D.,M.Shailender,B.Kishor,T.J.Udayaranjan,M.S. diatom species had been reported from Omani waters (Al Chakravarty and N. Kumar. 2013. Study on distribution Hashmi et al .,2014),thecoastalwatersofPortBlair(South anddiversityofphytoplanktoninrelationtohydrography in Bhavanapadu Creek, Srikakulam District, South India. Andaman Island) and from Japanese and African waters Inter. Refered J. Enginr. Sci. ,2(4):3238. (Estrada & Blasco 1985; Shevchenko & Orlova, 2010), Anonymous, 2014. Index Nominum Algarum, University respectively.Thepresentstudyalsodepictshighdiversityof Herbarium, University of California, Berkeley. Compiled centricdiatoms(5265spp.)comparedtopennateforms(25 by Paul Silva. Available online at 32 spp.) at all stations; higher diversity being at MI1 and http://ucjeps.berkeley.edu/CPD/[Accessedduring2014] MI2(offofManorachannels).Verlecaret al .,2006linked Anonymous. 2008. The Study on water supply and sewerage systeminKarachi,TechnicalReport:Vol2.Jointreport: thehighernumberofcentricspeciestoorganicpollutionand Japaninternationalcooperationagency(JICA)andKarachi nutrient enrichment. Being coastal and nearshore stations, water&sewerageboard(KW&SB). thesewatersappeartohavehighloadsoforganiceffluents. Anonymous. 2014. Pakistan Meteorological Department. MI1andMI2particularlyreceives highorganicpollution Available on line at http://www.pmd.gov.pk/ [Accessed from Lyariand Malirrivers(Baig,1975;Beg et al .,1992, during2014]. 1984;Anon.,2008;Qadri et al .,2011;Nergis et al., 2012; Anonymous. 2015. WoRMS Editorial Board. World Register of MarineSpecies.Availablefromhttp://www.marinespecies.org Jilani & Khan, 2013) and may be the reason for high atVLIZ.[Accessedduring2014]. diversityofcentricdiatomsincoastalandnearshorewaters. Baig,M.A.A.,S.N.MohammadandA.H.K.YousufZai.1975. Arabian Sea appears to be highly influenced by Industrial effluents, their nature and disposal in Karachi global warming and Sea level rise, which affects region.Part1:SurveyofthepollutionLyariRiver. Proc. seasonality, strengthen the monsoon periods, and Pak. Acad. Sci .,12:125130. increases productivity (Goes et al ., 2005). In the Banse,K.1968.HydrographyofArabianSeashelfofIndiaand perspective of global warming, sea level is generally Pakistanandeffectsondemersalfishes. Deep Sea Res .,15: 4579. rising and as a consequence many physical parameters, Banse,K.1987.Seasonalityofphytoplanktonchlorophyllinthe such as, precipitation, inland runoff (volume of fresh central and northern Arabian Sea. Deep Sea Res. I. water), climatic seasonality, sea surface temperature, Oceanogr. Res. Papers .,34(5):713723. acidification,etc.,areeffectedtoinfluenceverticalwater Banse, K. and C. R. McClain. 1986. Winter blooms of columnparameters(Riebesell,2004;Moore et al .,2008). phytoplanktonintheArabianSeaasobservedbythecoastal These consequences, coupled with certain natural and zonecolorscanner. Mar. Ecol. Prog. Ser .,34:201211. anthropogenic factors, bring unpredictable change in Banzon, V.F., R.E. Evans, H.R. Gordon and R.M. Chomko. 2004.SeaWiFSobservationsoftheArabianSeasouthwest compositionandgrowthofphytoplankton.Tounderstand monsoonbloomfortheyear2000, Deep Sea Res. II .,51: enigmatic variations in distribution pattern of 189208. phytoplankton,longtermmultidisciplinaryinvestigations Beg, M. A.A., S.N. Mahmood and A.H.K. Yousufzai. 1992. are required at various geographical locations (Moore et Heavy metals pollution in the coastal environment of al ., 2008). The two year data on the spatiotemporal Karachi .Pak. J. Mar. Sci., 1(2):117126. distribution of diatoms in the coastal waters of Pakistan Beg,M.A.A.,S.N.Mahmood,S.NaeemandA.H.K.Yusufzai. reportedhereindicatesseasonal variabilityinabundance 1984.Landbasedpollutionandthemarineenvironmentof Karachicoast. Pak. J. Sci. Indust. Res .,27:199205. anddistributionofdiatomsandrequiresfurtherstudiesto Brock,J.C.,C.R.McClainandM.E.Luther,W.W.Hay.1991. monitor effect of rapidly changing climatic influences ThephytoplanktonbloominthenorthwesternArabianSea which promote growth of bloom forming planktonic during the southwest monsoon of 1979. J. Geophy. Res. speciesintheArabianSea. Oceans ., (19782012),96(C11):2062320642. 810 FARAHNAZKHOKHAR ET AL .,

Cebrián, J. and I. Valiela 1999. Seasonal patterns in Laskar, H.S. andS. Gupta.2009.Phytoplankton diversity and phytoplankton biomass in coastal ecosystems . J. Plank. dynamicsofChatlafloodplainlake,BarakValley,Assam, Res. ,21(3):429444. NorthEastIndiaAseasonalstudy. J. Environ. Biol., 30(6): Chaghtai, F. and S.M. Saifullah. 1992. First recodedbloom of 10071012. Navicula Bory in Mangrove habitat of Karachi. Pak. J. Latif,S.,Z.AyubandG.Siddiqui.2013.Seasonalvariabilityof Mar. Sci .,1:139140. phytoplanktoninacoastallagoonandadjacentopenseain Del Amo, Y., O. Le Pape, P. Tréguer, P. Quéguiner, A. Pakistan. Turk. J. Bot .,37(2):398410. Ménesguen and A. Aminot. 1997. Impacts of highnitrate Lévy, M., D. Shankar, J.M. André, S.S.C. Shenoi, F. Durand freshwater inputs on macrotidal ecosystems. I. Seasonal and C. de Boyer Montégut. 2007. Basin wide seasonal evolution of nutrient limitation for the diatomdominated evolution of the Indian Ocean's phytoplankton blooms. J. phytoplankton in the Bay of Brest (France). Mar. Eco. Geophys. Res .:Oceans(19782012),112(C12). Prog. Ser .,161:213224. Mann,D.G.1999.Thespeciesconceptindiatoms. Phycologia. , Dey, S. and R.P. Singh. 2003. Comparison of chlorophyll 38(6):437495. distributionsinthenortheasternArabianSeaandsouthern Mariani, P., K.H. Andersen, A.W. Visser, A.D. Barton and T. Bay of Bengal using IRSP4 Ocean Color Monitor data. Kiørboe.2013.Controlofplanktonseasonalsuccessionby Remot. Sens. Envir., 85(4):424428. adaptivegrazing. Limnol. Oceanogr .,58(1):173184. Dietrich,G.1973.Theuniquesituationintheenvironment of Marra, J. and R.T. Barber. 2005. Primary productivity in the the Indian Ocean. In: The Biology of the Indian Ocean . ArabianSea:AsynthesisofJGOFSdata.In:(Eds.):Wiggert et Springer ,(Ed.):Zeitzschel,B.pp.16. al., 2013. Prog. Oceanogr .IndianOceanBiologicalProcesses Dorgham,M.M.andA.Moftah.1989.Environmentalconditions and Ecological Variability. American Geophysical Union as andphytoplanktondistributionintheArabianGulfandGulf partoftheGeophysicalMonographSeries,185(65):159175. ofOman.Mar. Biol. Assoc. India., 31:3653. Moore, S.K., V.L. Trainer, N.J. Mantua, M.S. Parker, E.A. Dorgham,M.M.,A.MuftahandK.Z.ElDeeb.1987.Plankton Laws, L.C. Backer and L.E. Fleming. 2008. Impacts of studiesintheArabianGulf.II.Theautumnphytoplankton climate variability and future climate change on harmful inthenorthwesternArea. Arab Gulf J. Sci. Agric. Biol. Sci., algalbloomsandhumanhealth. Environ. Health ,7(2):S4. B5:215235. Muruganantham, P., T. Gopalakrishnan, R. Chandrasekaran and Dugdale, R.C. 1967. Nutrient limitation in the sea: dynamics, S.Jeyachandran.2012.Seasonalvariationsanddiversityof identification, and significance. Limnol. Oceanogr., 12: planktonic diatoms of Muthupet and Aarukattuthurai, 685695. SoutheastCoastofIndia. Adv. App. Sci. Res., 3(2):919929. Estrada, M. and D. Blasco. 1985. Phytoplankton assemblages in Naz, T., Z. Burhan and P.J.A. Jamal. 2013b. Seasonal coastal upwelling areas. In: International symposium of abundance of diatoms in correlation with the upwelling of W. Africa . (Eds.): Bas, C., R. Margalef and P. physicochemical parameters from coastal waters of Rubias.InstitutodeInvestigacionesPesqueras,Barcelona,pp. Pakistan. Pak. J. Bot .,45(4):14771486. 379402. Naz,T.,Z.Burhan,S.MunirandP.J.A.Siddiqui.2010.Diatom Ghazala,B.,R.OrmondandF.Hanna.2006.Phytoplankton speciescompositionandseasonalabundanceinapolluted communitiesofPakistan.I.DinophytaandBacillariophyta and nonpolluted environment from coast of Pakistan. from the coast of Sindh. Int. J. Phycol. Phycochem ., 2: Asian J. Water, Environ. Pollut. ,7(4):2538. 183196. Naz, T., Z. Burhan, S. Munir and P.J.A. Siddiqui. 2012a. A Goes, J.I., P.G. Thoppil, Helga do. R. Gomes and J.T. Fasullo. preliminary guide for the taxonomic identification of 2005. Warming of the Eurasian landmass is making the diatom (Bacillariophyta) species from coast of Pakistan. ArabianSeamoreproductive. Science ,308(5721):545547. New York Sci. J. ,5(3):7080. Gordon,R.andR.W.Drum.1994.Thechemicalbasisofdiatom Naz, T., Z. Burhan, S. Munir and P.J.A. Siddiqui. 2012b. morphogenesis. Int. Rev. Cytol .,150:243372. and seasonal distribution of Pseudo-nitzschia Guiry, M.D. and G.M. Guiry. 2014. AlgaeBase. Worldwide species (Bacillariophyceae) from the coastal waters of electronic publication, National University of Ireland, Pakistan. Pak. J. Bot .,44(4):14671473. Galway.http://www.algaebase.org [Accessedduring2014]. Naz, T., Z. Burhan, S. Munir and P.J.A. Siddiqui. 2013a. Harnstrom,K.,K.IndraniandA.Godhe.2009.Phytoplankton Seasonal abundance and morphological observations of a raphid pennate diatom Asterionella glacialis castracane speciesassemblagesandtheirrelationshiptohydrographic fromthecoastalwatersofKarachi,Pakistan. Pak. J. Bot ., factorsa study at the old port in Mangalore, coastal 45(2):677680. ArabianSea. Indian J. Mar. Sci., 38(2):224. Nergis,Y.,M.Sharif,M.A.Farooq,A.HussainandJ.A.Butt. Jacob, P.G. and S. AlMuzaini. 1990. Marine plants of the 2012. Impact of Industrial and Sewage Effluents on Arabian Gulf: A literature review. Kuwait Institute of KarachiCoastalWaterandSedimentQuality. Mid. East. J. ScientificResearch,ReportNo.KISR3426,Kuwait. Sci. Res. ,11(10):14431454. Jilani, S. and A.M. Khan, 2013. Marine pollution due to Norton, T.A., M. Melkonian and R.A. Andersen. 1996. Algal dischargeofuntreatedwastewaterinKarachi. J. Bio. & biodiversity. Phycologia .,35:308326. Env. Sci., 3(11):146153. Parab,S.G.,M.S.G.Prabhu,H.R.GomesandJ.I.Goes. 2006. Karthik,R.,M.ArunKumar,S.SaiElangovan,R.SivaSankar Monsoon driven changes in phytoplankton populations in and G. Padmavati. 2012. Phytoplankton abundance and the eastern Arabian Sea as revealed by microscopy and diversityinthecoastalwatersofportblair,SouthAndaman HPLCpigmentanalysis. Cont. Shelf. Res .,26:25382558. Islandinrelationtoenvironmentalvariables. J. Mar. Biol. Patrick,R.andC.W.Reimer.1966.ThediatomsoftheUnited Oceanogr .,1(2):.doi:10.4172/232486. States: Exclusive of Alaska and Hawaii. Fragilariaceae, Kinne, 1970. Marine Ecology: Environmental Factors , Willy Eunotiaceae, Achnanthaceae, Naviculaceae. Monographs Interscience,London,pp.1821. Acad. Nat. Sci. Philadelphia., I(13):pp.688 . Kristiansen,J.1996.Dispersalof freshwateralgaeAreview. Qadri,M.,Y.Nergis,N.A.Mughal,M.SharifandM.A.Farooq. Hydrobiologia ,336(13):151157. 2011. Impact of Marine Pollution at Karachi Coast in Kuzmenko, L.V. 1975. Systematic composition of Perspective of Lyari River. American Eurasian J. Agri & PhytoplanktonofArabianSea. Oceanology ,34:1538. Env . Sci .,10(5):737743. DISTRIBUTION&ABUNDANCEOFDIATOMSPECIESFROMCOASTALWATERS 811

Qasim,S.Z.1977.BiologicalproductivityoftheIndianOcean. Freshwater Algae in North America: Classification and Ind. J. Mar. Sci., 6:122137. Ecology .AcademicPress,SanDiego,California,pp.775804. Raibole,M.andY.P.Singhi.2011.Impactofphysicochemical Strickland,J.D.H.andT.R.Parsons.1972. A practical handbook parameters on microbial diversity: seasonal study. Currt. of sea-water analysis, BulletinNo.167,2 nd Ed.Fish.Res. World. Env .,6(1):7176. Bd.Canada,Ottawa.pp.167:311. Riebesell, U. 2004. Effects of CO2 enrichment on marine Subba Rao, D.V. and F. AlYamani. 1998. Phytoplankton phytoplankton. J. Oceanogr., 60:719729. ecologyinthewatersbetweenShattAlArabandStraitsof Rousseau, V., A. Leynaert, N. Daoud and C. Lancelot. 2002. Hormuz,ArabianGulf:Areview. Plank. Biol. Ecol .,45(2): Diatomsuccession,silicificationandavailabilityinBelgian 101116. coastalwaters(southernNorthSea). Mar. Ecol. Prog. Ser ., Subrahmanyan, R. 1946. A systematic account of the marine 236:6173. plankton diatoms of the Madras coast. Proc. Ind. Acad. Ryther, J.H and W.M. Dunstan. 1971. Nitrogen, phosphorus, Sci., 24B:85197. and eutrophication in the coastal marine environment. Tabassum,A.andS.M.Saifullah.2010.Theplanktonicdiatomof Science ,171(3975):10081013. thegenus Chaetoceros EhrenbergfromnorthwesternArabian Saifullah, S.M. 1979. Occurrence of dinoflagellates and SeaborderingPakistan. Pak. J. Bot .,42(2):11371151. distributionofchlorophyll‘ a’onPakistan’sshelf.In: Toxic Tabassum,A.andS.M.Saifullah.2011.Marinecentricdiatom Dinoflagellate Blooms . (Eds.): Taylor, D.L. and H.H. Rhizosolenia Brightwell:itsoccurrenceanddistributionin Seliger.Elsevier/NorthHolland,NewYork,pp.203208. neriticwatersofPakistan. Pak. J. Bot .,43(4):21872193. Saifullah, S.M. 1994. Seasonal and spatial distribution of Tabassum,A.andS.M.Saifullah.2012.Centricdiatomgenera chlorophyll in the north Arabian Sea bordering Pakistan. Guinardia, Dactyliosolen Castracane from the north Pak. J. Mar. Sc., 3:2530. Arabian Sea bordering Pakistan. Int. J. Phycol. Saifullah, S.M. and M. Moazzam. 1978. Species composition Phycochem .,8(2):171176. and seasonal occurrence of centric diatom in a polluted Tarran, G.A., P.H. Burkill, E.S. Edwards and E.M.S. marineenvironment. Pak. J. Bot., 10:5364. Woodward. 1999. Phytoplankton community structure in Schapira, M., D, Vincent, V. Gentilhomme and L. Seuront. theArabianSeaduringandaftertheSWmonsoon,1994. 2008. Temporal patterns of phytoplankton assemblages, Deep. Sea. Res. II .,46:655676. sizespectraanddiversityduringthewaneofa Phaeocystis Tegen, I. and I. Fung. 1995. Contribution to the atmospheric globosa spring bloom in hydrologically contrasted coastal mineral aerosol load from land surface modification J. waters. J. Mar. Biol. Assoc. UK., 88(4):649662. Geophys. Res., 100(D9)18:70718726. Schiebel, R., A. Zeltner, U.F. Treppke, J.J. Waniek, J. Thomas,L.C.,K.B.Padmakumar,B.R.Smitha,C.R.AshaDevi, Bollmann,T.RixenandC.Hemleben.2004.Distribution S. Bijoy Nandan and V.N. Sanjeevan. 2013. Spatio of diatoms, coccolithophores and planktic foraminifers temporalvariationofmicrophytoplanktonintheupwelling along a trophic gradient during SW monsoon in the systemofthesoutheasternArabianSeaduringthesummer ArabianSea. Mar Micropaleontol., 51:345371. monsoonof2009. Oceanologia ,55(1):185204. Schiebel, R., J. Waniek, M. Bork and C. Hemleben. 2001. Thompson, P.A. 1998. Spatial and temporal patterns of factors Plankticforaminiferalproductionstimulatedbychlorophyll influencingphytoplanktoninasaltwedgeestuary,theSwan redistributionandentrainmentofnutrients. Deep. Sea. Res. River,WesternAustralia. Estuaries .,21(4B):801817. I. ,48:721740. Tomas, C.R. (Ed.) 1997. Identifying Marine Diatoms and Shameel, M. and J. Tanaka. 1992. A preliminary checklist of Dinoflagellates. Acad.Press,SanDiego,pp.1384. marinealgaefromthecoastandinshorewatersofPakistan. Utermohl, H. 1958. Zur Vervollkommung der quatitativen In: Cryptogamic Flora of Pakistan . Vol. I. (Eds.): Phytoplankton Method. Mitt. Ver.Theor. Angew. Limnol ., Nakaike,TandS.Malik.Nat.Sci.Mus.,Tokoyo,p.164. 9:138. Shevchenko, O.G. and T. Yu. Orlova. 2010. Morphology and Verlecar, X.N., S.R. Desai, A. Sarkarcand S.G. Dalal. 2006. ecology of the bloom–forming diatom Chaetoceros Biological indicatorsin relationto coastalpollution along contortus fromPetertheGreatBay,SeaofJapan. Russ .J. Karnatakacoast,India. Water Res. ,40(17):33043312. Mar. Bio .,36(4):243251. Wang, Z., Y. Qi, J. Chen, N. Xu and Y. Yang. 2006. Smayda, T.J. 1980. Phytoplankton species succession. In: The Phytoplankton abundance, community structure and physiological ecology of Phytoplankton, studies in ecology . nutrientsinculturalareasofDayaBay,SouthChinaSea. J. (Ed.):Morris,I.Blackwell,Oxford,pp.7:493570. Mar. Syst .,62(1):8594. Sournia,A.,J.L.Birrien,J.L.Douvillé,B.KleinandM.Viollier. Werner, D. 1977. Silicate metabolism. In: The biology of 1987. A daily study of diatom spring bloom at Roscoff diatoms. Botanical monographs , (Ed.): Werner, D. (France) in 1985. I. The spring bloom within the annual UniversityofCaliforniaPress,BerkeleyandLosAngeles, cycle. Estuar. Coast. Shelf. Sci., 25:355367. pp.110149. Stevenson,R.JandJ.P.Smol.2003.Useofalgaeinenvironmental Wood,E.J.F.1963.ChecklistofdiatomsrecordedfromIndian assessments. In: (Eds.): Wehr, J.D. and R.G. Sheath. Ocean. Rep. Div. Fish Oceanogr. C.S.I.R.O.36:1304. (Receivedforpublication8April2015)