Fishes of Las Gemelas Seamounts and Isla Del Coco
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SMALL-SCALE FISHERIES in a WARMING OCEAN EXPLORING ADAPTATION to CLIMATE CHANGE Imprint
THIS PROJECT IS CO-FUNDED BY THE EUROPEAN UNION SMALL-SCALE FISHERIES IN A WARMING OCEAN EXPLORING ADAPTATION TO CLIMATE CHANGE Imprint Publisher WWF Germany; International WWF Centre for Marine Conservation, Hamburg Year of 2020 publication Authors Léa Monnier & Didier Gascuel – Agrocampus Ouest (France) Juan José Alava & William Cheung – University of British Columbia (Canada) Maria José Barragán & Jorge Ramírez – Charles Darwin Foundation (Galapagos) Nikita Gaibor – Instituto Nacional de Pesca (Ecuador) Philipp Kanstinger & Simone Niedermueller – Franck Hollander – WWF Germany Editing all authors Coordination Franck Hollander (WWF Germany), Thomas Koeberich (WWF Germany) Contact [email protected], [email protected] Proofreading Jill Bentley Designed by Silke Roßbach, [email protected] Produced by Maro Ballach (WWF Germany) Funded by WWF Germany, University of British Columbia (Canada) Photo credits Title: © Adam Jason Moore / Getty Images Citation Monnier, L., Gascuel, D., Alava, J.J., Barragán, M.J., Gaibor, N., Hollander, F.A., Kanstinger, P., Niedermueller, S., Ramírez, J., & Cheung, W.W.L. 2020. Small-scale fisheries in a warming ocean: exploring adaptation to climate change. Scientific report. WWF Germany. © 2020 WWF Germany, Berlin This study was led by © freepik © Presentation of the project This publication has been produced with the financial contribution of the European Union within the framework of the pan-European awareness-raising project Fish Forward 2. Fish Forward 2 aims to achieve behaviour change of consumers, corporates and authorities in Europe based on an increased awareness and knowledge of the implications of seafood con- sumption and sourcing on people and oceans in the developing countries, but also in Europe. -
Valuable but Vulnerable: Over-Fishing and Under-Management Continue to Threaten Groupers So What Now?
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339934856 Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now? Article in Marine Policy · June 2020 DOI: 10.1016/j.marpol.2020.103909 CITATIONS READS 15 845 17 authors, including: João Pedro Barreiros Alfonso Aguilar-Perera University of the Azores - Faculty of Agrarian and Environmental Sciences Universidad Autónoma de Yucatán -México 215 PUBLICATIONS 2,177 CITATIONS 94 PUBLICATIONS 1,085 CITATIONS SEE PROFILE SEE PROFILE Pedro Afonso Brad E. Erisman IMAR Institute of Marine Research / OKEANOS NOAA / NMFS Southwest Fisheries Science Center 152 PUBLICATIONS 2,700 CITATIONS 170 PUBLICATIONS 2,569 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Comparative assessments of vocalizations in Indo-Pacific groupers View project Study on the reef fishes of the south India View project All content following this page was uploaded by Matthew Thomas Craig on 25 March 2020. The user has requested enhancement of the downloaded file. Marine Policy 116 (2020) 103909 Contents lists available at ScienceDirect Marine Policy journal homepage: http://www.elsevier.com/locate/marpol Full length article Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now? Yvonne J. Sadovy de Mitcheson a,b, Christi Linardich c, Joao~ Pedro Barreiros d, Gina M. Ralph c, Alfonso Aguilar-Perera e, Pedro Afonso f,g,h, Brad E. Erisman i, David A. Pollard j, Sean T. Fennessy k, Athila A. Bertoncini l,m, Rekha J. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Age, Growth and Reproduction of the Galapagos Sailfin Grouper [I
A peer-reviewed version of this preprint was published in PeerJ on 17 September 2015. View the peer-reviewed version (peerj.com/articles/1270), which is the preferred citable publication unless you specifically need to cite this preprint. Usseglio P, Friedlander AM, DeMartini EE, Schuhbauer A, Schemmel E, Salinas de Léon P. 2015. Improved estimates of age, growth and reproduction for the regionally endemic Galapagos sailfin grouper Mycteroperca olfax (Jenyns, 1840) PeerJ 3:e1270 https://doi.org/10.7717/peerj.1270 Age, growth and reproduction of the Galapagos sailfin grouper Mycteroperca olfax (Jenyns, 1840): an overdue and needed comprehensive baseline Paolo Usseglio, Alan M. Friedlander, Edward E. DeMartini, Anna Schuhbauer, Pelayo Salinas de Léon The Galapagos Sailfin grouper, Mycteroperca olfax, locally known as bacalao and listed as vulnerable by IUCN, is culturally, economically, and ecologically important to the Galapagos archipelago and its people. It is regionally endemic to the Eastern Tropical Pacific, and, while an important fishery resource that has shown substantial declines in recent years, to date no effective management regulations are in place to ensure the sustainability of its Galapagos fishery. Previous estimates of longevity and size of maturity for bacalao are inconsistent with estimates for congeners, which questions the accuracy of PrePrints prior estimates. We set out to rigorously assess the age, growth, and reproductive biology of bacalao in order to provide more accurate life history information to inform more effective fisheries management for this species. The oldest fish in our sample was 24 years old, which is 2-3 times greater than previously reported estimates of longevity. -
MARKET FISHES of INDONESIA Market Fishes
MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. -
Redalyc.Deepwater Fish Assemblages at Isla Del Coco National Park And
Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Starr, Richard M.; Green, Kristen; Sala, Enric Deepwater fish assemblages at Isla del Coco National Park and Las Gemelas Seamount, Costa Rica Revista de Biología Tropical, vol. 60, núm. 3, noviembre-, 2012, pp. 347-362 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44958803023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Deepwater fish assemblages at Isla del Coco National Park and Las Gemelas Seamount, Costa Rica Richard M. Starr1, Kristen Green2 & Enric Sala3,4 1. University of California Sea Grant Program and Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California 95039, USA; [email protected] 2. Alaska Department of Fish and Game, 304 Lake Street, Room 103, Sitka, Alaska 99835; [email protected] 3. National Geographic Society, 20036 Washington, DC, USA; [email protected] 4. Centre d’Estudis Avançats de Blanes, CSIC, 17300 Blanes, Spain Received 05-III-2012. Corrected 15-VI-2012. Accepted 24-IX-2012. Abstract: The deepwater faunas of oceanic islands and seamounts of the Eastern Tropical Pacific are poorly known. From 11-22 September 2009 we conducted an exploration of the deepwater areas of the Isla del Coco Marine Conservation Area, Costa Rica and a nearby seamount using a manned submersible. -
History of Fishes - Structural Patterns and Trends in Diversification
History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external -
Recycled Fish Sculpture (.PDF)
Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun. -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
BLANKET OCTOPUS (Tremoctopus Gracilis)
NIGHT OCEAN Every night, in oceans across the globe, sensational alien-like creatures rise from the depths to feed. Welcome to the Night Ocean, where an entirely new cast of characters comes to life. Images © Magnus Lundgren / naturepl.com BLANKET OCTOPUS (Tremoctopus gracilis) Looking like something out of a science fiction movie, this blanket octopus is pictured in full opalescent display. Little is known about the rarely- encountered creature, which ranges from the depths of the dark zone to surface waters (where this female was seen in all her psychedelic glory). Anilao, Batangas the Philippines. ZOOPLANKTON Zooplankton is made up of a staggering diversity of animals – from single-celled organisms to the larvae of fish [1], anemones [2] and mollucs [3], as well as crustaceans [4], shellfish and jellies. 1 The zooplankton – in conjunction with hordes of photosynthetic phytoplankton, makes up the planktonic food supply upon which almost all oceanic organisms 2 depend. When the plankton rise, so do the deep ocean predators (pictured: a juvenile flying fish). The vertical migration influences our world more than many of us know. The daily movements of zooplankton help remove carbon from the atmosphere and surface waters, transporting it quickly and efficiently down into the ocean depths, where it can remain for centuries. Given that climate 3 change is already leading to ocean warming and acidification—a trend Every night an astonishing drama from the pages of science fiction. that is expected to accelerate— occurs in the world’s oceans: a The sheer biomass of the small carbon cycling provides the great vertical migration, in which drifting creatures – collectively impetus for much of today’s billions of organisms respond to known as zooplankton – renders zooplankton migration research. -
Type Locality: Madeira). Synonyms: ?Serranus Emarginatus Valenciennes, 1843:10 (Type Locality: Canary Islands
click for previous page Groupers of the World 265 Mycteroperca fusca (Lowe, 1836) Fig. 462; PI. XXVIA-C SERRAN Myct 15 Serranus fuscus Lowe, 1836:196 (type locality: Madeira). Synonyms: ?Serranus emarginatus Valenciennes, 1843:10 (type locality: Canary Islands). Serranus simonyi Steindachner, 1891:352, pl. 1, fig. 1 (type locality: Grand Canary Island). FAO Names: En - Island grouper; Fr - Merou d'île; Sp - Abadejo. Fig. 462 Mycteroperca fusca (327 mm standard length) Diagnostic Features: Body oblong, compressed, the depth less than head length, depth contained 3.0 to 3.3 times in standard length (for fish 15 to 51 cm standard length). Head length contained 2.6 to 2.9 times in standard length; interorbital area convex; preopercle serrae enlarged at angle, forming a rounded lobe below a shallow indentation on vertical limb; subopercle and interopercle with a few small serrae; nostrils subequal in juveniles, the diameter of rear ones about 3 times larger than front nostrils in fish larger than 45 cm standard length: maxilla width 3.8 to 5.0% of standard length; lower jaw extends well in front of upper jaw. Gill rakers 11 to 14 on upper limb, 20 to 24 on lower limb, total 32 to 36, Dorsal fin with XI spines and 14 to 16 rays, the interspinous membranes distinctly indented, the margin of soft-rayed part rounded; anal fin with III spines and 10 to 12 rays, the fin margin rounded; pectoral-fin rays 15 to 17; caudal-fin rear margin truncate (juveniles) to concave (adults). Lateral-line scales 72 to 78; lateral-scale series. -
Deepwater Fish Assemblages at Isla Del Coco National Park and Las Gemelas Seamount, Costa Rica
Deepwater fish assemblages at Isla del Coco National Park and Las Gemelas Seamount, Costa Rica Richard M. Starr1, Kristen Green2 & Enric Sala3,4 1. University of California Sea Grant Program and Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California 95039, USA; [email protected] 2. Alaska Department of Fish and Game, 304 Lake Street, Room 103, Sitka, Alaska 99835; [email protected] 3. National Geographic Society, 20036 Washington, DC, USA; [email protected] 4. Centre d’Estudis Avançats de Blanes, CSIC, 17300 Blanes, Spain Received 05-III-2012. Corrected 15-VI-2012. Accepted 24-IX-2012. Abstract: The deepwater faunas of oceanic islands and seamounts of the Eastern Tropical Pacific are poorly known. From 11-22 September 2009 we conducted an exploration of the deepwater areas of the Isla del Coco Marine Conservation Area, Costa Rica and a nearby seamount using a manned submersible. The goal of the exploration was to characterize the habitats and biota, and conduct quantitative surveys of the deepwater por- tions of Isla del Coco National Park and Las Gemelas Seamount, located about 50km southwest of Isla del Coco. We completed a total of 22 submersible dives, spanning more than 80hr underwater, and collected a total of 36hr of video. We surveyed habitats from 50-402m and observed more than 45 species of fishes, some of which have not yet been described and are likely new to science. The diversity of fish species in deep water at Isla del Coco National Park was lower than the diversity of fishes in shallow water, and eight species groups accounted for more than 95% of the total fish biomass.