Spatiotemporal Dynamics of Suspended Sediments in the Negro River, Amazon Basin, from in Situ and Sentinel-2 Remote Sensing Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Geothermal Hydrology of Valles Caldera and the Southwestern Jemez Mountains, New Mexico
GEOTHERMAL HYDROLOGY OF VALLES CALDERA AND THE SOUTHWESTERN JEMEZ MOUNTAINS, NEW MEXICO U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4067 Prepared in cooperation with the OFFICE OF THE STATE ENGINEER GEOTHERMAL HYDROLOGY OF VALLES CALDERA AND THE SOUTHWESTERN JEMEZ MOUNTAINS, NEW MEXICO By Frank W. Trainer, Robert J. Rogers, and Michael L. Sorey U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4067 Prepared in cooperation with the OFFICE OF THE STATE ENGINEER Albuquerque, New Mexico 2000 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services Water Resources Division Box 25286 5338 Montgomery NE, Suite 400 Denver, CO 80225-0286 Albuquerque, NM 87109-1311 Information regarding research and data-collection programs of the U.S. Geological Survey is available on the Internet via the World Wide Web. You may connect to the Home Page for the New Mexico District Office using the URL: http://nm.water.usgs.gov CONTENTS Page Abstract............................................................. 1 Introduction ........................................ 2 Purpose and scope........................................................................................................................ -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
FACT SHEET No
FACT SHEET No. 7 Rangeland Watershed Program U.C. Cooperative Extension and USDA Natural Resources Conservation Service Riparian Terms Chew, Matthew K. 1991. Bank Balance: Managing Colorado's Riparian Areas. Bulletin 553A. Coop. Ext. Service, Colorado State University, Ft. Collins, CO. Pg. 41-44. Acre-foot. An amount of water that covers one Braided stream. A stream or river having flat acre to a depth of one foot. Equal to about multiple, dynamic, diverging, and converging 326,700 gallons or 43,560 cubic feet. channels, operating within a single, usually sandy streambed. Characteristic of intermittent or highly Aggradation. The process of building up a variable flows. streambank through sediment deposition. Capacity (sediment). The total amount of Alluvial. Refers to a feature that results from sediments a stream can move, including bed, sediments deposited by flowing water. The suspended, and dissolved loads. material itself is called alluvium. CFS. Cubic feet per second; a standard Anaerobic. Biological activity in the absence of measurement of stream discharge. Harder to free oxygen. The oily-looking black mud found in measure than it sounds. Always an estimate based swampy situations forms due to anaerobic on multiple measurements. decomposition of algae and plants. Cliff and slope. A terrain type made up of Aquifer. A body of groundwater. (This is not a multiple rock terraces that more or less stair-step lake in a cave; see “groundwater.”) down to a stream. Formed because some rock layers (strata) are more erosion-resistant than AUM. Animal Unit Month. The amount of forage others. consumed monthly by one cow with one calf. -
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version Available for Download From
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Beatriz de Aquino Ribeiro - Bióloga - Analista Ambiental / [email protected], (95) Designation date Site Reference Number 99136-0940. Antonio Lisboa - Geógrafo - MSc. Biogeografia - Analista Ambiental / [email protected], (95) 99137-1192. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio Rua Alfredo Cruz, 283, Centro, Boa Vista -RR. CEP: 69.301-140 2. -
Streams and Running Water Streams Are Part of the Hydrologic Cycle (Figure 10.1)
Streams and Running Water Streams are part of the hydrologic cycle (Figure 10.1) Stream: body of running water that is confined in a channel and moves downhill under the influence of gravity. Cross-section of a typical stream (Figure 10.2) 1) Channel Flow 2) Sheet Flow Drainage Basin: area of a stream and its’ tributaries. Tributary: small stream flowing into a large one. Divide: ridge seperating drainage basins. Drainage Patterns 1) Dendritic: resembles tree branches > occurs on uniformly resistant rock 2) Radial: streams diverge outward from a central point > occurs on conic shapes, like volcanoes 3) Rectangular: steams have sharp bends ¾ due to presence of faulting, river follows the fault 4) Trellis: Parallel main streams with right angle tributaries > occurs on valley and ridge geomorphologies Factors Affecting Stream Erosion and Deposition 1) Velocity = distance/time Fast = 5km/hr or 3mi/hr Flood = 25 km/hr or 15 mi/hr Figure 10.6: Fastest in the middle of the channel a) Gradient: downhill slope of the bed of the stream ¾ very high near the mountains ¾ 50-200 feet/ mile in highlands, 0.5 ft/mile in floodplain b) Channel Shape and Roughness (Friction) > Figure 10.9 ¾ Lots of fine particles – low roughness, faster river ¾ Lots of big particles – high roughness, slower river (more friction) High Velocity = erosion (upstream) Low Velocity = deposition (downstream) Figure 10.7 > Hjulstrom Diagram What do these lines represent? Salt and clay are hard to erode, and typically stay suspended 2) Discharge: amount of flow Q = width x depth -
Geological Society of America Bulletin
Downloaded from gsabulletin.gsapubs.org on February 6, 2012 Geological Society of America Bulletin Sediment production and delivery in the Amazon River basin quantified by in situ −produced cosmogenic nuclides and recent river loads Hella Wittmann, Friedhelm von Blanckenburg, Laurence Maurice, Jean-Loup Guyot, Naziano Filizola and Peter W. Kubik Geological Society of America Bulletin 2011;123, no. 5-6;934-950 doi: 10.1130/B30317.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. -
Impact of the Amazon Tributaries on Major Flood in Óbidos
Impact of the Amazon tributaries on major flood in Óbidos Josyane Ronchail, Jean-Loup Guyot, Jhan Carlo Espinoza Villar, Pascal Fraizy, Gérard Cochonneau, Juan Ordenez To cite this version: Josyane Ronchail, Jean-Loup Guyot, Jhan Carlo Espinoza Villar, Pascal Fraizy, Gérard Cochonneau, et al.. Impact of the Amazon tributaries on major flood in Óbidos. Procceedings of the Fifth FRIEND World Conference held at Havana, Cuba, November 2006), IAHS Publ. 308, 2006, 220-225, 2006. hal- 02987838 HAL Id: hal-02987838 https://hal.archives-ouvertes.fr/hal-02987838 Submitted on 4 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Impact of the Amazon tributaries on major flood in Óbidos JOSYANE RONCHAIL Université Paris 7- Denis Diderot and Laboratoire d’Océanographie et du Climat (LOCEAN-IPSL), case 100, 4 Place Jussieu, 75005 Paris-France e-mail: [email protected] JEAN-LOUP GUYOT, JHAN CARLO ESPINOZA VILLAR, PASCAL FRAIZY Institut de Recherche pour le Développement and Universidad Agraria La Molina, casilla 18 1209, Lima 18, Peru. GERARD -
Guianacara Dacrya, a New Species from the Rio Branco and Essequibo River Drainages of the Guiana Shield (Perciformes: Cichlidae)
Neotropical Ichthyology, 9(1):87-96, 2011 Copyright © 2011 Sociedade Brasileira de Ictiologia Guianacara dacrya, a new species from the rio Branco and Essequibo River drainages of the Guiana Shield (Perciformes: Cichlidae) Jessica H. Arbour1 and Hernán López-Fernández1,2 A new species of Guianacara is described from tributaries of the Essequibo River and the rio Branco in Guyana and northern Brazil. Guianacara dacrya, new species, can be diagnosed from all congeners by the possession of a unique infraorbital stripe and by the shape of the lateral margin of the lower pharyngeal jaw tooth plate. Guianacara dacrya can be further distinguished from G. geayi, G. owroewefi, G. sphenozona and G. stergiosi by the possession of a thin midlateral bar, from G. cuyunii by the possession of dusky branchiostegal membranes and from G. oelemariensis by the possession of two supraneurals. This species differs from most congeners by the presence of white spots on the spiny portion of the dorsal fin, the placement of the midlateral spot, the presence of filaments on the dorsal, anal and in rare cases the caudal-fin and from at least the Venezuelan species by several morphometric variables. Guianacara dacrya is known from the Essequibo, Takutu and Ireng River basins of Guyana and possibly from the rio Uraricoera in the rio Branco basin in Brazil. A key to the species is provided. Describimos una especie nueva de Guianacara de las cuencas del río Essequibo y el río Branco en Guyana y el norte de Brasil. Guianacara dacrya, especie nueva, puede distinguirse de todos sus congéneres por la presencia de una barra infraorbital modificada y por la forma única del margen lateral de la placa dentada de la mandíbula faríngea inferior. -
Riverine Dissolved Lithium Isotopic Signatures in Low-Relief Central
Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes Soufian Henchiri, Jérôme Gaillardet, Mathieu Dellinger, Julien Bouchez, Robert Spencer To cite this version: Soufian Henchiri, Jérôme Gaillardet, Mathieu Dellinger, Julien Bouchez, Robert Spencer. River- ine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes. Geophysical Research Letters, American Geophysical Union, 2016, 43 (9), pp.4391-4399. 10.1002/2016GL067711. hal-02133282 HAL Id: hal-02133282 https://hal.archives-ouvertes.fr/hal-02133282 Submitted on 21 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Riverine dissolved lithium isotopic signatures in low-relief 10.1002/2016GL067711 central Africa and their link to weathering regimes Key Points: Soufian Henchiri1, Jérôme Gaillardet1, Mathieu Dellinger1,2,JulienBouchez1, and Robert G. M. Spencer3 • Dissolved Li isotope composition at mouth of the Congo River is 1Institut -
Cop14 Prop. 13 (Rev
CoP14 Prop. 13 (Rev. 1) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Fourteenth meeting of the Conference of the Parties The Hague (Netherlands), 3-15 June 2007 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Transfer of the population of black caiman Melanosuchus niger of Brazil from Appendix I to Appendix II of CITES, in accordance with Article II, paragraph 2. a), of the Convention and with Resolution Conf. 9.24 (Rev. CoP13) Annex 4, paragraph A. 2. b). B. Proponent Brazil C. Supporting statement Transferring the black caiman from CITES Appendix I to Appendix II will not harm or result in risk to wild populations because: a) the black caiman is abundant and widely distributed within its range in Brazil; b) regarding international trade, the Brazilian CITES Management Authority has effective mechanisms to control all segments of the production chain and, under the controlling measures, it will be advantageous to act legally rather than illegally; c) harvest will occur only in Sustainable Use Conservation Units, which will have their specific management plans that may range from no harvest to a maximum of 10 % of the estimated population size; and d) there is an efficient system to monitor the natural populations and their habitats and to ensure that conservation goals through sustainable use can be achieved. More broadly, in accordance with Resolution Conf. 13.2, each of the 14 Addis Ababa Principles and Guidelines for the Sustainable Use of Biodiversity (see CBD website), will be closely observed. 1. Taxonomy 1.1 Class: Reptilia 1.2 Order: Crocodylia 1.3 Family: Alligatoridae 1.4 Genus, species or subspecies, including author and year: Melanosuchus niger, Spix 1825 1.5 Scientific synonyms: --- CoP14 Prop. -
Influence of Hydrologic Alteration on Sediment, Dissolved Load
resources Article Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland) Dawid Szatten * , Michał Habel and Zygmunt Babi ´nski Institute of Geography, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; [email protected] (M.H.); [email protected] (Z.B.) * Correspondence: [email protected]; Tel.: +48-52-349-62-50 Abstract: Hydrologic alternation of river systems is an essential factor of human activity. Cascade- dammed waters are characterized by the disturbed outflow of material from the catchment. Changes in sediment, dissolved load and nutrient balance are among the base indicators of water resource monitoring. This research was based on the use of hydrological and water quality data (1984–2017) and the Indicators of Hydrologic Alteration (IHA) method to determine the influence of river regime changes on downstream transfer continuity of sediments and nutrients in the example of the Lower Brda river cascade dams (Poland). Two types of regimes were used: hydropeaking (1984–2000) and run–of–river (2001–2017). Using the IHA method and water quality data, a qualitative and quantitative relationship were demonstrated between changes of regime operation and sediment and nutrient balance. The use of sites above and below the cascade made it possible to determine Citation: Szatten, D.; Habel, M.; sediment, dissolved load, and nutrient trapping and removing processes. Studies have shown that Babi´nski,Z. Influence of Hydrologic Alteration on Sediment, Dissolved changes in operation regime influenced the supply chain and continuity of sediment and nutrient Load and Nutrient Downstream transport in cascade-dammed rivers.