Influence of Hydrologic Alteration on Sediment, Dissolved Load
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raport Z Wykonania Map Zagrożenia Powodziowego I Map Ryzyka
Projekt: Informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami Nr Projektu: POIG.07.01.00–00–025/09 RAPORT Z WYKONANIA MAP ZAGROZ ENIA POWODZIOWEGO I MAP RYZYKA POWODZIOWEGO Projekt: Informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami Nr Projektu: POIG.07.01.00–00–025/09 SPIS TREŚCI: WYKAZ SKRÓTÓW STOSOWANYCH W DOKUMENCIE 4 DEFINICJE 5 I. WPROWADZENIE 7 II. PODSTAWA OPRACOWANIA MZP I MRP 9 III. ZAKRES OPRACOWANIA MZP I MRP 13 IV. DANE WYKORZYSTANE DO MZP I MRP 37 IV.1. NUMERYCZNY MODEL TERENU 41 IV.2. PRZEKROJE KORYTOWE RZEK 41 V. OPIS METODYKI OPRACOWANIA MZP 43 V.1. MODELOWANIE HYDRAULICZNE 43 V.2. SCENARIUSZE POWODZIOWE 70 V.3. WYZNACZANIE OBSZARÓW ZAGROŻENIA POWODZIOWEGO 73 VI. OPIS METODYKI OPRACOWANIA MRP 83 VI.1. NEGATYWNE KONSEKWENCJE DLA LUDNOŚCI 83 VI.2. RODZAJ DZIAŁALNOŚCI GOSPODARCZEJ 84 VI.3. OBIEKTY ZAGRAŻAJĄCE ŚRODOWISKU W PRZYPADKU WYSTĄPIENIA POWODZI 86 VI.4. OBSZARY CHRONIONE 87 VI.5. OBSZARY I OBIEKTY DZIEDZICTWA KULTUROWEGO 87 VI.6. OBLICZENIE WARTOŚCI POTENCJALNYCH STRAT POWODZIOWYCH 88 VII. FORMA SPORZĄDZENIA MZP i MRP 91 VII.1. BAZA DANYCH PRZESTRZENNYCH MZP I MRP 91 VII.2. WIZUALIZACJA KARTOGRAFICZNA MZP i MRP 92 VIII. PUBLIKACJA I PRZEKAZANIE ORGANOM ADMINISTRACJI MZP I MRP 101 VIII.1. PRZEKAZANIE MZP i MRP ORGANOM ADMINISTRACJI 101 VIII.2. PUBLIKACJA MZP i MRP 101 VIII.3. ZASADY UDOSTĘPNIANIA MZP i MRP 105 2 Projekt: Informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami Nr Projektu: POIG.07.01.00–00–025/09 IX. MZP i MRP W PLANOWANIU I ZAGOSPODAROWANIU PRZESTRZENNYM 107 X. PRZEGLĄD I AKTUALIZACJA MZP I MRP 114 XI. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Geothermal Hydrology of Valles Caldera and the Southwestern Jemez Mountains, New Mexico
GEOTHERMAL HYDROLOGY OF VALLES CALDERA AND THE SOUTHWESTERN JEMEZ MOUNTAINS, NEW MEXICO U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4067 Prepared in cooperation with the OFFICE OF THE STATE ENGINEER GEOTHERMAL HYDROLOGY OF VALLES CALDERA AND THE SOUTHWESTERN JEMEZ MOUNTAINS, NEW MEXICO By Frank W. Trainer, Robert J. Rogers, and Michael L. Sorey U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4067 Prepared in cooperation with the OFFICE OF THE STATE ENGINEER Albuquerque, New Mexico 2000 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services Water Resources Division Box 25286 5338 Montgomery NE, Suite 400 Denver, CO 80225-0286 Albuquerque, NM 87109-1311 Information regarding research and data-collection programs of the U.S. Geological Survey is available on the Internet via the World Wide Web. You may connect to the Home Page for the New Mexico District Office using the URL: http://nm.water.usgs.gov CONTENTS Page Abstract............................................................. 1 Introduction ........................................ 2 Purpose and scope........................................................................................................................ -
Forestry in Poland with Special Attention to the Region of the Pomeranian Young Moraine
AFSV Forstwirtschaft und Standortkartierung Waldoekologie online Heft 2 Seite 49 - 58 9 Fig., 2 Tab. Freising, Oktober 2005 Forestry in Poland with special attention to the region of the Pomeranian Young Moraine Marcin S z y d l a r s k i Abstract In the year 2004 the ASFV celebrated its 50th anniversary holding a conference in Sulęczyno, Kartuzy. This event offered the possibility to give an actual overview of forest resources and forest functions in Poland. The excursions of the meeting focused on the fascinating, diversified forest landscape formed by the Pomeranian phase of the Baltic glaciation. The Kartuzy Forest District is situated in the heart of the Kashubian Lakeland and the moraine hills. The landscape is not only characterized by the natural occurrence of Baltic beech forests but also by high diversity of soils and meso- and microclimatic de- viations providing habitats for rare plant species, including some plants typical of mountain regions. The tree species combination of the District is formed by pine, spruce, and beech. The oldest parts of the forests are legally protected as nature reserves. I. POLISH FOREST RESOURCES At the end of the 18th century the Polish forest area comprised about 40%, nowadays forests in Po- land cover approximately 8,942,000 hectares, which is 28.6% of an overall country area. According to international standards (FAO Forestry Department) and tests on economic forestry areas, the wooded area in Poland comprises more than 9,040,000 hectares, which is as many as 30% forest cover and is close to Central European average (www.fao.org/forestry/site/18308/en/pol). -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
FACT SHEET No
FACT SHEET No. 7 Rangeland Watershed Program U.C. Cooperative Extension and USDA Natural Resources Conservation Service Riparian Terms Chew, Matthew K. 1991. Bank Balance: Managing Colorado's Riparian Areas. Bulletin 553A. Coop. Ext. Service, Colorado State University, Ft. Collins, CO. Pg. 41-44. Acre-foot. An amount of water that covers one Braided stream. A stream or river having flat acre to a depth of one foot. Equal to about multiple, dynamic, diverging, and converging 326,700 gallons or 43,560 cubic feet. channels, operating within a single, usually sandy streambed. Characteristic of intermittent or highly Aggradation. The process of building up a variable flows. streambank through sediment deposition. Capacity (sediment). The total amount of Alluvial. Refers to a feature that results from sediments a stream can move, including bed, sediments deposited by flowing water. The suspended, and dissolved loads. material itself is called alluvium. CFS. Cubic feet per second; a standard Anaerobic. Biological activity in the absence of measurement of stream discharge. Harder to free oxygen. The oily-looking black mud found in measure than it sounds. Always an estimate based swampy situations forms due to anaerobic on multiple measurements. decomposition of algae and plants. Cliff and slope. A terrain type made up of Aquifer. A body of groundwater. (This is not a multiple rock terraces that more or less stair-step lake in a cave; see “groundwater.”) down to a stream. Formed because some rock layers (strata) are more erosion-resistant than AUM. Animal Unit Month. The amount of forage others. consumed monthly by one cow with one calf. -
Mühlen-Tabelle (Nicht Im Buch Enthalten)
In der nachfolgenden Übersicht wurden alle in Pommern zu Beginn des 20. Jh. vorhandenen Ortschaften mit den Standorten ihrer Wind- (WI), Wasser- (WA), Dampf- (DA) und Motormühlen (MM) sowie ihrer Wasserkraftwerke (WKW) aufgelistet. Ortschaften der WI erh. W erh. DA erh. W erh. M u. erh. Mühlen- und WKW- Standorte WI A W u. DA K W WK Exp A MM u. W K W l. MM W ges. ges Abtshagen/AK Grimmen 1 1 Abtshagen/AK Schlawe 2 2 (Dobiesław) Adl. Boltenhgn./AK Greifwald 1 1 Adl. Freest/AK Lauenburg 2 2 (Wrześcienko) Ahlbeck/AK Ueckermünde 1 1 2 1 Ahrenshagen/AK Franzb.-B. 1 1 Ahrenshoop/AK Franzb,-Barth 1 1 1 1 Albinshof/AK Anklam 1 1 Albrechtsdorf/AK Ueckerm. 1 1 1* 3 (Karczno)* Alexandrahütte/AK Schlawe 2 2 (Nowy Zytnik) Alt Banzin/AK Köslin 1 1 (Będzino) Alt Belz/AK Köslin 2 2 (Str. Bielice) Alt Bewersdorf/AK Schlawe 1 1* 2 (Bobrowice)* Alt Bork/AK Kolberg-Körlin 1 1 (SraryBorek) Altbraa/AK Schlochau 1 1 (Stara Brda) Altdamm/AK Randow 1* 5 1 6 1 (Dąbie)* Alt Dargsow/AK Cammin 1 1 (Dargoszewo) Alt Döberitz/AK Regenw. 1* 1 (Str. Dobrzyca)* Altefähr/AK Rügen* 2* 2 Altendorf/AK Greifenberg 1 1 1 1 (Łatno) Altenfließ/AK Friedeberg 1 1 (Prrzyłęg) Altenhagen/AK Demmin 1 1 Altenhagen/AK Schlawe 2 2 (Jezyce) Altenkirchen/AK Rügen* 2* 2 Altensien/AK Rügen 2 2 Altentreptow/AK Demmin 5 2 1 7 1 Altenwalde/AK Neustettin 2 2 (Liszkowo) Altenwedel/AK Saatzig 1 1 2 (Sicko) Alt Falkenberg/AK Pyritz 2 2 (Chabowo) Alt Fanger/AK Naugard 1 1 (Węgorza) Alt Gatschow/AK Demmin 1 1 Alt Grape/AK Pyritz 1 1 (Str. -
Instytut Meteorologii I Gospodarki Wodnej
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Biuro Prognoz Hydrologicznych w Krakowie Wydział Prognoz i Opracowań Hydrologicznych w Warszawie ul. Podleśna 61, 01-673 Warszawa tel.: 22-56-94-144 fax.: 22-834-48-97 e-mail: [email protected] www.pogodynka.pl www.imgw.pl INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY BIURO PROGNOZ HYDROLOGICZNYCH W KRAKOWIE Wydział Prognoz i Opracowań Hydrologicznych w Warszawie podaje KOMUNIKAT HYDROLOGICZNY z dnia 03.10.2019 godz. 12 UTC UTC - ang. Universal Time Coordinated - czas uniwersalny; w okresie letnim czas urzedowy w Polsce UTC+2h, a w okresie zimowym UTC+1h. Stan wody Stan wody Stan wody Stan wody Stan wody Stan Stan 6 UTC 9 UTC 12 UTC 15 UTC 18 UTC Stacja ostrze- alar- Rzeka gawczy mowy obser- obser- obser- obser- obser- wodowskazowa wator czujnik wator czujnik wator czujnik wator czujnik wator czujnik [cm] A B C D E F G H I J K L M N województwo śląskie W ĄSOSZ Pilica 250 300 167 168 168 województwo świętokrzyskie Czarna JANUSZEW ICE (W łoszczowska) 320 400 274 273 274 274 województwo podlaskie SIEMIANÓW KA Narew 148 148 148 BONDARY Narew 177 177 177 NAREW Narew 170 200 46 46 46 46 PLOSKI Narew 330 370 214 213 213 SURAŻ Narew 320 340 125 125 124 124 BABINO Narew 540 570 324 324 324 STRĘKOW A GÓRA Narew 420 440 156 156 156 156 W IZNA Narew 440 470 176 176 177 177 PIĄTNICA-ŁOMŻA Narew 410 460 98 98 98 99 NOW OGRÓD Narew 360 400 48 48 49 49 BIAŁOW IEŻA - PARK Narewka 180 200 69 69 69 NAREW KA Narewka 260 290 98 98 98 CHRABOŁY Orlanka 310 350 113 -
Bydgoszcz 20-01-2006
Bull Vet Inst Pulawy 58, 399-404, 2014 DOI: 10.2478/bvip-2014-0062 Occurrence of veterinary antibiotics and chemotherapeutics in fresh water, sediment, and fish of the rivers and lakes in Poland Małgorzata Gbylik-Sikorska, Andrzej Posyniak, Kamila Mitrowska, Anna Gajda, Tomasz Błądek, Tomasz Śniegocki, Jan Żmudzki Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland [email protected] Received: January 29, 2014 Accepted: August 22, 2014 Abstract The occurrence of commonly used veterinary antimicrobial agents was investigated in 159 fresh water, 443 fish, and 150 sediment samples from Polish rivers and lakes. The agents included aminoglycosides, β-lactams, diaminopyrimidines, fluoroquinolones, lincosamides, macrolides, pleuromutilins, sulfonamides, and tetracyclines. The analysis was performed by three different sample preparation procedures for each matrix and it was performed by liquid chromatography-tandem mass spectrometry with electrospray ionisation source in positive mode, under the same conditions. All analytical methods used were validated and showed good sensitivity, accuracy, and precision. The LOQ was in the range from 5 µg/kg to 125 µg/kg for fish samples, from 0.02 µg/L to 10 µg/L for fresh water samples, and from 1 µg/kg to 8 µg/kg for sediment samples. Keywords: antibiotics, water, sediments, fish, LC-MS/MS, Poland. Introduction have a negative influence on human health (7, 8). Several publications have reported the occurrence of Antimicrobial compounds are widely used in various veterinary and human pharmaceuticals, human and veterinary medicine to protect human and including antibiotics, in surface water, groundwater, animal health, to prevent economic losses, and to help wastewater, sediments, and soil. -
Streams and Running Water Streams Are Part of the Hydrologic Cycle (Figure 10.1)
Streams and Running Water Streams are part of the hydrologic cycle (Figure 10.1) Stream: body of running water that is confined in a channel and moves downhill under the influence of gravity. Cross-section of a typical stream (Figure 10.2) 1) Channel Flow 2) Sheet Flow Drainage Basin: area of a stream and its’ tributaries. Tributary: small stream flowing into a large one. Divide: ridge seperating drainage basins. Drainage Patterns 1) Dendritic: resembles tree branches > occurs on uniformly resistant rock 2) Radial: streams diverge outward from a central point > occurs on conic shapes, like volcanoes 3) Rectangular: steams have sharp bends ¾ due to presence of faulting, river follows the fault 4) Trellis: Parallel main streams with right angle tributaries > occurs on valley and ridge geomorphologies Factors Affecting Stream Erosion and Deposition 1) Velocity = distance/time Fast = 5km/hr or 3mi/hr Flood = 25 km/hr or 15 mi/hr Figure 10.6: Fastest in the middle of the channel a) Gradient: downhill slope of the bed of the stream ¾ very high near the mountains ¾ 50-200 feet/ mile in highlands, 0.5 ft/mile in floodplain b) Channel Shape and Roughness (Friction) > Figure 10.9 ¾ Lots of fine particles – low roughness, faster river ¾ Lots of big particles – high roughness, slower river (more friction) High Velocity = erosion (upstream) Low Velocity = deposition (downstream) Figure 10.7 > Hjulstrom Diagram What do these lines represent? Salt and clay are hard to erode, and typically stay suspended 2) Discharge: amount of flow Q = width x depth -
Riverine Dissolved Lithium Isotopic Signatures in Low-Relief Central
Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes Soufian Henchiri, Jérôme Gaillardet, Mathieu Dellinger, Julien Bouchez, Robert Spencer To cite this version: Soufian Henchiri, Jérôme Gaillardet, Mathieu Dellinger, Julien Bouchez, Robert Spencer. River- ine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes. Geophysical Research Letters, American Geophysical Union, 2016, 43 (9), pp.4391-4399. 10.1002/2016GL067711. hal-02133282 HAL Id: hal-02133282 https://hal.archives-ouvertes.fr/hal-02133282 Submitted on 21 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Riverine dissolved lithium isotopic signatures in low-relief 10.1002/2016GL067711 central Africa and their link to weathering regimes Key Points: Soufian Henchiri1, Jérôme Gaillardet1, Mathieu Dellinger1,2,JulienBouchez1, and Robert G. M. Spencer3 • Dissolved Li isotope composition at mouth of the Congo River is 1Institut -
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Biuro Prognoz Hydrologicznych W Krakowie Obszar Warszawa Ul
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Biuro Prognoz Hydrologicznych w Krakowie Obszar Warszawa ul. Podleśna 61, 01-673 Warszawa tel.: 22-56-94-144 fax.: 22-834-48-97 e-mail: [email protected] www.pogodynka.pl www.imgw.pl INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY BIURO PROGNOZ HYDROLOGICZNYCH W KRAKOWIE Obszar Warszawa podaje KOMUNIKAT OPADOWY z dnia 30.07.2019 godz. 6 UTC UTC - ang. Universal Time Coordinated - czas uniwersalny; w okresie letnim czas urzedowy w Polsce UTC+2h, a w okresie zimowym UTC+1h. Dobowa suma opadu 6 UTC Stacja meteorologiczna Rzeka [mm] A B C województwo śląskie PILICA Pilica 24.7 BONOW ICE Pilica 18.5 W ĄSOSZ Pilica 10.5 województwo świętokrzyskie STANOW ISKA Czarna (Maleniecka) 9.8 PILCZYCA Czarna (W łoszczowska) 1.4 JANUSZEW ICE Czarna (W łoszczowska) 8.4 województwo lubelskie JARCZEW W ilga 37.6 województwo podlaskie ZAMOSZE Narew 0.7 BONDARY Narew 1.1 NAREW Narew 0.1 TYKOCIN Narew 0.3 MARIANOW O II Narew 0.1 NOW OSADY Kołonna 1.8 BIAŁOW IEŻA Narewka 2.3 NAREW KA Narewka 0.9 CHRABOŁY Orlanka 0.0 NOW OSIÓŁKI Supraśl 2.0 SUPRAŚL Supraśl 0.0 FASTY Supraśl 0.0 DRAHLE Sokołda 0.0 JAŁÓW KA Sokołda 0.0 BIAŁYSTOK Biała 0.0 MOŃKI Nereśl 0.0 JABŁONOW O-W YPYCHY Ślina 0.1 ZAW ADY Ślina 0.0 DĘBOW O Biebrza 1.4 OSOW IEC Biebrza 0.0 BURZYN Biebrza 0.0 RÓŻANYSTOK Sidra 0.0 JANÓW Brzozówka 0.0 BIEBRZA Ełk 0.0 RADZIŁÓW W issa 0.2 PTAKI Pisa 0.1 A B C DOBRYLAS Pisa 0.0 TYSZKI-W ĄDOŁOW O Skroda 0.0 ZARUZIE Ruż 0.3 HAJNÓW KA Leśna 0.0 TONKIELE Bug 0.0 BRAŃSK Nurzec 0.0