The Faint Young Sun Problem

Total Page:16

File Type:pdf, Size:1020Kb

The Faint Young Sun Problem THE FAINT YOUNG SUN PROBLEM 1 Georg Feulner For more than four decades, scientists have been on higher concentrations of atmospheric greenhouse trying to find an answer to one of the most fundamen- gases like carbon dioxide, methane or ammonia. All tal questions in paleoclimatology, the ‘faint young of these solutions present considerable difficulties, Sun problem’. For the early Earth, models of stellar however, so the faint young Sun problem cannot be evolution predict a solar energy input to the climate regarded as solved. Here I review research on the system which is about 25% lower than today. This subject, including the latest suggestions for solutions would result in a completely frozen world over the of the faint young Sun problem and recent geochem- first two billion years in the history of our planet, if ical constraints on the composition of Earth’s early all other parameters controlling Earth’s climate had atmosphere. Furthermore, I will outline the most been the same. Yet there is ample evidence for the promising directions for future research. In partic- presence of liquid surface water and even life in the ular I would argue that both improved geochemical Archean (3.8 to 2.5 billion years before present), so constraints on the state of the Archean climate sys- some effect (or effects) must have been compensat- tem and numerical experiments with state-of-the-art ing for the faint young Sun. A wide range of possible climate models are required to finally assess what solutions have been suggested and explored during kept the oceans on the Archean Earth from freezing the last four decades, with most studies focussing over completely. 1. INTRODUCTION faint young Sun problem could be solved in prin- ciple before the options are discussed in detail in The faint young Sun problem for Earth’s early the following sections. Section 4 looks at modifi- climate has been briefly reviewed a few times in the cations of the standard solar model, in particular past, for example in the general context of climate the possibility of a strong mass-loss of the young change on geological timescales [Crowley, 1983; Sun. The most likely solution of the faint young Barron, 1984], the formation and early history of Sun problem in terms of an enhanced greenhouse Earth [Zahnle et al., 2007], the evolution of Earth’s effect is discussed in Section 5, the main Section of atmosphere and climate [Pollack, 1991; Kasting, this review paper. Then the effects of clouds (Sec- 1993; Shaw, 2008; Nisbet and Fowler, 2011], life tion 6) and differences in rotation rate and conti- on the early Earth [Nisbet and Sleep, 2001], evo- nental configuration (Section 7) will be explored, lution of the terrestrial planets and considerations before the review is concluded by a summary and of planetary habitability [Pollack, 1979; Rampino suggestions for future research in Section 8. and Caldeira, 1994; Kasting and Catling, 2003] or the evolution of the Sun [Kasting and Grinspoon, 2. THE FAINT YOUNG SUN PROBLEM 1991; G¨udel, 2007]. The more comprehensive re- views of this topic are somewhat dated by now, In this Section, the faint young Sun problem is however, and most look at the issue from the point introduced, beginning with a discussion of the evo- of view of the global energy balance without ex- arXiv:1204.4449v1 [astro-ph.EP] 19 Apr 2012 lution of the Sun on long timescales. ploring important internal aspects of the climate system like the transport of heat. 2.1. A Fainter Sun in the Past This paper presents a new and detailed review By the 1950s, stellar astrophysicists had worked of the faint young Sun problem and is organized as out the physical principles governing the structure follows. Section 2 describes the evidence for a faint and evolution of stars [Kippenhahn and Weigert, young Sun and for the existence of liquid water on 1994]. This allowed the construction of theoretical early Earth. Section 3 explores in what ways the models for the stellar interior and the evolutionary changes occurring during the lifetime of a star. Ap- plying these principles to the Sun, it became clear 1Earth System Analysis, Potsdam Institute for that the luminosity of the Sun had to change over Climate Impact Research, Potsdam, Germany time, with the young Sun being considerably less Copyright 2012 by the American Geophysical Union. Reviews of Geophysics, ???, / pages 1–32 8755-1209/12/£15.00 Paper number • 1 • 2 • FEULNER: THE FAINT YOUNG SUN PROBLEM luminous than today [Hoyle, 1958; Schwarzschild, the core hydrogen burning phase of evolution of 1958]. a star is an inevitable consequence of Newtonian According to standard solar models, when nu- physics and the functional dependence of the ther- clear fusion ignited in the core of the Sun at the monuclear reaction rates on density, temperature time of its arrival on what is called the zero-age and composition.” main sequence (ZAMS) 4.57 Ga (1 Ga = 109 years In addition to this slow evolution of the bolo- ago), the bolometric luminosity of the Sun (the so- metric solar luminosity over timescales of ∼ 109 yr, lar luminosity integrated over all wavelengths) was the Sun exhibits variability on shorter timescales about 30% lower as compared to the present epoch of up to ∼ 103 yr [Fr¨ohlich and Lean, 2004]. This [Newman and Rood, 1977]. The long-term evolu- variability in solar radiation is a manifestation of tion of the bolometric solar luminosity L(t) as a changes in its magnetic activity related to the solar function of time t can be approximated by a sim- magnetic field created by a magnetohydrodynamic ple formula [Gough, 1981] dynamo within the Sun [Weiss and Tobias, 2000]. The bolometric solar luminosity is dominated by radiation in the visible spectral range originating L (t) 1 = , (1) from the Sun’s lower atmosphere which shows very L⊙ 1+ 2 1 − t little variation with solar activity [Fr¨ohlich and 5 t⊙ Lean, 2004]. For the present-day Sun, for exam- 26 ≃ where L⊙ = 3.85 × 10 W is the present-day ple, total solar irradiance varies by only 0.1% solar luminosity and t⊙ = 4.57 Gyr (1 Gyr = over the 11-year sunspot cycle [Gray et al., 2010]. 109 years) is the age of the Sun. Except for the The Sun’s ultraviolet radiation, on the other first ∼ 0.2 Gyr in the life of the young Sun, this hand, is predominantly emitted by the hotter up- approximation agrees very well with the time evo- per layers of the solar atmosphere which are sub- lution calculated with more recent standard solar ject to much larger variability [Lean, 1987; Fr¨ohlich models [e.g., Bahcall et al., 2001], see the compar- and Lean, 2004]. Solar variability (and thus ultra- ison in Figure 1. violet luminosity) was higher in the past due to Note that solar models had been under intense a steady decrease in magnetic activity over time scrutiny for a long time in the context of the “so- caused by the gradual slowing of the Sun’s rota- lar neutrino problem”, an apparent deficiency of tion which ultimately drives the magnetohydrody- neutrinos observed in terrestrial neutrino detec- namic dynamo [Zahnle and Walker, 1982; Dorren tors [Haxton, 1995] which is now considered to be and Guinan, 1994; G¨udel, 2007]. From observa- resolved by a modification of the standard model tions of young stars similar to the Sun one can in- of particle physics [Mohapatra and Smirnov, 2006] fer a decrease in rotation rate Ω⊙ of the Sun with rather than to be an indication of problems with time t which follows a power law solar models. Furthermore, the time evolution of the Sun’s luminosity has been shown to be a very −0.6 Ω⊙ ∝ t (2) robust feature of solar models [Newman and Rood, 1977; Bahcall et al., 2001]. Thus it appears highly [G¨udel, 2007]. For the same reason, the solar unlikely that the prediction of low luminosity for wind was stronger for the young Sun, with conse- the early Sun is due to fundamental problems with quences for the early Earth’s magnetosphere and solar models. (Slightly modified solar models in- the loss of volatiles and water from the early at- volving a larger mass loss in the past will be dis- mosphere [Sterenborg et al., 2011], especially con- cussed in Section 4.) sidering the fact that the strength of Earth’s mag- In a way the robustness of the luminosity evo- netic field was estimated to be ∼ 50 − 70% of the lution of stellar models is not surprising, since the present-day field strength 3.4 − 3.45 Ga [Tarduno gradual rise in solar luminosity is a simple physical et al., 2010]. The effects of these changes in ul- consequence of the way the Sun generates energy traviolet radiation and solar wind will be briefly by nuclear fusion of hydrogen to helium in its core. discussed later on. Over time, Helium nuclei accumulate, increasing Coming back to the lower bolometric luminosity the mean molecular weight within the core. For of the Sun, an estimate of the amount of radiative a stable, spherical distribution of mass twice the forcing of the climate system this reduction cor- total kinetic energy is equal to the absolute value responds to is given by ∆F = ∆S0(1 − A)/4 (the of the potential energy. According to this virial change in incoming solar radiation corrected for ge- theorem, the Sun’s core contracts and heats up ometry and Earth’s albedo A). Using the present- −2 to keep the star stable, resulting in a higher en- day solar constant S0 ≃ 1361 W m [Kopp and ergy conversion rate and hence a higher luminos- Lean, 2011] and Earth’s current albedo A ≃ 0.3 ity.
Recommended publications
  • A Mesoproterozoic Iron Formation PNAS PLUS
    A Mesoproterozoic iron formation PNAS PLUS Donald E. Canfielda,b,1, Shuichang Zhanga, Huajian Wanga, Xiaomei Wanga, Wenzhi Zhaoa, Jin Sua, Christian J. Bjerrumc, Emma R. Haxenc, and Emma U. Hammarlundb,d aResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083 Beijing, China; bInstitute of Biology and Nordcee, University of Southern Denmark, 5230 Odense M, Denmark; cDepartment of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, 1350 Copenhagen, Denmark; and dTranslational Cancer Research, Lund University, 223 63 Lund, Sweden Contributed by Donald E. Canfield, February 21, 2018 (sent for review November 27, 2017; reviewed by Andreas Kappler and Kurt O. Konhauser) We describe a 1,400 million-year old (Ma) iron formation (IF) from Understanding the genesis of the Fe minerals in IFs is one step the Xiamaling Formation of the North China Craton. We estimate toward understanding the relationship between IFs and the this IF to have contained at least 520 gigatons of authigenic Fe, chemical and biological environment in which they formed. For comparable in size to many IFs of the Paleoproterozoic Era (2,500– example, the high Fe oxide content of many IFs (e.g., refs. 32, 34, 1,600 Ma). Therefore, substantial IFs formed in the time window and 35) is commonly explained by a reaction between oxygen and between 1,800 and 800 Ma, where they are generally believed to Fe(II) in the upper marine water column, with Fe(II) sourced have been absent. The Xiamaling IF is of exceptionally low thermal from the ocean depths. The oxygen could have come from ex- maturity, allowing the preservation of organic biomarkers and an change equilibrium with oxygen in the atmosphere or from ele- unprecedented view of iron-cycle dynamics during IF emplace- vated oxygen concentrations from cyanobacteria at the water- ment.
    [Show full text]
  • Redalyc.Lost Terranes of Zealandia: Possible Development of Late
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Adams, Christopher J Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwanaland, and their destination as terranes in southern South America Andean Geology, vol. 37, núm. 2, julio, 2010, pp. 442-454 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173916371010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Ge%gy 37 (2): 442-454. July. 2010 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwana­ land, and their destination as terranes in southern South America Christopher J. Adams GNS Science, Private Bag 1930, Dunedin, New Zealand. [email protected] ABSTRACT. Latesl Precambrian to Ordovician metasedimentary suecessions and Cambrian-Ordovician and Devonian­ Carboniferous granitoids form tbe major par! oftbe basemenl of soutbem Zealandia and adjacenl sectors ofAntarctica and southeastAustralia. Uplift/cooling ages ofthese rocks, and local Devonian shallow-water caver sequences suggest tbal final consolidation oftbe basemenl occurred tbrough Late Paleozoic time. A necessary consequence oftlris process would have been contemporaneous erosion and tbe substantial developmenl of marine sedimentary basins al tbe Pacific margin of Zealandia.
    [Show full text]
  • MBMG 657 Maurice Mtn 24K.Ai
    MONTANA BUREAU OF MINES AND GEOLOGY MBMG Open-File Report 657 ; Plate 1 of 1 A Department of Montana Tech of The University of Montana Geologic Map of the Maurice Mountain 7.5' Quadrangle, 2015 INTRODUCTION YlcYlc Lawson Creek Formation (Mesoproterozoic)—Characterized by couplets (cm-scale) and couples (dm-scale) of fine- to medium-grained white to pink quartzite and red, purple, black, A collaborative Montana Bureau of Mines and Geology–Idaho Geological Survey (MBMG–IGS) and green argillite. Lenticular and flaser bedding are common and characteristic. Mud rip-up mapping project began in 2007 to resolve some long-standing controversies concerning the clasts are locally common, and some are as much as 15 cm in diameter. Thick intervals of 113° 07' 30" 5' 2' 30" R 12 W 113° 00' relationships between two immensely thick, dissimilar, Mesoproterozoic sedimentary sequences: the 45° 37' 30" 45° 37' 30" medium-grained, thick-bedded (m-scale) quartzite are commonly interbedded with the TKg TKg Lemhi Group and the Belt Supergroup (Ruppel, 1975; Winston and others, 1999; Evans and Green, argillite-rich intervals. The quartzite intervals appear similar to the upper part of the CORRELATION DIAGRAM 32 2003; O’Neill and others, 2007; Burmester and others, 2013). The Maurice Mountain 7.5′ quadrangle underlying Swauger Formation (unit Ysw), but quartz typically comprises a large percentage 20 Ybl occupies a key location for study of these Mesoproterozoic strata, as well as for examination of of the grains (up to 93 percent) in contrast to the feldspathic Swauger Formation. Except in Qaf 45 Tcg Ybl 40 Ybl Holocene important Proterozoic through Tertiary tectonic features.
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China
    minerals Article Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Constraints from Zircon U–Pb Dating and Hf Isotopes Wei Liu 1,2,*, Xiaoyong Yang 1,*, Shengyuan Shu 1, Lei Liu 1 and Sihua Yuan 3 1 CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China; [email protected] (S.S.); [email protected] (L.L.) 2 Chengdu Center, China Geological Survey, Chengdu 610081, China 3 Department of Earthquake Science, Institute of Disaster Prevention, Langfang 065201, China; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (X.Y.) Received: 27 May 2018; Accepted: 30 July 2018; Published: 3 August 2018 Abstract: Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with "Hf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with "Hf(t) of −20.1 and a two-stage modeled age of 4152 Ma.
    [Show full text]
  • The World Turns Over: Hadean–Archean Crust–Mantle Evolution
    Lithos 189 (2014) 2–15 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Review paper The world turns over: Hadean–Archean crust–mantle evolution W.L. Griffin a,⁎, E.A. Belousova a,C.O'Neilla, Suzanne Y. O'Reilly a,V.Malkovetsa,b,N.J.Pearsona, S. Spetsius a,c,S.A.Wilded a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Dept. Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia b VS Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia c Scientific Investigation Geology Enterprise, ALROSA Co Ltd, Mirny, Russia d ARC Centre of Excellence for Core to Crust Fluid Systems, Dept of Applied Geology, Curtin University, G.P.O. Box U1987, Perth 6845, WA, Australia article info abstract Article history: We integrate an updated worldwide compilation of U/Pb, Hf-isotope and trace-element data on zircon, and Re–Os Received 13 April 2013 model ages on sulfides and alloys in mantle-derived rocks and xenocrysts, to examine patterns of crustal evolution Accepted 19 August 2013 and crust–mantle interaction from 4.5 Ga to 2.4 Ga ago. The data suggest that during the period from 4.5 Ga to ca Available online 3 September 2013 3.4 Ga, Earth's crust was essentially stagnant and dominantly maficincomposition.Zirconcrystallizedmainly from intermediate melts, probably generated both by magmatic differentiation and by impact melting. This quies- Keywords: – Archean cent state was broken by pulses of juvenile magmatic activity at ca 4.2 Ga, 3.8 Ga and 3.3 3.4 Ga, which may Hadean represent mantle overturns or plume episodes.
    [Show full text]
  • Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019)
    Augustana College Augustana Digital Commons Geography: Student Scholarship & Creative Works Geography Winter 12-8-2019 Late Jurassic Dinosaurs on the Move, Gastroliths and Long- Distance Migration Josh Malone Augustana College, Rock Island Illinois Follow this and additional works at: https://digitalcommons.augustana.edu/geogstudent Part of the Geology Commons, Physical and Environmental Geography Commons, Sedimentology Commons, and the Spatial Science Commons Augustana Digital Commons Citation Malone, Josh. "Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019). Geography: Student Scholarship & Creative Works. https://digitalcommons.augustana.edu/geogstudent/8 This Student Paper is brought to you for free and open access by the Geography at Augustana Digital Commons. It has been accepted for inclusion in Geography: Student Scholarship & Creative Works by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. LATE JURASSIC DINOSAURS ON THE MOVE, GASTROLITHS AND LONG- DISTANCE MIGRATION a senior thesis written by Joshua Malone in partial fulfillment of the graduation requirements for the major in Geography Augustana College Rock Island, Illinois 61201 1 Table of Contents 1. Abstract ................................................................................................................................................ 4 2. Introduction ........................................................................................................................................
    [Show full text]
  • Proterozoic Ocean Chemistry and Evolution: a Bioinorganic Bridge? A
    S CIENCE’ S C OMPASS ● REVIEW REVIEW: GEOCHEMISTRY Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? A. D. Anbar1* and A. H. Knoll2 contrast, weathering under a moderately oxidiz- Recent data imply that for much of the Proterozoic Eon (2500 to 543 million years ing mid-Proterozoic atmosphere would have 2– ago), Earth’s oceans were moderately oxic at the surface and sulfidic at depth. Under enhanced the delivery of SO4 to the anoxic these conditions, biologically important trace metals would have been scarce in most depths. Assuming biologically productive marine environments, potentially restricting the nitrogen cycle, affecting primary oceans, the result would have been higher H2S productivity, and limiting the ecological distribution of eukaryotic algae. Oceanic concentrations during this period than either redox conditions and their bioinorganic consequences may thus help to explain before or since (8). observed patterns of Proterozoic evolution. Is there any evidence for such a world? Canfield and his colleagues have developed an argument based on the S isotopic compo- n the present-day Earth, O2 is abun- es and forms insoluble Fe-oxyhydroxides, sition of biogenic sedimentary sulfides, 2– dant from the upper atmosphere to thus removing Fe and precluding BIF forma- which reflect SO4 availability and redox the bottoms of ocean basins. When tion. This reading of the stratigraphic record conditions at their time of formation (16–18). O 2– life began, however, O2 was at best a trace made sense because independent geochemi- When the availability of SO4 is strongly 2– Ͻϳ constituent of the surface environment. The cal evidence indicates that the partial pressure limited (SO4 concentration 1 mM, ϳ intervening history of ocean redox has been of atmospheric oxygen (PO2) rose substan- 4% of that in present-day seawater), H2S interpreted in terms of two long-lasting tially about 2400 to 2000 Ma (4–7).
    [Show full text]
  • The Archean Geology of Montana
    THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga.
    [Show full text]
  • Early Mesozoic Paleogeography and Tectonic Evolution of the Western
    Downloaded from gsabulletin.gsapubs.org on August 26, 2011 Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon Todd A. LaMaskin1,†, Jeffrey D. Vervoort2, Rebecca J. Dorsey1, and James E. Wright3 1Department of Geological Sciences, University of Oregon, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA 2School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164-2812, USA 3Department of Geology, University of Georgia, 308 Geography-Geology Building, 210 Field Street, Athens, Georgia 30602-2501, USA ABSTRACT the southwestern United States and modi- Vallier, 1995; Dorsey and LaMaskin, 2007, fied by input from cratonal, miogeoclinal, 2008). This proliferation of models reflects, This study assesses early Mesozoic prove- and Cordilleran-arc sources during Triassic in part, insufficient constraints on provenance nance linkages and paleogeographic-tectonic and Jurassic time. Jurassic sediments likely links to North America, the early Mesozoic models for the western United States based were derived from the Cordilleran arc and latitude of marginal arc-basin complexes, and on new petrographic and detrital zircon data an orogenic highland in Nevada that yielded the amount of subsequent post-Jurassic margin- from Triassic and Jurassic sandstones of the recycled sand from uplifted Triassic backarc parallel displacement. “Izee” and Olds Ferry terranes of the Blue basin deposits.
    [Show full text]
  • Megaripples from the Mesoproterozoic of the Kimberley Region, Northwestern Australia and Its Geological Implications
    Journal of Palaeogeography 2012, 1(1): 15−25 DOI: 10.3724/SP.J.1261.2012.00003 Lithofacies palaeogeography and sedimentology Megaripples from the Mesoproterozoic of the Kimberley region, northwestern Australia and its geological implications Lan Zhongwu1, 2, 3, , Zhong-Qiang Chen2, 4, * 1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. School of Earth and Environment, The University of Western Australia, Australia 3. Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China Abstract Large ripples are described from the Mesoproterozoic Hilfordy Formation in the Kimberley region, northwestern Australia. Both ripple index (RI) and ripple symmetry in- dex (RSI) suggest the Kimberley ripples were likely generated by storm waves. Their wave height is up to 15−23 cm and wave length is up to 70−90 cm. These features, incorporated with other morphological characteristics such as symmetry, steepness, ripple spacing, and compositions, agree well with the megaripples previously reported from the intertidal-nearshore settings of modern seas and the geological past. The Mesoproterozoic ripples were likely gen- erated by the storm-induced flows. Literature survey of the global record of megaripples reveals that such structures have occurred through the geological past from the Archean to present day. They were particularly common in the Neoproterozoic and had the largest ripple length and ripple height among the modern and geological records. This is probably because extreme storms prevailed at that time.
    [Show full text]
  • Oxygenated Mesoproterozoic Lake Revealed Through Magnetic
    Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy Sarah P. Slotznicka,1, Nicholas L. Swanson-Hysella, and Erik A. Sperlingb aDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; and bDepartment of Geological Sciences, Stanford University, Stanford, CA 94305 Edited by Paul F. Hoffman, University of Victoria, Victoria, BC, Canada, and approved October 29, 2018 (received for review August 4, 2018) Terrestrial environments have been suggested as an oxic haven Formation has been further interpreted to indicate the pres- for eukaryotic life and diversification during portions of the Pro- ence of more than 50 different species (4). This record is terozoic Eon when the ocean was dominantly anoxic. However, argued to be more diverse than similar-aged marine assemblages, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old which leads to the interpretation that lacustrine environments Nonesuch Formation, deposited in a large lake and bearing a with stable oxygenated waters may have been more hospitable diverse assemblage of early eukaryotes, are interpreted to indi- to eukaryotic evolution than marine ones (4). Early oxygena- cate persistently anoxic conditions. To shed light on these distinct tion of lacustrine environments during the Mesoproterozoic hypotheses, we analyzed two drill cores spanning the trans- has also been proposed based on large sulfur isotope frac- gression into the lake and its subsequent shallowing. While the tionations from sedimentary rocks of the Stoer and Torridon proportion of highly reactive to total iron (FeHR/FeT) is consis- groups that were interpreted to have resulted from oxidative tent through the sediments and typically in the range taken sulfur cycling (15).
    [Show full text]