Influence of Postharvest Drying Temperatures on Alkaloid Levels In

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Postharvest Drying Temperatures on Alkaloid Levels In HORTSCIENCE 56(2):242–243. 2021. https://doi.org/10.21273/HORTSCI15500-20 alkaloids found in the plant. The goal of this study was to determine the influence of post- harvest drying temperature on alkaloid levels Influence of Postharvest Drying in goldenseal roots and rhizomes. Temperatures on Alkaloid Levels in Materials and Methods Goldenseal (Hydrastis canadensis L.) Plant material. In this study, goldenseal samples were removed from three spatially Grady H. Zuiderveen distinct (e.g., at least 20 m apart) colonies Department of Ecosystem Science and Management, Pennsylvania State within a wild population located in central University, University Park, PA 16802 Pennsylvania. Fourteen ramets were harvested from each plot in early April while plants were Eric P. Burkhart dormant. Voucher specimens were collected Department of Ecosystem Science and Management, Pennsylvania State and deposited at the Pennsylvania State Uni- versity Herbarium (PAC). University, University Park, PA 16802; and Shavers Creek Environmental Processing conditions. The underground Center, 3400 Discovery Road, Petersburg, PA 16669 portion of the plant consists of a horizontal rhizome roughly 1–1.5 cm in diameter, with Joshua D. Lambert multiple fibrous rootlets extending from the Department of Food Science, Pennsylvania State University, University rhizome. For this study, the roots and rhi- Park, PA 16802 zomes (subsequently referred to simply as rhizomes) were processed and analyzed to- Additional index words. alkaloid, medicinal plant chemistry, drying, quality control gether. This was done because industry typ- Abstract. Goldenseal (Hydrastis canadensis L.) is a medicinal forest herb native to ically does not differentiate between these Appalachia. Its roots and rhizomes are used as an antimicrobial and for the treatment of parts. Following harvest, rhizomes were intestinal ailments. Three alkaloids–berberine, hydrastine, and canadine–are recognized cleaned on a screen by hand under running as the major bioactive constituents in goldenseal. One important postharvest processing water to remove any soil. step for goldenseal is drying; however, it is not known how drying temperature influences Rhizome samples were dried using seven the concentrations of these alkaloids. In this study, pre-emergent (dormant) goldenseal different drying conditions (6 samples/drying samples were freeze-dried or air-dried at six different temperatures (26.7 to 54.4 8C) to temperature). Samples were dried until the determine the relationship between drying temperature and alkaloid content in the dried mass was 30% of the fresh weight, and rhizome and roots. High performance liquid chromatography analysis showed that the rhizomes could be broken cleanly (Davis berberine and hydrastine levels were unaffected by drying temperature, while canadine and Persons, 2014). Supplemental Table 1 levels decreased as temperature increased (0.55% w/w on average when samples were shows the final mass of the dried samples and freeze-dried, down to 0.27% w/w on average when dried at 54.4 8C). While canadine is the the mass of moisture lost. Air-dried samples least abundant alkaloid of the three, it is known to have key antibacterial properties. were dried in an adjustable Lindberg/Blue M Developing a more standardized drying protocol for goldenseal could lead to a more 260 Mechanical Oven (Model number predictable phytochemical profile. MO1490C-1; Thermo Scientific, Asheville, NC), with an air flow rate of 25.5 L/min and specific humidity of 8.9 g H2O/kg air at 26.7, Goldenseal (Hydrastis canadensis L., et al., 2008; Mahady and Chadwick, 2001; 32.2, 37.8, 43.3, 48.9, or 54.4 °C (nominal Ranunculaceae) is a medicinal herb indige- Scazzocchio et al., 2001). uniformity of 3.5% of the setpoint). The nous to eastern North American forestlands. Most of the commercially traded golden- drying temperatures selected cover the range It is included in many formulations used to seal is still wild harvested (Oliver and Lea- of current recommendations and reach the treat intestinal infections and digestive ail- man, 2018). While drying is an important lower limits that can be obtained while still ments, and it is known to have antimicrobial, postharvesting step for goldenseal (Lloyd and using a drying oven. One set of samples was anticancer, and immunostimulatory proper- Lloyd, 1884), no standardized protocol ex- freeze-dried using a VirTis Genesis Freeze ties (Predny and Chamberlain, 2005). The ists, and various drying methods are used Dryer (SP Industries, Warminster, PA) to medicinal properties of goldenseal are widely (Personal observation; Upton, 2001). Current provide a baseline of alkaloid concentrations attributed to three major isoquinoline alkaloids ‘‘folk’’ drying methods include drying the for comparison. After being dried, samples (Supplemental Fig. 1A): berberine, hydrastine, rhizomes in the sun and/or shade, in small were stored in air-tight containers at 4 °C and canadine (Abidi et al., 2006; Brown drying sheds, and in forced air dryers (Davis until analysis. and Persons, 2014; Personal observation). Chemical calibration standards. Berber- The most recent recommendations for gold- ine hydrochloride (purity > 98%) and cana- enseal rhizome suggest drying at 35 to dine (tetrahydroberberine) (purity > 98%) 37.7 °C to prevent mold growth and the were purchased from Quality Phytochemicals Received for publication 5 Oct. 2020. Accepted for b publication 4 Dec. 2020. decay of the rhizome (Davis and McCoy, LLC (East Brunswick, NJ); (-)- -Hydrastine Published online 12 January 2021. 2000). Davis and Persons (2014) state that (purity > 99%) was purchased from Chroma- This research was supported by the Pennsylvania rhizomes will lose 70% of their weight as Dex (Irvine, CA). State University College of Agriculture Graduate water evaporation during drying, and tem- High-performance liquid chromatography Student Competitive Grants Program (to G.H.Z.) peratures should be kept as low as possible analysis. Dried rhizomes were ground using a and was supported in part by USDA Hatch Project (ideally between 29.4 and 37.8 °C). The mortar and pestle. Fifty mg (±10%) of ground PEN 4565 and the Azzara Family Food Bioactives American Herbal Pharmacopoeia has identi- material was combined with 4 mL of extrac- Research Endowment (to J.D.L.). fied that determining the optimal drying tion solvent (70% water, 29.9% acetonitrile, Current address for G.H.Z.: USDA Forest Service, 0.1% phosphoric acid). Tubes were vortexed 201 14th Street SW, Washington, D.C. 20250. conditions for goldenseal is an area that needs E.P.B. is the corresponding author. E-mail: epb6@ further research (Upton, 2001). Developing a to mix, sonicated for 10 min at room temper- psu.edu. more standardized drying protocol for gold- ature, and centrifuged for 8 min at 3220 gn. This is an open access article distributed under the enseal could lead to more predictable health The supernatant was diluted 1:4 with 10% CC BY-NC-ND license (https://creativecommons. applications and outcomes by preserving the aqueous acetonitrile and filtered through org/licenses/by-nc-nd/4.0/). 0.2-mm nylon filters. 242 HORTSCIENCE VOL. 56(2) FEBRUARY 2021 High-performance liquid chromatogra- One explanation for the difference in find- method for the detection and/or quantifica- phy (HPLC) analysis was performed using a ings between the alkaloids is that berberine and tion of select alkaloids in goldenseal supple- Shimadzu HPLC system (Shimadzu Co., Co- hydrastine are both end products of biosynthetic ments and raw materials by reversed-phase lumbia, MD) equipped with two LC-20AD pathways, while canadine is an intermediate high-performance liquid chromatography. pumps, a SIL-20AC HT refrigerated auto step in berberine biosynthesis by the action of Pharm. Biol. 46(1–2):135–144, doi: 10.1080/ 13880200701735171. injector, a column oven maintained at the enzyme tetrahydro-protoberberine oxidase 24 °C, and an SPD-20AV ultraviolet/Vis (Mander and Liu, 2010). As such, an increase Correche, E.R., S.A. Andujar, R.R. Kurdelas, M.J.G. Lechon, M.L. Freile, and R.D. Enriz. detector. A binary gradient of water contain- in the enzymatic activity of the oxidase would 2008. Antioxidant and cytotoxic activities of ing 0.1% formic acid (solvent A) and meth- result in a decrease in canadine levels; and it is canadine: Biological effects and structural as- anol containing 0.1% formic acid (solvent B) known that as temperature increases, enzyme pects. Bioorg. Med. Chem. 16(7):3641–3651, with a flow rate of 0.75 mL/min was used. activity increases up to the point of enzyme doi: 10.1016/j.bmc.2008.02.015. The initial mobile phase was 20% B. The denaturation (Daniel and Danson, 2013; Elias Daniel, R.M. and M.J. Danson. 2013. Temperature concentration of B increased linearly for et al., 2014). The results for canadine are and the catalytic activity of enzymes: A fresh 15 min to 45%, and this was held at the consistent with this hypothesis. understanding. FEBS Lett. 587(17):2738–2743, concentration for 5 min. The mobile phase While canadine is the least abundant of doi: 10.1016/j.febslet.2013.06.027. wasthenreturnedto20%,andtheHPLC the three alkaloids, it is still potentially an Davis, J. and J.-A. McCoy. 2000. Commercial was re-equilibrated for 7 min. Analytes important contributor to the overall efficacy goldenseal cultivation. North Carolina State Univer- were separated using a Zorbax Eclipse of goldenseal. When isolated, canadine has sity, Raleigh. 8 Dec. 2020. <https://content.ces.nc- XDB-C18 column (4.6 · 150 mm, 3.5 mm been found to have significant activity su.edu/commercial-goldenseal-cultivation>. particle size, 80 A˚ pore size). Eluent was against numerous strains of bacteria, and it Davis, J. and W.S. Persons. 2014. Growing and monitored at 280 nm. is the only one of the three major alkaloids marketing ginseng, goldenseal and other wood- Statistical analysis. All statistical analysis found to be active against Pseudomonas aeru- land medicinals. New Society Publishers, was completed in R-studio version 3.5.1 ginosa and Staphylococcus aureus (Abbasoglu Gabriola Island, British Columbia.
Recommended publications
  • Pharmacokinetic Interactions Between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance
    life Review Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance Laura Rombolà 1 , Damiana Scuteri 1,2 , Straface Marilisa 1, Chizuko Watanabe 3, Luigi Antonio Morrone 1, Giacinto Bagetta 1,2,* and Maria Tiziana Corasaniti 4 1 Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy; [email protected] (L.R.); [email protected] (D.S.); [email protected] (S.M.); [email protected] (L.A.M.) 2 Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy 3 Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan; [email protected] 4 School of Hospital Pharmacy, University “Magna Graecia” of Catanzaro and Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493462 Received: 28 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions.
    [Show full text]
  • Coptis Japonica</Emphasis>
    Plant Cell Reports (1988) 7:1-4 Plant Cell Reports © Springer-Verlag 1988 Alternative final steps in berberine biosynthesis in Coptisjaponica cell cultures E. Galneder 1 M. Rueffer 1, G. Wanner 1, 2, M. Tabata 1, 3, and M. H. Zenk 1 1 Lehrstuhl tar Pharmazeutische Biologie der Universitfit Mfinchen, Karlstrasse 29, D-8000 Mt~nchen 2, Federal Republic of Germany 2 Botanisches Institut der Universitfit Miinchen, Menzinger Strasse 67, D-8000 Manchen 19, Federal Republic of Germany 3 Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan Received October 30, 1987 - Communicated by K. Hahlbrock ABSTRACT oxidase (STOX) reported from our laboratory (Amann et al., 1984) in that the Coptis enzyme dehydrogenated In Coptis japonica cell cultures an alternative path- only (S)-canadine while other tetrahydroprotober- way has been discovered which leads from (S)-tetra- berines were reported to be inactive. In further hydrocolumbamine via (S)-canadine to berberine. The contrast to the STOX enzyme, their enzyme did not two enzymes involved have been partially purified. produce hydrogen peroxide but rather H20 as one of (S)-Tetrahydrocolumbamine is stereospecifically the reaction products. Our analysis of the Coptis transformed into (S)-canadine under formation of the system reported here led to the surprising result methylenedioxy bridge in ring A. This new enzyme was that the terminal two steps in the biosynthesis of named (S)-canad/ne synthase. (S)-Canadine in turn is berberine in 8erberis and Coptis are biochemically stereospecifically dehydrogenated to berberine by an completely different while similar at the cytological oxidase, (S)-canadine oxidase (COX), which was level.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Appendix Human and Rat Liver Cytochromes P450: Functional
    Appendix Human and Rat Liver Cytochromes P450: Functional Markers, Diagnostic Inhibitor Probes, and Parameters Frequently Used in P450 Studies Maria Almira Correia The tables in this appendix summarize the rel­ different P450 isoforms included in its evaluation ative functional selectivities of substrates and as well as the range of substrate/inhibitor concen­ inhibitors for the major human and rat liver trations tested. Second, substrates and inhibitors C3^ochrome P450 isoforms (P450s). These hepatic determined to be "relatively selective" for a human isoforms are well recognized to catalytically par­ liver isoform, may not necessarily be so for its rat ticipate in the metabolism of chemically diverse liver ortholog, and vice versa. Third, the relative endo- and xenobiotics including drugs, and in the metabolic contribution of a P450 isoform to the case of human liver P450s to thus contribute to in vivo hepatic metabolism of a given drug is directly clinically adverse drug-drug interactions. Conse­ proportional to the relative hepatic microsomal quently, these P450s are the targets of intense abundance of that isoform and its affinity for that scrutiny in the pharmaceutical screening of exist­ compound, irrespective of its in vitro high meta­ ing or novel chemical agents of potential clinical bolic profile assessed under "optimized" condi­ relevance for drug development. At a more basic tions. This issue arises because recent advances in level, these tables provide information on estab­ recombinant P450 technology have made unprece­ lished and/or potential diagnostic tools for the dented amounts of purified human liver enzymes identification and/or characterization of the meta­ readily available for comparative in vitro charac­ bolic role of each individual P450 in the disposition terization of drug metabolism, at relative P450 of an as yet uncharacterized xeno- or endobiotic.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-
    [Show full text]
  • Pseudoxandra Sclerocarpa Maas, Colombian Medicinal Plant: a Review [Pseudoxandra Sclerocarpa Maas, Planta Medicinal Colombiana: Una Revisión]
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile Salazar, J. Rodrigo; Torres, Patrício; Serrato, Blanca; Dominguez, Mariana; Alarcón, Julio; Céspedes, Carlos L. Insect Growth Regulator (IGR) effects of Eucalyptus citriodora Hook (Myrtaceae) Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 14, núm. 5, 2015, pp. 403-422 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85641105006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2015 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 14 (4): 308 – 316 ISSN 0717 7917 www.blacpma.usach.cl Revisión | Review Pseudoxandra sclerocarpa Maas, Colombian medicinal plant: a review [Pseudoxandra sclerocarpa Maas, planta medicinal colombiana: una revisión] Jazmin Prieto1, Diego Cortes2, Luisauris Jaimes3, Claudio Laurido4, Raul Vinet5 & José L. Martínez6 1Universidad Nacional de Colombia, sede Palmira 2Facultad de Farmacia, Universidad de Valencia, España 3Facultad de Ciencias de la Educación, Universidad de Carabobo, Valencia, Venezuela 4Facultad de Química y Biología, Universidad de Santiago de Chile 5Facultad de Farmacia, Universidad de Valparaíso, and Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile 6Vicerrectoría de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile Contactos | Contacts: José L. MARTÍNEZ - E-mail address: [email protected] Abstract: The Annonaceae family is one of the largest, with 130 genre and 2500 species, consisting of trees, shrubs and a few vines.
    [Show full text]
  • Proquest Dissertations
    u Ottawa l.'Univcrsilc cnnndicnnc C.'inadn's linivcrsily FACULTE DES ETUDES SUPERIEURES l==l FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L'UniversitG canadienne Canada's university Renee Leduc TOTEURWEniS'SErAUTHOROrfHESiS" M.Sc. (Biology) GRADE/DEGREE Department of Biology "F7CUITOC6LTD!PARTE¥OT^^ Phytochemical Variation in Canadian Hydrastis canadensis L. (Goldenseal) and the In vitro Inhibition of Human Cytochrome P450-mediated Drug Metabolism by H. canadensis and Other Botanicals TITRE DE LA THESE / TITLE OF THESIS Dr. John T. Amason TJiRECTEURpRiC^ Dr. Robin J. Maries CO-DIRECTEUR"(CO-DIRECfRICE) DE LATHISE / THl¥s"CO^"UPERVlSOR EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS Dr. Jeremy Kerr Dr. Paul Caitling Dr. Naomi Cappuccino Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies PHYTOCHEMICAL VARIATION IN CANADIAN HYDRASTIS CANADENSIS L. (GOLDENSEAL) AND THE IN VITRO INHIBITION OF HUMAN CYTOCHROME P450-MEDIATED DRUG METABOLISM BY H. CANADENSIS AND OTHER BOTANICALS RENEEIRENE LEDUC Thesis submitted to the Faculty of Graduate and Postdoctoral Studies University of Ottawa in partial fulfillment of the requirements for the M.Sc. degree in the Ottawa-Carleton Institute of Biology These soumise a Faculte des etudes superieures et postdoctorales Universite d'Ottawa en vue de I'obtention de la maitrise es sciences L'lnstitut de biologie d'Ottawa-Carleton © Renee I. Leduc, Ottawa, Canada, 2007 Library and Bibliotheque
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tinnitus
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tinnitus Chemical Activity Count (+)-ALPHA-VINIFERIN 1 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 2 (+)-ISOLARICIRESINOL 1 (+)-NORTRACHELOGENIN 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 1 (-)-ANABASINE 1 (-)-APOGLAZIOVINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-DICENTRINE 1 (-)-EPICATECHIN 2 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 4 Chemical Activity Count 1-ETHYL-BETA-CARBOLINE 2 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 2 2-VINYL-4H-1,3-DITHIIN 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3,3'-DIMETHYLELLAGIC-ACID 1 3,4-DIMETHOXYTOLUENE 2 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID
    [Show full text]
  • A Computational Tool for Pathway-Based Rational Drug Repositioning Supplementary Information
    gene2drug: a Computational Tool for Pathway-based Rational Drug Repositioning Supplementary Information Francesco Napolitano1, Diego Carrella1, Barbara Mandriani1, Sandra Pisonero1, Diego Medina1, Nicola Brunetti-Pierri1,2, and Diego di Bernardo1,3 1Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), 80078, Italy. 2Department of Translational Medicine, Federico II University, 80131 Naples, Italy 3Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy. List of Figures S1 Relation between PPI network-based and pathway based approaches. Given a therapeutic gene and the set of pathways it is annotated to according to the different databases, the other genes in the same pathways are topologically closer to it in the PPI network as compared to randomly chosen genes. The average shortest path from the selected gene to other pathway members is reported on the y axis for each database. 3 S2 Size of intersection between existent evidence scores in the STITCH database (subset matched against the Cmap database) as a percentage of the total number of evidences. Numbers on the diagonal represent how many times a drug-target evidence exists divided by the total number of reported pairs. A \combined score" always exist if one of the other evidences exist, thus \combined score" covers 100% of the pairs. Conversely, an \experimental" score is only present for 14% of the pairs. The \Text mining" evidence strongly drives the \combined score" covering 61% of all the known protein-target interactions in STITCH. 4 S3 Relative luminescence units (RLU) in Hepa1-6 cells transfected with a plasmid ex- pressing the luciferase gene under the control of the GPT promoter and incubated with various concentrations of fulvestrant.
    [Show full text]
  • S41438-020-00450-6.Pdf
    Xu et al. Horticulture Research (2021) 8:16 Horticulture Research https://doi.org/10.1038/s41438-020-00450-6 www.nature.com/hortres ARTICLE Open Access Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo Dingqiao Xu1,HanfengLin 2,YupingTang1,LuHuang1,JianXu2,SihuiNian3 and Yucheng Zhao 2 Abstract Corydalis yanhusuo W.T. Wang is a classic herb that is frequently used in traditional Chinese medicine and is efficacious in promoting blood circulation, enhancing energy, and relieving pain. Benzylisoquinoline alkaloids (BIAs) are the main bioactive ingredients in Corydalis yanhusuo. However, few studies have investigated the BIA biosynthetic pathway in C. yanhusuo, and the biosynthetic pathway of species-specific chemicals such as tetrahydropalmatine remains unclear. We performed full-length transcriptomic and metabolomic analyses to identify candidate genes that might be involved in BIA biosynthesis and identified a total of 101 full-length transcripts and 19 metabolites involved in the BIA biosynthetic pathway. Moreover, the contents of 19 representative BIAs in C. yanhusuo were quantified by classical targeted metabolomic approaches. Their accumulation in the tuber was consistent with the expression patterns of identified BIA biosynthetic genes in tubers and leaves, which reinforces the validity and reliability of the analyses. Full- length genes with similar expression or enrichment patterns were identified, and a complete BIA biosynthesis pathway fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in C. yanhusuo was constructed according to these ndings. Phylogenetic analysis revealed a total of ten enzymes that may possess columbamine-O-methyltransferase activity, which is the final step for tetrahydropalmatine synthesis. Our results span the whole BIA biosynthetic pathway in C.
    [Show full text]
  • In Silico Transcriptomic Analysis of Canadine Accumulation in Papaver Somniferum Cultivar
    J Biotechnol Biomed 2020; 3 (1): 024-028 DOI: 10.26502/jbb.2642-91280024 Research Article In Silico Transcriptomic Analysis of Canadine Accumulation in Papaver Somniferum Cultivar Sai Batchu* Department of Biology, The College of New Jersey, 2000 Pennington Rd. Pennington, NJ, USA *Corresponding Author: Sai Batchu, Department of Biology, The College of New Jersey, 2000 Pennington Rd. Pennington, NJ, USA, E-mail: [email protected] Received: 20 February 2020; Accepted: 13 March 2020; Published: 20 March 2020 Citation: Sai Batchu. In Silico Transcriptomic Analysis of Canadine Accumulation in Papaver Somniferum Cultivar. Journal of Biotechnology and Biomedicine 3 (2020): 024-028. Abstract Papaver somniferum, colloquially known as opium high canadine cultivar compared to the normal cultivar. poppy, currently remains as the only commercial source These findings provide basis for further elucidating the of pharmaceutically important benzylisoquinoline coordinated transcriptional processes underlying alkaloids, of which include canadine. Canadine is an canadine accumulation in P. somniferum cultivars. important naturally occurring alkaloid in current demand for pharmaceutical studies. Understanding the Keywords: Canadine; Papaver somniferum; biosynthesis in plantae will help in increasing Transcriptomic; In silico production of this alkaloid. In the present study, a comparative transcriptomic analysis was performed 1. Introduction between gene expression data procured from the normal Opium poppy (Papaver somniferum) is an important cultivar and a high canadine cultivar. Results indicated source of benzylisoquinoline alkaloids, a group of plant differential expression of key enzymes in the secondary metabolites that exhibits a multitude of phthalideisoquinoline pathway leading to canadine pharmacological activities including antimalarial [1], biosynthesis. Specifically, it was found that antispasmodic [2], analgesic [3], and antitussive [4].
    [Show full text]
  • The Medicinal Plant Goldenseal Is a Natural LDL-Lowering Agent with Multiple Bioactive Components and New Action Mechanisms
    The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms Parveen Abidi,1 Wei Chen,1 Fredric B. Kraemer, Hai Li, and Jingwen Liu2 Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 Abstract Our previous studies have identified berberine In humans, .70% of LDL-c is removed from plasma by low (BBR), an alkaloid isolated from the Chinese herb huang- density lipoprotein receptor (LDLR)-mediated uptake in lian, as a unique cholesterol-lowering drug that upregulates the liver (4). Hence, the expression level of hepatic LDLR hepatic low density lipoprotein receptor (LDLR) expression directly influences plasma cholesterol levels; therefore, through a mechanism of mRNA stabilization. Here, we dem- Downloaded from onstrate that the root extract of goldenseal, a BBR-containing regulation of liver LDLR represents a key mechanism by medicinal plant, is highly effective in upregulation of liver which therapeutic agents could intervene in the develop- LDLR expression in HepG2 cells and in reducing plasma ment of coronary heart disease and atherosclerosis. cholesterol and low density lipoprotein cholesterol (LDL-c) Hepatic LDLR expression is predominantly regulated in hyperlipidemic hamsters, with greater activities than the at the transcriptional level through a negative feedback pure compound BBR. By conducting bioassay-driven semi- mechanism by intracellular cholesterol pools. This regu- www.jlr.org purifications, we demonstrate that the higher potency of lation is controlled through specific interactions of the goldenseal is achieved through concerted actions of multi- sterol-regulatory element of the LDLR promoter (5, 6) ple bioactive compounds in addition to BBR.
    [Show full text]