Magnetic Resonance Arthrography of the Wrist and Elbow

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Resonance Arthrography of the Wrist and Elbow Magnetic Resonance Arthrography of the Wrist and Elbow Gary M. LiMarzi, MDa,b, M. Cody O’Dell, MDa,b, Kurt Scherer, MDa,b, Christopher Pettis, MDa,b, Christopher W. Wasyliw, MDa,b, Laura W. Bancroft, MDa,b,* KEYWORDS MR arthrography Scapholunate ligament tear Ulnar collateral ligament tear Olecranon stress fracture Osteochondritis dissecans KEY POINTS Magnetic resonance (MR) arthrography is highly sensitive and specific for the diagnosis of scapho- lunate ligament tears. MR dictations should state if tears are partial-thickness or full-thickness, and if the tearing involves the dorsal, membranous, and/or volar components of the ligament. Partial-thickness tears of the anterior band of the ulnar collateral ligament in overhead-throwing athletes are well evaluated with MR arthrography. Repetitive valgus elbow stress and rapid elbow extension during the late stages of throwing may result in an olecranon stress fracture, with propagation from a structural weak point in the trochlear groove. Osteochondritis dissecans of the elbow is an osteochondral injury classically seen in adolescent or young adult athletes, especially baseball pitchers, due to repetitive valgus impaction injury of the radial head and developing ossification center of the capitellum. MAGNETIC RESONANCE ARTHROGRAPHY OF injuries to the intrinsic and extrinsic carpal liga- THE WRIST ments, as well as the triangular fibrocartilage com- plex (TFCC). Because the TFC is discussed in Wrist pain is a common, nonspecific patient depth in the article by Cody et al, elsewhere in complaint that may be secondary to a variety of this issue, this article will not focus on its normal im- underlying processes, both degenerative and trau- aging appearance or pathology. Because clinical matic. Wrist trauma can be divided into 2 cate- presentations can overlap significantly, magnetic gories: low impact and high impact. High-impact resonance (MR) arthrography is essential in the trauma can lead to displaced fractures, disloca- diagnostic workup of such injuries. MR arthrogra- tions, and acute tears of the ligaments and tendons, phy of the wrist is generally preferred over conven- whereas low-impact trauma can lead to more 1 tional MR imaging or computed tomography (CT) occult injuries. Both mechanisms can result in arthrography because of its high intrinsic contrast The authors have nothing to disclose. a Florida Hospital Diagnostic Radiology Residency Program, Department of Radiology, Florida Hospital, Uni- versity of Central Florida College of Medicine, 601 East Rollins, Orlando, FL 32803, USA; b Department of Radi- ology, Florida Hospital, University of Central Florida College of Medicine, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA * Corresponding author. E-mail address: [email protected] Magn Reson Imaging Clin N Am 23 (2015) 441–455 http://dx.doi.org/10.1016/j.mric.2015.04.003 1064-9689/15/$ – see front matter Ó 2015 Elsevier Inc. All rights reserved. mri.theclinics.com 442 LiMarzi et al resolution, as well as the ability to evaluate extra- articular soft tissue pathology. MR arthrography is indicated to evaluate TFCC, intrinsic and extrinsic carpal ligaments, and the distal radial ulnar joint (DRUJ).2 Technique The use of intra-articular contrast agents provides an effective means of evaluating the TFCC and in- terosseous ligaments of the wrist. There is vari- ability among institutions as to whether to perform single-compartment (most commonly radiocarpal), 2-compartment, or rarely 3-compartment (radio- carpal, DRUJ, and midcarpal) arthrography before MR arthrography. Injections are most commonly performed under fluoroscopic guidance, but some radiologists prefer sonographic guidance.3 Radiocarpal injections are approached most Fig. 1. Wrist arthrogram in a 70-year-old man before commonly from a dorsal approach; however, MR arthrography. Anteroposterior view of the wrist 4 some radiologists choose a lateral approach. at the beginning of arthrogram demonstrates radio- With the patient supine on the fluoroscopy table, carpal injection of 1:250 ratio of gadolinium to iodin- the patient’s wrist is placed in a flexed position ated contrast through a 25-gauge needle (arrowhead) and bolstered with a rolled towel. The radiocarpal before MR arthrogram. Asterisk indicates site for mid- joint is visualized in profile and the skin overlying carpal injection, and circle indicates site for distal the joint is marked at the level of the mid scaphoid. radioulnar injection. After prepping and draping the dorsum of the wrist, local anesthesia is administered with a 25-gauge, Midcarpal joint injections are most commonly 1.5-inch anesthesia needle from a dorsal performed from a dorsal approach into to the cen- approach, and the needle is advanced into the tral portion of the 4-part junction of the lunate, tri- radiocarpal joint. Connector tubing flushed with quetrum, hamate, and capitate. Distal radioulnar injectate from the syringe is connected to the nee- joint injection is performed from a dorsal dle after dripping contrast into the needle hub to approach, with the needle extending to the radial displace any air. Although some radiologists inject aspect of the ulnar head. only a small amount of iodinated contrast to confirm needle placement before injecting the Contraindications dilute gadolinium mixture, it is also acceptable to combine the iodinate contrast and gadolinium Besides the normal contraindications for MR together. While taking rapid cine images, an imaging, the only absolute contraindication for ar- approximately 3-mL mixture of iodinated contrast thrography is local infection of the skin or subcu- 5 and dilute gadolinium is injected into the radiocar- taneous tissue. One would not want to pal joint, or until resistance is perceived (Fig. 1). contaminate a joint by crossing a needle through The gadolinium-based contrast used in MR ar- infected tissues. Usually, patients who cannot un- thrography is usually diluted in normal saline and/ dergo MR arthrography are able to tolerate imag- or iodinated contrast to a concentration of 1:250, ing with CT arthrography. For example, patients which optimizes the paramagnetic effects of gado- with implantable cardiac pacemakers who, with linium at 1.5-T field strengths. After removal of the some recent exceptions due to new MR imaging- needle, the wrist is then briefly exercised and con- safe pacemakers, cannot undergo MR arthrogra- 5–8 ventional arthrographic images are obtained in the phy, can be safely evaluated with CT. A history anteroposterior, lateral, and oblique images before of adverse contrast reactions with either iodinated MR arthrography. Some radiologists also prefer or gadolinium-based agents is considered a rela- taking dedicated spot imaging of the scapholunate tive contraindication and should be evaluated on 5 (SL) ligament with ulnar deviation or clenched fist a case-by-case basis. stress maneuver. This arthrographic imaging is Complications diagnostic, and is instrumental in cases of patients unable to complete the MR portion of the examina- Arthrography is a generally well-tolerated proce- tion for a variety of reasons. dure with few significant risks, and complications MR Arthrography of the Wrist and Elbow 443 following arthrography are uncommon and usually in the form of pain. This can be due to overdisten- tion of the joint space, irritation of surrounding nerves, or from intravasation of injected contrast into adjacent muscles.5,7,8 Synovitis caused by the contrast also may be irritating and painful. Infection is an inherent risk to all percutaneous procedures, but is very rare. Magnetic Resonance Acquisition Wrist MR arthrography should be obtained on a 1.5-T or preferably a 3.0-T magnet in a dedicated wrist coil for optimal image quality, and thin- Fig. 2. Axial scout for prescription of coronal and section imaging and small field of view should be sagittal views. A plane intersecting the hook of the 9–13 used (Table 1). Patients are optimally scanned hamate (H) and the palmar margin of the trapezium in the prone position with the arm extended over- (T) serves as the reference plane for coronal acquisi- head and the wrist in neutral positioning near the tions (single line). Sagittal images are prescribed isocenter of the magnet (“Superman” position).13 from the axis perpendicular (double lines) to the cor- If patients cannot tolerate this positioning, imaging onal plane. is done with the wrist by the patient’s side, with care to optimize fat suppression. MR arthrography includes axial, coronal, and sagittal imaging also prefer using gradient-echo sequences or planes, and the coronal and sagittal sequences 3-dimensional volumetric sequences. Although are prescribed relative to a plane intersecting the uncommonly used, some investigators use finger hook of the hamate and the palmar margin of the trap distraction with weights suspended from the trapezium (Fig. 2). Most sequences are obtained fingers to accentuate the amount of contrast in with turbo spin echo (TSE) T1-weighting with fat the SL interval, widening of the space, and disrup- 14,15 suppression, to take advantage of the T1 proper- tion of Gilula carpal arcs. ties of the injected gadolinium; T1-weighted im- ages without fat suppression and T2-weighted NORMAL ANATOMY images with fat suppression also are obtained. Intrinsic Ligaments T2-weighted fat-suppressed and non–fat-sup- pressed T1-weighted images are useful in evalu- The intrinsic and extrinsic interosseous ligaments ating the marrow. T2-weighted images can of the wrist
Recommended publications
  • Disease Staging Software™ Reference Guide
    Disease Staging Software™ Version 5.26 Reference Guide COPYRIGHT © 1999-2009 THOMSON REUTERS. ALL RIGHTS RESERVED. - 1 - Copyright © 1999-2009 Thomson Reuters. ALL RIGHTS RESERVED. MEDSTAT® Reg. U.S. Pat. & Tm. Off. All rights reserved. No part of this publication may be reproduced, translated or transmitted in any form, by photocopy, microfilm, xerography, recording or any other means, or stored or incorporated into any information retrieval system, electronic or mechanical, without the prior written permission of the copyright owner. Requests for permission to copy any part of this publication or for additional copies should be addressed to: Thomson Reuters 777 E. Eisenhower Pkwy. Ann Arbor, Michigan 48108. The software, data and other information to which this manual relates have been provided under the terms of a License Agreement with Thomson Reuters, Inc. All Thomson Reuters clients using Medstat Disease Staging Software® are required to obtain their own licenses for use of all applicable medical coding schemes including but not limited to: Major Diagnostic Categories (MDCs), Diagnosis Related Groups (DRGs), and ICD-9-CM. Trademarks: Medstat and Medstat Disease Staging Software are registered trademarks of Thomson Reuters, Inc. Intel and Pentium are registered trademarks of Intel Corporation. Microsoft, Windows, Windows NT, Windows 2000, and Windows XP are registered trademarks of Microsoft Corporation. SAS is a registered trademark of the SAS Institute, Inc. AIX and IBM are registered trademarks of the IBM Corporation. Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. HP-UX is a registered trademark of the Hewlett-Packard Company. Linux® is the registered trademark of Linus Torvalds in the U.S.
    [Show full text]
  • Learn the Terms
    Learn the Terms Healthcare is replete with poly-syllabic clinical terminology and unfamiliar acronyms. Learn the Terms is a quick guide for non- clinical personnel to what these terms mean. You can reference these terms below and others in the AHIA Electronic Audit Library – Terms and Acronyms section. Thanks to Theresa Crothers, RN, CMAS for her contribution. Theresa is a nurse auditor for United Audit Systems, Inc., and is 2005 President, American Association of Medical Audit Specialists. Endoscopic Radiologic (continued) EGD: Esophagogastroduodenoscopy is a test that allows the BE: Barium Enema, also known as a Lower GI, examines the lining of the esophagus, stomach, and upper duodenum to be lower intestine a� er the installation of Barium. visualized by the use of a fl exible fi ber-optic or video endoscope. This test is done to diagnose infl ammation, tumors, ulcers, and KUB: Kidney-Ureter-Bladder is an x-ray that shows the organs any other injury to the esophagus and duodenum. Conscious related to the kidney. Each kidney has a ureter that connects to Sedation is used. the bladder. ERCP: Endoscopic Retrograde Cholangio-Pancreatography Fluoroscopy: A continuous beam of x-ray to follow movement allows for the visualization of the pancreas, liver, and gallbladder, in the body. by using a fl exible lighted scope. A contrast medium is injected IVP: Intravenous Pylogram is an x-ray that shows the structures prior to the exam. Conscious Sedation is used. of the urinary tract using an IV contrast. It is done to evaluate Radiologic size and location of kidney stones, cause of urinary tract infections, and tumor diagnosis.
    [Show full text]
  • Patient Prep Instructions
    SCHEDULING CENTER PHONE: (650) 723-6855 FAX: (650) 723-6036 ● HOSPITAL – 300 Pasteur Drive ● BLAKE WILBUR OUTPATIENT CLINIC – 900 Blake Wilbur Drive ● ADVANCE D MEDICINE CENTER/CANCER CENTER – 875 Blake Wilbur Drive ● STANFORD MEDICINE IMAGING CENTER – 451 Sherman Avenue, Palo Alto ● STANFORD MEDICINE OUTPATIENT CENTER – 450 Broadway, Redwood City PATIENT PREP INSTRUCTIONS PLEASE REGISTER 30 MINUTES PRIOR TO THE APPOINTMENT TIME Prior insurance authorization may be required by your insurance company for this radiology study. Please confirm that you have insurance approval. Please bring any insurance information (card & authorization) and the exam requisition with you to the appointment. Stanford Medicine Imaging Center: Monday-Friday 7:00am to 10:00pm Stanford Medicine Outpatient Center: Monday-Friday 7:00am to 10:00pm Blake Wilbur Outpatient Clinic Registration: Monday-Friday 7:00am to 9:30pm Saturday-Sunday 7:00am to 3:30pm AMC/Cancer Center Registration (1st floor Room CC 1227): Monday-Friday 7:00am to 5:00pm Hospital MRI Registration (Ground Floor): Monday-Friday 7:00am to 9:30pm Saturday-Sunday 7:00am to 2:30pm Nuclear Medicine & PET/CT Registration (2nd Floor H2200): Monday-Friday 7:00am to 5:00pm Hospital Radiology East Registration (1st Floor): Monday-Friday 6:45am to 6:00pm Hospital Registration (Main Admitting): Monday-Friday 5:30am to 9:30pm Saturday-Sunday 7:00am to 9:30pm DIABETIC PATIENTS: If you are a diabetic patient taking any medication that contains Metformin (Glucophage, Glucovance, Metaglip, Actoplus, Prandimet, Kombiglyze, Janumet, Avandamet, Fortamet, and Riomet) and are scheduled for an examination that requires IV contrast (CT, IVP or Arthrogram) DO NOT take your medication on the day of the exam and for 48 hours after.
    [Show full text]
  • Imaging Services Order Guide Medicare Guidelines Require Explicit Written and Signed Provider Orders
    Imaging Services 2021 Imaging Services Order Guide Medicare guidelines require explicit written and signed provider orders. This guide was created to assist you in ordering and authorizing exams accurately. Please obtain insurance authorizations before scheduling imaging studies. Call one of our licensed/certified technologists if you have questions or comments. NOTE: Please DO NOT call the department to schedule an appointment. CENTRALIZED SCHEDULING . 509-248-9592 GENERAL X-RAY . 509-895-0509 COMPUTED TOMOGRAPHY (CT) . 509-895-0507 MAGNETIC RESONANCE IMAGING (MRI) . 509-895-0505 NUCLEAR MEDICINE . 509-575-8099 `OHANA MAMMOGRAPHY . 509-574-3863 ULTRASOUND . 509-249-5154 VASCULAR ULTRASOUND–Memorial Heart & Vascular . 509-574-0243 VASCULAR STAT REFERRALS–Memorial Heart & Vascular . .509-494-0551 CARDIOVASCULAR SERVICES–Memorial Heart & Vascular . 509-574-0243 BONE DENSITY–Lakeview Campus . 509-972-1170 PROVIDER EMERGENCY . 509-248-7380 Option 0 Consultation of a Clinical Decision Support Mechanism is required to determine if advanced diagnostic imaging services (CT, MRI, Nuclear Medicine, PET) adheres to Appropriate Use Criteria. Order must include Decision Support Number (DSN), G-Code, and Modifier. PHONE | 509-895-0507 PHONE | 509-895-0507 2 3 CT/CAT Scan/Computed Tomography FAX | 509-576-6982 CT/CAT Scan/Computed Tomography FAX | 509-576-6982 *If patient is over 400 lbs., please call the CT department at 509-895-0507. *If patient is over 400 lbs., please call the CT department at 509-895-0507. Consultation of a Clinical Decision Support Mechanism is required. Order must include DSN, G-Code, and Modifier. Consultation of a Clinical Decision Support Mechanism is required. Order must include DSN, G-Code, and Modifier.
    [Show full text]
  • REVIEW ARTICLE Osteoarthritis of the Wrist
    REVIEW ARTICLE Osteoarthritis of the Wrist Krista E. Weiss, Craig M. Rodner, MD From Harvard College, Cambridge, MA and Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT. Osteoarthritis of the wrist is one of the most common conditions encountered by hand surgeons. It may result from a nonunited or malunited fracture of the scaphoid or distal radius; disruption of the intercarpal, radiocarpal, radioulnar, or ulnocarpal ligaments; avascular necrosis of the carpus; or a developmental abnormality. Whatever the cause, subsequent abnormal joint loading produces a spectrum of symptoms, from mild swelling to considerable pain and limitations of motion as the involved joints degenerate. A meticulous clinical and radiographic evaluation is required so that the pain-generating articulation(s) can be identi- fied and eliminated. This article reviews common causes of wrist osteoarthritis and their surgical treatment alternatives. (J Hand Surg 2007;32A:725–746. Copyright © 2007 by the American Society for Surgery of the Hand.) Key words: Wrist, osteoarthritis, arthrodesis, carpectomy, SLAC. here are several different causes, both idio- of events is analogous to SLAC wrist and has pathic and traumatic, of wrist osteoarthritis. been termed scaphoid nonunion advanced collapse Untreated cases of idiopathic carpal avascular (SNAC). Wrist osteoarthritis can also occur second- T 1 2 necrosis, as in Kienböck’s or Preiser’s disease, may ary to an intra-articular fracture of the distal radius or result in radiocarpal arthritis. Congenital wrist abnor- ulna or from an extra-articular fracture resulting in malities, such as Madelung’s deformity,3,4 can lead malunion and abnormal joint loading.
    [Show full text]
  • Readingsample
    Color Atlas of Human Anatomy Vol. 1: Locomotor System Bearbeitet von Werner Platzer 6. durchges. Auflage 2008. Buch. ca. 480 S. ISBN 978 3 13 533306 9 Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 130 Upper Limb: Bones, Ligaments, Joints Radiocarpal and Midcarpal Joints Ligaments in the Region of the Wrist (A–E) (A–E) Four groups of ligaments can be distin- The radiocarpal or wrist joint is an ellip- guished: soid joint formed on one side by the radius (1) and the articular disk (2) and on the Ligaments which unite the forearm bones with other by the proximal row of carpal bones.Not the carpal bones (violet). These include the all the carpal bones of the proximal row are ulnar collateral ligament (8), the radial col- in continual contact with the socket- lateral ligament (9), the palmar radiocarpal shaped articular facet of the radius and the ligament (10), the dorsal radiocarpal liga- disk. The triquetrum (3), only makes close ment (11), and the palmar ulnocarpal liga- contact with the disk during ulnar abduc- ment (12). tion and loses contact on radial abduction. Ligaments which unite the carpal bones with The capsule of the wrist joint is lax, dorsally one another,orintercarpal ligaments (red). These comprise the radiate carpal ligament Upper Limb relatively thin, and is reinforced by numer- ous ligaments.
    [Show full text]
  • Bones and Joints of the Upper Limb: Forearm and Hand
    Unit 4: Bones and joints of the upper limb: forearm and hand Chapter 6 (Upper limb) GENERAL OBJECTIVES: - recognize, name and correctly orient forearm and hand bones - understand movements in elbow, wrist and hand joints SPECIFIC OBJECTIVES: Bones of the forearm and hand Identify the bony features on each part of the following bones: RADIUS - Upper End - Shaft - Lower End ULNA - Upper End - Shaft - Lower End Deduce (from the shape of the articular surfaces) the movements at (i) the elbow joint and (ii) the radioulnar joints. Indicate the bony attachments of the major ligaments which help to maintain the stability of these joints (while allowing their mobility). Identify the following bones CARPALS - Proximal Row - Distal Row METACARPALS PHALANGES Identify the attachments of the Flexor Retinaculum and define the "Carpal Tunnel". Deduce (from the shape of the articular surfaces) the movements at (i) the wrist joint (ii) the carpometacarpal joint of the thumb (iii) metacarpophalangeal joints (iv) interphalangeal joints Indicate the bony attachments of the major ligaments which help to maintain the stability of these joints (while allowing their mobility). Joints of the forearm and hand Elbow Joint Articular Surfaces (Humeroulnar & Humeroradial) Fibrous Capsule & Joint Cavity Synovial Membrane Collateral Ligaments ( Medial & Lateral) Special Structures: Olecranon Bursa Other Bursae, Pads of Fat Movements at the Elbow Joint: Flexion/Extension Stability Carrying Angle Radioulnar Joints Proximal Radioulnar Joint Annular Ligament Distal Radioulnar
    [Show full text]
  • Carpal Fractures
    CURRENT CONCEPTS Carpal Fractures Nina Suh, MD, Eugene T. Ek, MBBS, PhD, Scott W. Wolfe, MD CME INFORMATION AND DISCLOSURES The Review Section of JHS will contain at least 3 clinically relevant articles selected by the Provider Information can be found at http://www.assh.org/Pages/ContactUs.aspx. editor to be offered for CME in each issue. For CME credit, the participant must read the Technical Requirements for the Online Examination can be found at http://jhandsurg. articles in print or online and correctly answer all related questions through an online org/cme/home. examination. The questions on the test are designed to make the reader think and will occasionally require the reader to go back and scrutinize the article for details. Privacy Policy can be found at http://www.assh.org/pages/ASSHPrivacyPolicy.aspx. The JHS CME Activity fee of $30.00 includes the exam questions/answers only and does not ASSH Disclosure Policy: As a provider accredited by the ACCME, the ASSH must ensure fi include access to the JHS articles referenced. balance, independence, objectivity, and scienti c rigor in all its activities. Disclosures for this Article Statement of Need: This CME activity was developed by the JHS review section editors and review article authors as a convenient education tool to help increase or affirm Editors reader’s knowledge. The overall goal of the activity is for participants to evaluate the Ghazi M. Rayan, MD, has no relevant conflicts of interest to disclose. appropriateness of clinical data and apply it to their practice and the provision of patient Authors care.
    [Show full text]
  • DISSERTATION INVESTIGATION of CATIONIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY for the EVALUATION of EQUINE ARTICULAR CARTILAGE Su
    DISSERTATION INVESTIGATION OF CATIONIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY FOR THE EVALUATION OF EQUINE ARTICULAR CARTILAGE Submitted by Bradley B. Nelson Department of Clinical Sciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2017 Doctoral Committee: Advisor: Christopher E. Kawcak Co-Advisor: Laurie R. Goodrich C. Wayne McIlwraith Mark W. Grinstaff Myra F. Barrett Copyright by Bradley Bernard Nelson 2017 All Rights Reserved ABSTRACT INVESTIGATION OF CATIONIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY FOR THE EVALUATION OF EQUINE ARTICULAR CARTILAGE Osteoarthritis and articular cartilage injury are substantial problems in horses causing joint pain, lameness and decreased athleticism resonant of the afflictions that occur in humans. This debilitating joint disease causes progressive articular cartilage degeneration and coupled with a poor capacity to heal necessitates that articular cartilage injury is detected early before irreparable damage ensues. The use of diagnostic imaging is critical to identify and characterize articular cartilage injury, though currently available methods are unable to identify these early degenerative changes. Cationic contrast-enhanced computed tomography (CECT) uses a cationic contrast media (CA4+) to detect the early molecular changes that occur in the extracellular matrix. Glycosaminoglycans (GAGs) within the extracellular matrix are important for the providing the compressive stiffness of articular cartilage and their degradation is an early event in the development of osteoarthritis. Cationic CECT imaging capitalizes on the electrostatic attraction between CA4+ and GAGs; exposing the proportional relationship between the amount of GAGs present within and the amount of CA4+ that diffuses into the tissue. The amount of CA4+ that resides in the tissue is then quantified through CECT imaging and estimates tissue integrity through nondestructive assessment.
    [Show full text]
  • Arthrogram Contrast Medium Will Be Injected Into the Joint
    after ensuring the needle is in the right place the Arthrogram contrast medium will be injected into the joint. Consumer Information The injection may be accompanied by a feeling of fullness in the joint but should not be painful. Contributors: The contrast medium used depends on the exact A/Prof Howard Galloway nature of the Arthrogram and the specialist doctor MBBS, FRANZCR performing the Arthrogram. This is generally Ms Ann Revell, Dr Christine Walker, A/Prof Stacy Goergen iodinated contrast medium. If you are having an MRI Arthrogram, this will be What is an Arthrogram? followed by a very dilute mixture of MRI contrast (gadolinium chelates) together with sterile saline An Arthrogram is a diagnostic test which examines (mildly salty water). If you are having a CT the inside of a joint (e.g. shoulder, knee, wrist, Arthrogram, occasionally air is injected either on its ankle) to assess an injury or a symptom you may be own, or with a small amount of X-ray contrast prior experiencing. to the scan. The test is done by first injecting contrast medium Following the injections you will be taken to either (or “dye” as it is sometimes called) which outlines the MRI suite (for an MRI Arthrogram), or the CT the soft tissue structures in the joint (e.g. ligaments suite (for a CT Arthrogram), where the scan of the and cartilage) and makes them clearer to see on the joint will be performed. images or pictures that will be taken of the joint. This is usually done using fluoroscopy. Fluoroscopy uses X-rays to transmit moving images onto a Are there any after effects of an screen to guide the placement of the needle Arthrogram? containing the contrast medium.
    [Show full text]
  • Wrist Complex
    WRIST COMPLEX DR DIGVIJAY SHARMA ASSISTANT PROFESSOR DEPARTMENT OF PHYSIOTHERAPY C.S.J.M. UNIVERSITY KANPUR It consist of 2 compound joints- Radiocarpal joint Midcarpal joint STRUCTURE- RADIOCARPAL JOINTS- This joint is formed by radius and radioulnar disc proximally and by the scaphoid, lunate and triquetral distally. The proximal joint surface is composed of I. Lateral radial facet which articulate with scaphoid. II. Medial Radial facet articulates with lunate III. The triangular fibro cartilage complex that articulate with triquetrum predominantly and lunate with up to some extent . When the wrist is in neutral position ulna does not participate as the part of the radiocarpal joint Other than an attachment site for the TFCC(triangular fibro cartilage complex). MIDCARPAL JOINT It is the articulation between a scaphoid, lunate and triquetrum proximally and distal carpal row composed of the trapezium, trapezoid , capitate and hamate. The mid carpal joint surfaces are complex with an overall reciprocally concavo- convex configuration. Functionally the distal carpal row moves as an almost fix unit. The capitate and hamate are most strongly bound together, So only small amount of play is possible between them. The union of distal carpal also results in nearly equal distribution of load across - A scaphoid – trapezium- trapezoid, Scaphoid-capitate, lunate- capitate , the triquetrum- hamate articulations. Together the bones of the distal carpal row contribute 20 of freedom of wrist complex with varying amounts of radial/ulnar deviation and flexion/extension credited to the joint . LIGAMENTS- The ligaments of the wrist complex are divided into- I. Extrinsic ligaments II. Intrinsic ligaments The extrinsic ligaments connect the carpals to the radius or ulna proximally and to the metacarpals distally.
    [Show full text]
  • Hand Surgery: a Guide for Medical Students
    Hand Surgery: A Guide for Medical Students Trevor Carroll and Margaret Jain MD Table of Contents Trigger Finger 3 Carpal Tunnel Syndrome 13 Basal Joint Arthritis 23 Ganglion Cyst 36 Scaphoid Fracture 43 Cubital Tunnel Syndrome 54 Low Ulnar Nerve Injury 64 Trigger Finger (stenosing tenosynovitis) • Anatomy and Mechanism of Injury • Risk Factors • Symptoms • Physical Exam • Classification • Treatments Trigger Finger: Anatomy and MOI (Thompson and Netter, p191) • The flexor tendons run within the synovial tendinous sheath in the finger • During flexion, the tendons contract, running underneath the pulley system • Overtime, the flexor tendons and/or the A1 pulley can get inflamed during finger flexion. • Occassionally, the flexor tendons and/or the A1 pulley abnormally thicken. This decreases the normal space between these structures necessary for the tendon to smoothly glide • In more severe cases, patients can have their fingers momentarily or permanently locked in flexion usually at the PIP joint (Trigger Finger‐OrthoInfo ) Trigger Finger: Risk Factors • Age: 40‐60 • Female > Male • Repetitive tasks may be related – Computers, machinery • Gout • Rheumatoid arthritis • Diabetes (poor prognostic sign) • Carpal tunnel syndrome (often concurrently) Trigger Finger: Subjective • C/O focal distal palm pain • Pain can radiate proximally in the palm and distally in finger • C/O finger locking, clicking, sticking—often worse during sleep or in the early morning • Sometimes “snapping” during flexion • Can improve throughout the day Trigger Finger:
    [Show full text]